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Sensor Validation for Structural Systems with
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Structures with a large number of sensors and actuators are becoming more common, and their

applications vary from active control to damage location. This large amount of spatial information

should be used to advantage to continuously monitor the correct functioning of the sensors during

normal operation. Errors introduced by faulty sensors can cause a loss of performance and erroneous

conclusions, and this paper analyses additive sensor faults. Two residual generation schemes are

proposed to monitor sensor faults, namely the modal filtering approach and the so-called Parity Space

approach. These residuals are then tested using a probabilistic approach using a �2 test to determine

if there is a faulty sensor. These approaches are demonstrated on a simulated cantilevered beam

excited at its tip and also on an experimental subframe structure.
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1 Introduction

Smart structures have the potential to place a

large number of distributed actuators and sensors

on a structure. The correct functioning of active

control and health monitoring requires that the

sensors are functioning. Errors introduced by

faulty sensors can cause undamaged areas to be

identified as damaged, or control system perfor-

mance to be inadequate, or certainly less than

optimal. In many civil structures applications of

health monitoring (such as bridges), ambient

loads must be used for excitation. These loads are

not known and may be measured or estimated as

part of the health monitoring algorithm, which

requires a large number of sensors.

Sensor validation, where the sensors are

confirmed to be functioning during operation,

seems to have received little attention in the

smart structures and structural health monitoring

communities. The critical aspect in smart struc-

tures is that there are usually more sensors than

excited modes. This redundancy may be used,

together with a model of the structure, to validate

the sensor functionality.

The control and chemical engineering com-

munity have considered the sensor validation

problem, and have used models and sensor redun-

dancy to good effect. However, these approaches

usually use the faulty sensor to predict the

response and look for errors between predictions

and measurement, although using the faulty
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sensor in the prediction process will propagate

errors to the predicted responses. Often neural

networks, or artificial intelligence approaches are

used for the analysis.

Friswell and Inman [7] assumed that only the

lower modes of the structure are usually excited,

producing a large redundancy in the data. This

has similarities to the principal component analy-

sis used in chemical plant [5,6,14]. The alterna-

tive, used here, is to generate the residuals using

the parity space approach [3,4] or by using modal

residuals [7]. The approach is demonstrated

on a beam structure, although the method is

completely general and may be applied to any

structure for which a model is available. If

necessary, such a model could be obtained from

an identification experiment.

Faults may cause a variety of changes in the

dynamic response of a sensor, and many of these

are difficult to model. However the two most

common faults, namely additive and multiplica-

tive faults, are relatively straightforward to

model. Physically additive faults might arise from

DC offsets in the electronic equipment and multi-

plicative faults might arise from calibration

errors. In this paper the sensor faults are assumed

to be additive and modeled as a constant signal

added to the sensor response. The problem of

detecting sensor faults is then transformed into

the problem of the detection of the change in the

mean of a Gaussian variable with known covar-

iance matrix, which switches from zero under the

no-fault condition to a mean value with unknown

magnitude under the fault condition. This

problem may be solved using a likelihood ratio

test resulting in a �2 distributed variable, which is

then compared to a threshold. In order to decide

which sensor or subset of sensors is most likely

to be responsible for the fault, the so-called

sensitivity tests are computed, which are also �2

distributed.

2 Sensor Validation Concepts

Although there is redundancy in the data, based

on the number of sensors and the number of

modes excited, it is still not straightforward to

identify those sensors that are damaged. When all

sensors are working, it is possible to estimate the

modal contributions to the response and therefore

produce a predicted response that will give some

idea of the accuracy of the model of the structure

and the extent of the measurement noise.

However if a sensor is damaged, then using data

from this sensor to estimate the modal participa-

tion factors will propagate the errors from the

faulty channel through the estimate of the modal

response to the estimate of the response in all

channels. Thus to predict faulty sensors the

sensors are split into two groups. If S represents

the set of all sensors then the two groups are,

Sf ¼ sensors assumed to be faulty
� �

Sw ¼ sensors assumed to be working
� �

Note that these two sets are disjoint so that

Sf \ Sw ¼ fg Sf [ Sw ¼ S:

Note that the distribution of faulty and

working sensors seems to have been determined

at the outset. In practice, the sensors that are

faulty will be unknown and so every potential

subset of faulty sensors must be tried. This

approach has parallels with the subset selection

technique in parameter estimation [8,9,12]. The

difficulty in sensor validation, as in parameter

estimation, is to determine which sensor or

parameter subset is optimal. Note that for sensor

validation, the number of assumed working

sensors should be at least as great as the number

of modes of interest.

3 The Dynamic Model

The theory is best developed using the discrete

time equations of motion in state space form. The

development follows Basseville [3] closely. The

equations of motion for the functioning system

are, for some constant matrices A, B, C, and D,

of appropriate dimension,

Xkþ1 ¼ AXk þ BUk þWk

Yk ¼ CXk þDUk þ Vk

ð1Þ
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where Xk 2 R
2n, Yk 2 R

r, and Uk 2 R
m are the

state vector, the output, and the controlled input

at discrete time k. n is the number of degrees of

freedom of the system, r is the number of

outputs, and m is the number of force inputs. Wk

and Vk denote two random noise sequences.

Most structural models are defined in contin-

uous time and defined using mass, damping, and

stiffness matrices, although the model may be

transformed to discrete time. The measured data

is sampled, and this motivates the use of discrete

time equations. The second-order equations of

motion are given by

M̂M €qqþ ĈC _qqþ K̂Kq ¼ f ¼ F̂Fu ð2Þ

where q tð Þ 2 R
n is the vector of generalized

co-ordinates, f tð Þ 2 R
n is the external force in

physical coordinates, u tð Þ 2 R
m is the system

input, and F̂F 2 R
n�m determines the location of

the applied force input. M̂M, ĈC, K̂K 2 R
n�n are the

mass, damping, and stiffness matrices, respec-

tively. This may be written in continuous state

space form as

_xx ¼
0 I

�M̂M�1K̂K �M̂M�1ĈC

� �
xþ

0

M̂M�1F̂F

� �
u

¼ ÂAxþ B̂Bu ð3Þ

where the state vector is

x ¼
q
_qq

� �
, ð4Þ

and ÂA and B̂B are defined in Equation (3).

Integrating Equation (3) from time tk to tkþ1,

assuming that the input is constant and given by

Uk, gives Equation (1) where [11],

A ¼ exp ÂA �t, B ¼

Z �t

0

exp ÂA� d�

� �
B̂B ð5Þ

and �t ¼ tkþ1 � tk. In the output equation, the

second of Equation (1), C determines which

displacements are measured. D is usually zero,

although D will be nonzero if acceleration is

measured.

Suppose that the system is faulty, so that the

faulty system is assumed to have the following

equations of motion,

Xkþ1 ¼ AXk þ BUk þ �FX þWk

Yk ¼ CXk þDUk þ�FY þ Vk

ð6Þ

where FX 2 R
qX and FY 2 R

qY are the assumed

additive faults. These faults are assumed constant,

but unknown. The matrices � and � are assumed

known and determine the location of possible

faults.

Assume that Y and U are measured over a

finite time window of size p. Let

Y
pð Þ

k ¼

Yk�pþ1

Yk�pþ2

..

.

Yk

8>>>><
>>>>:

9>>>>=
>>>>;
, U

pð Þ

k ¼

Uk�pþ1

Uk�pþ2

..

.

Uk

8>>>><
>>>>:

9>>>>=
>>>>;
, ð7Þ

then, from Equation (6), by repeatedly substitut-

ing the first of Equation (6) into the second,

Y
ðpÞ
k ¼ OpXk�pþ1 þMp B,Dð ÞU

pð Þ

k þMX �ð ÞFX

þMY �ð ÞFY þ Z
pð Þ

k ð8Þ

where the observability matrix is

O
pð Þ

k ¼

C

CA

..

.

CAp�1

2
66664

3
77775 ð9Þ

and

Mp B,Dð Þ

¼

D 0 0 � � � 0 0

CB D 0 � � � 0 0

CAB CB D � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

CAp�2B CAp�3B CAp�4B � � � CB D

2
666666664

3
777777775
�

ð10Þ
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The coefficients of the faults are

MX �ð Þ ¼

0
C

CAþ C

..

.

CAp�2 þ � � � þ CAþ C

2
66664

3
77775 � ð11Þ

and

MY �ð Þ ¼

�
�
..
.

�

2
664

3
775� ð12Þ

The noise sequences have combined to give

Z
pð Þ

k ¼ Mp In, 0ð Þ W
pð Þ

k þ V
pð Þ

k � ð13Þ

The purpose of Equation (8) is to collate all

the information for the time window into a single

equation. It is instructive to summarize the

known and unknown quantities in Equation (8).

Assuming that the model of the structure is

known, then O
pð Þ

k , Mp, MX , and MY will be

determined. The unknown quantities are Xk�pþ1,

which are the initial conditions for the time

window, the quantities relating to the fault, FX

and FY , and the random noise Z
pð Þ

k .

4 The Parity Space Approach to
Residual Generation

Given the measured quantities, one could mini-

mize the unknown random noise, Z
pð Þ

k , in

Equation (8), and identify FX and FY , together

with Xk�pþ1, and the performance of this estima-

tion would depend on the statistical properties

of the noise. The parity space method takes a

different approach. The observability matrix, Op,

has dimension 2pn� rð Þ. Since r � 2n, this matrix

has a large null space. Let N be any matrix

such that

NTOp ¼ 0 ð14Þ

and if the system is observable then the maximum

size of N is 2pn� 2pn� rÞð . The columns of N

define the parity space. The vector parity check

then produces residuals as

"k ¼ NT Y
pð Þ

k �Mp B,Dð ÞU
pð Þ

k

h i
, ð15Þ

since if there are no faults then this expression

just gives a combination of the random noise

(compare to Equation (8)). A fault is detected if

this expression is not zero.

The parity check given by Equation (15) uses

all the columns of N. It is also possible to use a

subspace of the null space. Furthermore N is not

unique, since there are many matrices whose

columns will span a given null space. Making the

columns of N an orthonormal basis of the parity

space is likely to be a good idea, and the singular

value decomposition of the observability matrix is

a convenient method to calculate such a basis. In

the following example a full rank parity check is

performed, that is the dimension of the parity

space is as large as possible.

The development thus far has assumed that

the input force is known. An alternative, if the

locations of the external forces can be deter-

mined, is to ensure that

NTMp B,Dð Þ ¼ 0 ð16Þ

in addition to Equation (14). However, this is

only sensible if the rank (and hence the number

of columns) in B is relatively small. In the

example the impulse response is used, where the

external force is zero after the initial impact.

5 The Modal Filtering Approach

The approach suggested by Friswell and Inman

[7] was based on the assumption that the response

was contained in the subspace spanned by the

lower modes of the structure. Although,

in general, the modes will be complex for non-

proportional damping, for lightly damped struc-

tures the undamped modes provide a good
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approximation for the response subspace [10].

Thus, the response may be written as

q tð Þ ¼
Xn
i¼1

�i pi tð Þ ð17Þ

where �i 2R
n is the ith undamped mode, pi tð Þ 2R

is the response of the ith mode, and n is the

number of retained modes. The output is given by

Yk ¼ Y tkð Þ ¼ Hq tkð Þ ¼ Hqk ð18Þ

where H determines the measured degrees of

freedom. The residual is generated as that part of

the response not in the modal subspace. The

response is projected onto the modal subspace

using

P ¼ H� H�½ �
y

ð19Þ

where �½ �
y denotes the pseudo inverse and � is

the modal matrix whose columns are the modes.

Generally only a small number of modes are

used, and thus � is a rectangular matrix. The

residual consists of the response not in the

subspace, and is generated as

"k ¼ I � P½ �Yk ¼ I � P½ �Y
ð1Þ
k � ð20Þ

This is the residual at a single time sample,

and should be compared to Equation (15) for the

parity space approach. To be consistent with

the parity space approach all of these residuals in

the time window of interest need to be computed.

Furthermore, the modal approach does not use

any information concerning the input force.

6 Residual Testing

The result from the parity space test, Equation

(15), is a set of residuals, ", where the k subscript

has now been dropped. The mean of these

residuals should be zero if there are no faults,

and the model of the structure is sufficiently

accurate. Modeling errors often appear as

changes to the mean of the response and therefore

such errors will degrade the performance of the

sensor fault detection. Fortunately the sensitivity

of mode shapes to parameter errors is usually

quite small. A full sensitivity analysis of the effect

of modeling errors could be performed; however,

the key conclusion is that the errors in the modal

model must be smaller than the additive sensor

faults. An alternative is possible, if measurements

are available that include modeling error, but

when all of the sensors are known to be function-

ing. In this case the mean values due to the

modeling error may be subtracted before the

residuals are tested. A similar approach to the

residual testing may be used for the residuals

generated using the modal model, Equation (20),

but the following will concentrate on the parity

space approach. Basseville [3,4] considered the

statistical aspects in more detail. Hypothesis

testing is standard in the statistics literature [13]

and only a brief summary will be presented here.

The covariance matrix is assumed known,

although in practice this matrix will be estimated

from the data.

The faults are combined into a single vector,

so that

MX �ð ÞFX þMY �ð ÞFY ¼ M� ð21Þ

where � ¼
�
FX

FY

�
and M ¼ MX �ð Þ MY �ð Þ½ �. If the

noise sequences, Vk and Wk, are Gaussian then

the residuals, ", will be also Gaussian (since the

sum of independent Gaussian random variables is

Gaussian, [13]) with mean NTM �. Assume that

the covariance matrix is given by �. The like-

lihood ratio test is now used to determine which

of the hypotheses � ¼ 0 and � 6¼ 0 is most likely

to be true. If f� "ð Þ is the probability density

function of the residuals, then the log-likelihood

function is given by

l� "ð Þ ¼ �2 ln f� "ð Þ

¼ "�NTM �
� �T

��1 "�NTM �
� �

: ð22Þ

Usually the best estimate of � is found by

maximizing the probability density function, or

equivalently by minimizing the log-likelihood

function. From Equation (22) this is equivalent

to the weighted least squares solution, and is
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given by

�̂� ¼ F�1MTN ��1" ð23Þ

where

F ¼ MTN ��1NTM ð24Þ

is the Fisher information matrix. Note that

l�̂� "ð Þ ¼ min
�

l�, f�̂� "ð Þ ¼ max
�

f� "ð Þ� ð25Þ

To test whether the faults are indeed zero,

that is to choose between � ¼ 0 and � 6¼ 0, the

ratio of the probability density function when

� ¼ �̂� and when � ¼ 0 is considered. A test

statistic [13] has a known probability density

function and so the probability that the test

statistic assumes a measured value may be esti-

mated. In this case the test statistic is

t � 2 ln
f�̂� "ð Þ

f0 "ð Þ
¼ "T��1NTMF�1MTN ��1"� ð26Þ

This test statistic (t) is distributed as a �2

random variable with dim �ð Þ degrees of freedom.

t is only �2 if � is constant. In practice, � is

estimated from the measurements, and so strictly

speaking t is not �2. However, the errors intro-

duced from this approximation are expected to be

small.

The above test may be used to detect faults,

that is to determine whether � ¼ 0 or not.

Suppose the possible sensors are now split into 2

sets, namely the ones assumed to be working, �w,

and those assumed to be faulty, �f . Thus,

M� ¼ Mw Mf

� � �w

�f

� �
: ð27Þ

The objective is to test whether �w ¼ 0 or

�w 6¼ 0, where �f is assumed to be an unknown

vector. This is sometimes called the sensitivity

test. If f�w,�f
"ð Þ is the probability density function

of the residuals in terms of the working and

faulty sensor inputs, then the test statistic is now

tw � 2 ln
f�̂�w,0

ð"Þ

f0,0ð"Þ
¼ "T ��1 NTMw F�1

ww MT
w N ��1 "�

ð28Þ

where

f�̂�w0
ð"Þ ¼ max

�w

f�w, 0ð"Þ, Fww ¼ MT
w N ��1NTMw�

ð29Þ

The test statistic, tw, is distributed as a �2

random variable with dim �wð Þ degrees of

freedom.

The above test statistic has been developed

based on the equations for the residuals obtained

from the parity space approach. However, exactly

the same procedure may be applied to the modal

residuals. In this case only additive faults on the

output (or sensors) are considered (note that in

practice this is also the case for the parity space

approach). In the development NT is replaced

with I � Pð Þ.

7 Simulated Example

The proposed approaches will be tested on a

simulated example of a cantilever beam excited at

its tip, shown in Figure 1. The beam is 1m long,

2.5 cm thick, and 5 cm wide and the material

properties of the beam are those of steel

(a Young’s modulus of 210GN/m2, a mass

density of 7850 kg/m3). The beam is simulated

using 10 finite elements, and the output responses

are the nodal displacements. The equations of

motion are reduced by retaining only the lower 5

undamped modes in order to perform the numer-

ical integration for the time response. Modal

damping of 1% is included. A half sine pulse

force of 4ms duration is applied at the tip, which

simulates an impact excitation, and also excites

the higher modes.

For illustrative purposes only the one fault

case has been simulated, although the multiple

fault case is considered in the experimental

example. Random noise is added to all of the

responses, and this noise is taken from a uniform
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distribution, which can be positive or negative,

with a maximum magnitude of 2% of the

maximum response from all the sensors. A fault

is introduced into sensor 6, such that the response

has an additive error of 5% of the maximum

response of all the sensors. A total number of

10,000 data points were generated and used in

the computation of the test covariance matrix.

Both the modal residual and parity space

approaches were tested. In all the simulations the

full parity space dimension was used.

Investigating the effect of using different parity

space dimensions is outside the scope of the

current paper. Table 1 shows the global tests as

well as the sensitivity tests for the case of an

additive fault on sensor 6 for both residuals.

The quantities given are the likelihood values,

and so large values mean that the corresponding

hypothesis is more likely. H0 is the hypothesis

that � ¼ 0 and H1 is the hypothesis that � 6¼ 0.

From the numerical values that the test clearly

detects the fault and the sensitivity tests locate

the faulty sensor as the maximum value of

the test. Notice that all the sensitivity tests

have been affected by the fault on a single sensor

as indicated by the high values for the other

sensors.

8 Experimental Example

The structure considered in this study consists of

a suspended steel subframe used extensively in

modal identification studies [1]. The structure is

excited at two different locations using random

noise inputs, and 28 accelerometers were used to

measure the time response. The analysis was

performed in the 0–500Hz frequency range and

32,000 data points per channel were collected at a

1024Hz sampling frequency. All 28 sensors were

used to identify the experimental natural frequen-

cies, damping ratios, and mode shapes from the

first 3000 data samples. The Balanced Realization

algorithm using data correlations was used for

the identification [2]. Table 2 shows the first five

Figure 1 A schematic of the cantilever beam example.

Table 1 Results for the simulated example with an
additive fault to sensor 6.

Parity Space
Residuals Modal Residuals

Global Tests

H0 10.16 5.00

H1 6.72� 103 3.49� 103

Sensor
Number Sensitivity Tests (� 103)

1 0.0883 0.0582
2 0.0984 0.0480
3 0.3202 0.1543
4 0.0291 0.0325
5 2.4428 1.3981
6 6.7140 3.4913

7 2.9133 1.4764
8 0.0923 0.0215
9 0.3209 0.2016
10 0.4763 0.2704

Table 2 Frequencies and damping ratios identified using
the BR algorithm.

Frequency (Hz) Damping (%)

60.72 0.13
156.32 0.17
190.66 0.16
229.19 0.20
287.11 0.10
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identified modes that were retained for the

analysis (up to 300Hz).

The parity space method has been applied to

this structure with three different sensor faults:

10% and 20% additive faults on sensors 6 and 20

respectively, and then 10% and 20% additive

faults on sensors 6 and 20 simultaneously. A

total of 3000 data points were used in the

computation of the test covariance matrix. In all

cases the full parity space dimension was used.

The minimum window size was used ( p¼ 1)

due to the large number of sensors available.

Figures 2 and 3 show the results for all 28

sensors, and demonstrate that the method suc-

cessfully isolates the faulty sensors in the single

fault cases. The residual testing technique was

also applied to the modal residuals and a similar

behavior was observed, as shown in Figures 4

and 5.

As the number of sensors available is reduced

then so too is the quality of the fault detection.

Figures 6–8 show the effect of reducing the total

number of sensors to 15, 10, and 8 respectively,

for a 10% change in sensor 6. Results are shown

for the parity space residuals, but those for the

modal residuals are very similar. Of course the

choice of sensors may not be optimum, particu-

larly if the resulting mode shapes cannot be

separated readily, and this choice becomes more

critical as the number of sensors is reduced. Note

that for the 8 sensor case the number of modes

used had to be reduced to 4.

Figure 9 shows the results for the multiple

fault case for the parity space residuals (the

results for the modal residuals are very similar).

The sensor with the largest error is clearly

identified, although it is difficult to isolate multi-

ple faults. This is not a limitation of the method

since it has been assumed at the start that only a

single sensor was faulty. For multiple faults, one

needs to use either the subset selection technique,

as mentioned in Section 2, or an exhaustive

search to find the faulty sensors. Because of the

small number of sensors in this example, all
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Figure 2 Experimental subframe example using parity space residuals: 10% change in sensor 6.
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Figure 3 Experimental subframe example using parity space residuals: 20% change in sensor 20.
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Figure 5 Experimental subframe example using modal residuals: 20% change in sensor 20.
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Figure 6 Experimental subframe example using parity space residuals using 15 sensors: 10% change in sensor 6.
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Figure 4 Experimental subframe example using modal residuals: 10% change in sensor 6.
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Figure 7 Experimental subframe example using parity space residuals using 10 sensors: 10% change in sensor 6.
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subsets of two sensors may be tested exhaustively.

Figure 10 shows the sensitivity test for all pairs

of sensors. The highest value of the test is clearly

at the correct pair of sensors, namely sensors 6

and 20.

9 Conclusions

Two residual generation schemes have been

proposed for the sensor validation problem under

additive faults, namely the parity space approach

and the modal filtering technique. The perfor-

mance of the residuals, in the examples given in

this paper, is very similar. However, the parity

space approach only requires an input–output

model, damping may be included easily, and

excitation force may be included explicitly, if it is

available. The residual evaluation is based on

statistical arguments and the problem of fault

detection is transformed into the problem of

detecting the change in the mean of a Gaussian

variable with known covariance matrix. This

problem was solved using likelihood ratio tests.

The procedure was first illustrated on a simulated

cantilever beam excited at its tip, and then on an

experimental test consisting of a subframe struc-

ture. Both residuals perform well. The problem of
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Figure 9 Experimental subframe example using parity space residuals: 10% change in Sensor 6 and 20% change in
sensor 20.
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Figure 8 Experimental subframe example using parity space residuals using 8 sensors and 4 modes: 10% change in
sensor 6.

Figure 10 Experimental subframe example using parity
space residuals and assuming two sensors are faulty:
10% change in sensor 6 and 20% change in sensor 20.
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multiplicative faults will be addressed in a future

paper.
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