
UCLA
Papers

Title
SensorBase.org - A Centralized Repository to Slog Sensor Network Data

Permalink
https://escholarship.org/uc/item/4dt82690

Authors
Chang, Kevin
Yau, Nathan
Hansen, Mark
et al.

Publication Date
2006-05-05
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dt82690
https://escholarship.org/uc/item/4dt82690#author
https://escholarship.org
http://www.cdlib.org/


SensorBase.org–
A CENTRALIZED REPOSITORY TO SLOG
SENSOR NETWORK DATA ∗

Kevin Chang, Nathan Yau, Mark Hansen, Deborah Estrin
University of California, Los Angeles
Center for Embedded Network Sensing
Computer Science Department
Statistics Department
Los Angeles, CA 90095
{kchang,destrin}@cs.ucla.edu, {nyau,cocteau}@stat.ucla.edu

Abstract Various sensor networks use different data storage and management
mechanisms. In particular, UCLA’s ESS2 mechanism forwards infor-
mation from low powered 8-bit Mica2 motes to one or more low pow-
ered sinks that then push log files to a secure and centralized repository.
While this data storage and management mechanism is straightforward
to implement, publishing and sharing various data to various users has
been a challenge. Users that need to parse the data often find it time
consuming and error prone to have to log-on to different systems, cali-
brate different units, and to understand the different semantics of vari-
ous log files.

Similar to blog sites, SensorBase.org is our solution for a certain
domain of sensor networks that allows users to “slog” sensor network
data and other relevant information. It is a centralized common data
storage and management system that provides a uniform and consistent
method for publishing and sharing data. It allows users to define a
subset of EML data types, project groups, and permission levels. It also
serves as a search engine that provides APIs a way to easily query for
specific data sets based on geographic location, sensor type, date/time
range, and other relevant fields.

Keywords: C.2.7.c Sensor networks, H.3.5.b Data sharing, D.2.1.d Management

∗(slog is a portmanteau of “sensor” and “log” and was coined to reflect the spirit of sharing
information represented by blogs)
*This material is based upon work supported by the National Science Foundation under
Grant No. CCF-0120778.



2

1. Introduction
In recent years, blogs have become increasingly popular on the World

Wide Web. Writers share their daily activities, opinions, thoughts, rants,
or raves with the rest of the world. Blog user interfaces, for the most
part, are easy to use with a few required text fields and a button to
publish writings. Entries can easily be categorized, edited, deleted, made
public or private, and just as easily read, receive feedback, searched,
and received via various forms of XML. The advantages of sharing well
defined XML are numerous. Applications using XML can interoperate
and interface with each other easily.

While the general text sharing mechanism is straightforward in blog
sites, sharing domain specific data provides new challenges. For exam-
ple, the data structure to describe “Housing” is very different than the
data structure to describe “Vehicles”. Google Base is an example of an
attempt at gathering different data structures and presenting them on
a uniform and easily accessible database via intuitive interfaces [1].

Like Google Base, SensorBase.org is created to meet our needs for
sharing and managing a specific domain of sensor network data. It is
our solution to data storage and management that provides a uniform
and consistent method for publishing and sharing our sensor network
data. SensorBase.org allows users to “slog” data. Figure 1 shows the
overview of how sensor network data is slogged.

Similar to blogging, SensorBase.org provides a user-friendly environ-
ment to publish data with fields for a subset of EML data types, project
groups, permission levels, and more. As with blogging, users slogging
on SensorBase.org can send and retrieve data via standardized formats,
and provides API’s a way to effectively utilize shared data. Addition-
ally, with millions of stored data sets, SensorBase.org also serves as a
search engine that provides users the ability to query for specific data
sets based on geographic location, sensor type, range of time, and even-
tually patterns in the sensor signals themselves.

SensorBase.org aims to solve some of the storage and sharing prob-
lems we have encountered in the past several years of deploying sensor
networks. For example, various sensor networks use different data stor-
age and management mechanisms, which presents difficulties for data
consumers who have to first understand a data format and then parse
the data. This can be time-consuming and error-prone. This problem is
alleviated by SensorBase.org’s standardized data format. The standard-
ization coupled with fine-grained queries make it easy for applications
to interoperate and interface with SensorBase.org. Just as importantly,
SensorBase.org’s search capabilities make it easy for researchers to find



3

data specific to geographic areas and SensorBase.org’s group feature al-
lows for easy collaboration.

2. Related Work
As the amount of sensor network data grows, there is a greater need for

heterogeneous data storage and retrieval systems. Different approaches
to data storage and management evolve out of different needs. Some
past works create “in-network” database-like systems while others take
a data warehouse approach. There are also numerous related projects
that attempt to represent and unify data in an intuitive and meaningful
way.

The Sensor Network as a Database describes the importance of a
query-based database system that is essential to maintaining data [2].
Work such as TinyDB and Cougar treat sensor network as the database
and focus on the distributed query mechanisms as the way of extracting
data from sensor network nodes [3] [4]. Since it is difficult to store large
amounts of data “in-network”, this approach is complementary to data
management systems such as SensorBase.org that store gigabytes of data
to be shared with the public.

IrisNET is a platform that specifically addresses high-bit-rate, off-the-
shelf sensors, such as webcams, to drive data hungry applications [5]. It

Data driven applications

Research community

SensorBase.org
Domain specific

Other repositories
Other domains

Internet

microserver

Mote cluster

XML

XML

XML

XML

Figure 1. Sensor Network Data Sharing Overview



4

discusses all of the levels of data push and sharing mechanisms, and tries
to address issues such as authoring, data representations using its own
geo-aware XML data formats, caching, data consistency, and others.
Like SensorBase.org, the IrisNET architecture is ever evolving to meet
the needs and demands of users who need to publish and share sensor
network data.

In 2000, the German Federal Environmental Agency in Berlin pro-
posed a standardized method of representing environmental data, an
XML-based Environmental Markup Language (EML) [6]. In this for-
mat, highly structured environmental sensor data can be serialized us-
ing typical XML structure. Additionally, semantic information can be
embedded in the names of entities and attributes. This in turn solves
the problem of out-dated or missing documentation meant to explain
ambiguous data sets.

Although EML provides a solution to the data storage problem, there
is still the task of data recall. Researchers need to find the data that
they want quickly and easily. Several groups use EML, which can be
seen online at Sevilleta Long Term Ecological Research; however, data
sets are available only in the form of flat EML files [7]. Searches are
based on only four fields–project, research theme, principal investigator,
and description. To find a data set users need good prior knowledge
on what they are looking for. Once users find a data set, they need to
download an entire log file. With SensorBase.org, users can make more
fine grained queries as well as focus their attention on subsets of data
results.

CRAWDAD, a Community Resource for Archiving Wireless Data at
Dartmouth, is similar to SensorBase.org in that it serves as a database
for data sets [8]. Like SensorBase.org, CRAWDAD also has searchable
data sets and outputs are in a metadata format, which makes data easy
for analysis after retrieval. Although similar in structure, CRAWDAD
is a database mostly for packet and network data while SensorBase.org
is built and tuned specifically for sensor network data.

The James Reserve Data Management System (DMS) database is a
successful example of sharing raw streams of sensor data, and Sensor-
Base.org’s schema design is influenced by it [14]. Many applications are
built using DMS, including Google Earth.

The Deployment Analysis System (DAS) tool is another example of
sharing data as it presents environmental and system metric visualiza-
tions directly to users [13]. DAS contains its own database and a web in-
teractive front-end. In addition to storing environmental data, the DAS
database is especially tuned to hold system metrics (from the Sympathy
debugger) to quickly generate useful diagnostic visualizations for debug-



5

ging purposes. DAS is currently used for many deployments, and there
are plans to migrate information in the DAS database to SensorBase.org.

3. Background
During the early phases of deployments, data management was not

an issue since there were only a small number of projects, most of which
were short-lived and did not produce unmanageably large amounts of
data. However, as more motes start to gather more data points, and
the type of deployments start to diverge and became more complex,
the simple mechanism of storing log files in various file servers poses
challenges to people who need to share data.

In order to give context to the motivations behind SensorBase.org, we
briefly explain the overview of UCLA CENS’ sensor network architecture
and describe our deployment experiences in the past several years.

A common data flow mechanism used in UCLA CENS is the 2-tier
heterogeneous architecture. Low powered 8-bit CrossBow Mica2 motes
forward environmental data as well as system metrics (by using Ra-
manathan’s Sympathy debugger) to a low-power 400Mhz Stargate sink
running Linux [10]. The motes use OS-like libraries from TinyOS, while
the sink uses the EmStar environment [11] [12]. ESS2 is a layer that
spans both the motes and microserver base-stations that provides in-
terfaces for controlling data samples, transformations, and data collec-
tion [9]. It also includes energy-efficient routing algorithms and sensor
interface drivers.

Using various software components described above, motes forward
data to a local sink that queues up data in the form of log files stored
on the compact flash card. When internet connection is available, the
sink automatically uploads data to various file servers using 802.11b,
ethernet, or GPRS (General Packet Radio Service for cell phones). As a
method of last resort, when an internet connection is not available, data
are gathered manually from the field.

In the past few years UCLA CENS experimented with deploying dif-
ferent sensor networks at various locations, some of which include James
Reserve preserve in the San Bernadino Mountains, a water treatment fa-
cility in Palmdale CA, the Mildried E. Mathias Botanical Garden on the
UCLA campus, and even a rural agricultural region near Bangladesh.
Our early attempts at data management entailed uploading various time
stamped log files back to UCLA. Individual users who need to use the
data would download relevant log files stored at different locations, parse
the log files each with a slightly different format, and regenerate outputs
in the format that specific analysis software requires. For example, a



6

few common tasks users perform repeatedly include downloading vari-
ous files to a local storage, reparsing those files, and outputting data in
the standardized gnuplot or Excel format. In another example, data-
driven programs such as DAS (Deployment Analysis System), which
offer near real time displays, also have to reparse files in near real-time,
and reinsert data points in their own application specific databases for
event triggers and visualization [13]. Currently DAS is used in many
current deployments and contains over 5 million data points.

4. Design
Based on our past deployment needs and a few years of data sharing

experiences, several goals are considered and prioritized. First, users
prefer gathering and publishing data in a repository without having the
overhead of setting up a file server, a web server, and access control
mechanisms. Secondly, users prefer querying for data easily without
having to search and repeatedly perform post-processing. Thirdly, ad-
ministrators of the data repository prefer projects to be self-managed in
the group and still be able to micromanage data, meta-data, and users
when necessary.

We considered setting up a file server with a web server such as
Apache2.0 and create unix accounts for the different projects/deployments.
Each user would simply use scp or use HTTP POST to upload well de-
fined XML/EML formats on his/her own respective directories. For
access control, users would setup their own .htaccess-like mechanisms
from the web server. While this method is simple and straightforward,
it does not check or enforce users to publish files in a standardized for-
mat. In addition, search and retrieval for particular data sets is difficult
and cumbersome. Lastly, managing a growing number of users and data
points is time consuming and tedious for the administrator.

To address the issue of ease of query and retrieval, we also considered
setting up a separate database schema for each project. Creation and
setup of unique schemas for specific projects however, is time consuming
for both the users and the administrator. In addition, schemas may
diverge so much that users may no longer see a uniform and efficient
interface to retrieve data.

Lastly, we considered building a centralized repository that is similar
to popular blog (web-log) sites. This solution creates a uniform and cen-
tralized storage that allows automatic checking and enforcement of well-
formed data types in well specificed csv or XML/EML files. The uniform
data also allows users to make fine-grained queries. Other advantages
include creating Wiki-like interfaces that allow distributed user, project,



7

and data management. A serious disadvantage in this approach is that
a significant amount of resources needs to be invested initially to create
both the backend and the front-end. Other challenges include making
the system scalable and flexible to contain different data types. Despite
these challeges, we think that the initial investment is worthwhile given
the growing demands of sensor networks. Our solution, SensorBase.org,
is based on the above considerations.

4.1 Implementation
SensorBase.org uses common light-weight off-the-shelf software com-

ponents consisting of MySQL 5.0, PHP libraries, and common UNIX
utilities.

4.1.1 Interfaces. SensorBase.org access requires a browser con-
nected to the Internet. The user first logs into SensorBase.org, and has
options to create new projects, measurement types, and sensor types.
The user also can invite new users, set permissions, and other options.
Currently each project can contain one or more measurement types (tem-
perature, humidity, voltage). Each measurement type is associated with
a specific sensor type (brand, conversion routine). A key feature of Sen-
sorBase.org is the use of geocodes, which enables other users to easily
make queries based on geographic locations.

Currently, the search feature is primitive and resembles SQL queries.
However, it is constantly evolving as users demand for more query ex-
pressiveness. By default the query returns data sets in HTML, but also
allows users to query for raw comma separated text entries, which al-
lows applications to more easily interface with SensorBase.org. XML
and EML output generators are being implemented.

Uploading data to SensorBase.org is done using the standard HTTP
POST mechanism. The user needs to first write a meta-data file that de-
scribes the format of a data file being uploaded, as well as other relevant
information such as project measurement types and sensor locations.
During an upload process a user uploads both a meta-data fuke and
a data file to SensorBase.org. To automate the process in a script or
cron job, a user can utilize the curl utility which can perform HTTP
POST from the command line. Like SensorBase.org queries, the upload
mechanism is ever evolving and may change in the future.

4.1.2 Backend. Aside from normalizing the schema and chang-
ing the run-time configuration parameters in the database, we make no
attempts to modify, recompile, or optimize the database internally. In



8

other words, SensorBase.org is an application that treats MySQL 5.0 as
a black box.

Currently the SensorBase.org schema consists of two distinct parts–
the user and project description tables and the data tables. Project
tables describe information about projects such as geographic cover-
age, project owner, allowable measurements, measurement description,
permissions, and other relevant information. User tables describe infor-
mation about users such as permissions, how many account invitations
left, which group a user can manage, and other relevant information.
Both user and project description tables use the InnoDB engine to allow
consistent and reliable transactions for user management.

Data tables describe information about the data set. They contain
a subset of EML’s dataTable module specification– logical information
about data table entities. The size of data tables dominate Sensor-
Base.org, and because it is heavily read-only data, data tables use the
ISAM engine that is designed for the purpose of performance. ISAM
tables perform fast read operations with the disadvantage of lacking
transactions and not fault-tolerant.

5. Evaluation
We evaluated the performance and scalability of SensorBase.org. User

load was simulated based on past access patterns and experiences and
projected user growth. In addition to the simulated user load, we eval-
uated simulated user load on four different schema designs, which Sen-
sorBase.org could be based on in the future.

5.1 Simulated User Load
First, we populated all four schemas with an identical set of one year’s

worth of simulated data. The assumed conditions were are as follows:
20 projects actively inserting data with each project containing 25-35
motes, each mote generating the typical ESS2 data values (temperature,
humidity, and voltage), and each data value publishing every 10 minutes.
Under these conditions, we generated approximately 97 million data
points in the data table.

Using the simulated data in the database, we evaluated each clients’
read/write response time, and the server’s request throughput to esti-
mate its request upper bound. Since the overhead of HTTP and the
Apache web server are negligent compared to the time it takes for each
query, we did not consider them in calculations. Each simulated client
was modeled to perform some of the common intermittent user access
patterns we have observed from DAS; in our case, the simulated clients



9

performed requests repeatedly and non-stop. Actions included consecu-
tive queries for hourly and daily individual data points, sum, and aver-
ages in the 5-15 day range.

Simulation results were dependent on many factors such as the type
of hardware, software configuration, and others. The test platform that
the database runs on is a single processor AMD Opteron SunFire X2100
with two regular desktop grade EIDE Seagate 300G drives running Linux
2.6.15-1-k1-smp with 3G of RAM. The second drive contains only data
and index files. MySQL 5.0 is tuned to use 2G RAM; the rest of the
MySQL parameters are simply doubled from the standard my.huge.cnf
parameters that came with the distribution. Simulated client requests
were run on another lighter weight machine.

5.2 Schema Designs
In the early stages of development, we found it acceptable to create a

simple schema for data values that are simple to use. We did not want
to optimize too early without knowing more about the different types
of data inputs that users may store in the future. As the number of
requests increases, different optimization techniques will be explored to
improve performance.

SensorBase.org currently uses a simple indexed table to hold envi-
ronment data. It contains attributes such as measurement date/time,
measurement type (sensor id), raw value, value, upload date/time, loca-
tion id, project id, value, and user id. While this approach is generic and
simple to use, there are many drawbacks. First, because it is a generic
table, it is not normalized for all sets of possible input. For example,
if a particular project contains several data values that correspond to
a single time stamp, the table would contain redundant time stamps.
In addition, because data is not normalized for particular inputs, the
number of rows increases tremendously which causes more memory to
be used. Lastly, access time increases significantly.

To evaluate other design possibilities, as mentioned earlier we created
four different types of schemas that SensorBase.org may use in the future.
The schemas used were: (1) a single table with one index on the mea-
surement date/time (no idx), (2) a single table with indices on columns
that are frequently used in the query predicates that includes location id,
measurement type, project id, and others (idx), (3) per project specific
tables with one index on the measurement date/time (no idx), and (4)
per project specific tables with indices on columns that are frequently
used (idx).



10

0.
0

0.
2

0.
4

0.
6

per project data table

clients

re
sp

on
se

 (
se

c)

1 2 4 8 16 32

idx
no idx

0
5

10
15

one data table

clients

re
sp

on
se

 (
se

c)

1 2 4 8 16 32

idx

no idx

Figure 2. Average Response Time Per Client Request

5.2.1 Client Request Evaluations. Figure 2 shows the re-
sponse time of each simulated client request, where the clients continu-
ously accessed the database. The x-axis is number of simulated clients,
and the y-axis is average number of seconds it takes per request. As was
expected, as the number of clients increased, response time increased.
The graph on the right shows performance when using a simple table
where each row in the table contains one sensor measurement value.

The graph on the left shows the performance by splitting each project
into four separate tables normalized for the four different simulated
project types. More specifically, each row in the table contains three
measurements in the project.

Again, as expected, the performance using one data table was much
worse than several normalized project-specific tables. In both cases,
indexing on frequently used columns (idx) helped the database search
faster than without extra indexing (no idx).

Figure 3 shows server throughput. The number of requests per minute
using one single data table (graph to the right) was approximately four
times slower than using project specific tables (graph to the left). In both
cases, the behavior was predictable– as the number of clients increased,
the throughput of the server increased to a point, and then decreases
due to context switch, resource conflict, and other factors.

Since SensorBase.org currently uses only one data table, the server
throughput upper bound, based on past client patterns and the con-
figuration assumptions stated above, was on average approximately 900
requests per minute, or 15 requests per second. Obviously, there is much
room for improvement.



11

20
00

30
00

per project data table

clients

th
ro

ug
hp

ut
 (

re
qu

es
ts

/m
in

)

1 2 4 8 16 32

40
0

60
0

80
0

one data table

clients

th
ro

ug
hp

ut
 (

re
qu

es
ts

/m
in

)

1 2 4 8 16 32

Figure 3. Server requests per minute

6. Our Vision
SensorBase.org shares sensor network data. However, raw data values

alone are not very useful to individual users unless higher level applica-
tions use them and present them to users in a more user-friendly and
meaningful manner. We hope SensorBase.org is the vehicle for applica-
tion programmers to use. Some of the applications that could interface
with SensorBase.org include Google Earth, Google/Yahoo Maps, Ar-
cGIS, and RSS (publication of summaries, various indexing).

As the number of users increases, performance will guide many future
design decisions. From the evaluation we see that properly designed
schemas specific for projects can increase performance tremendously.
While creating project specific tables optimizes for speed and space,
application and PHP programmers may need to create more complex
queries (using UNIONS) that span across different tables per query.
This can be alleviated using MySQL 5.0’s VIEW, stored procedures, or
both.

In addition to performance, usability remains a high priority. The
interface will continue to evolve to meet the demands of users. Likewise,
additional features such as binary data, pre-aggregated data, data event
triggers (RSS-like mechanisms), and many others will be pursued.

Prior to SensorBase.org we considered and experimented with several
existing methods for managing sensor network data and finally decided
to create an in-house solution to meet our needs. We have and will
continue to invest a significant amount of resources in improving Sen-
sorBase.org and we hope it is a decision that contributes positively to
the sensor network community.



12

7. Acknowledgments
We thank Eric Graham, Richard Guy, and countless number of people

in the CENS lab for invaluable inputs and suggestions.

References
[1] http://base.google.com

[2] Ramesh Govindan, Joseph M. Hellerstein, Wei Hong, Samuel Madden, Michael
Franklin, Scott Shenker “The Sensor Network as a Database,” USC Technical
Report No. 02-771, September 2002.

[3] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong,
“Tinydb: An acquisitional query processing system for sensor networks,” Trans-
actions on Database Systems (TODS), Mar. 2005.

[4] http://www.cs.cornell.edu/database/cougar/

[5] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, Srinivasan Seshan “IrisNet:
Internet-scale Resource-Intensive Sensor Network services. A core architecture
and software infrastructure for a worldwide sensor web,” Overview paper in IEEE
Pervasive Computing: IrisNet: An Architecture for a Worldwide Sensor Web

[6] Hans Knud Arndt, Thomas Bandholtz, Oliver Gunther, Maria Ruther,
Thomas Schutz “EML - the Environmental Markup Language,”
http://www.bandholtaz.info/publications/2000-ISESS-EML.pdf, July 2000.

[7] http://sev.lternet.edu/

[8] CRAWDAD, http://crawdad.cs.dartmouth.edu/.

[9] Richard Guy, Ben Greenstein, John Hicks, Rahul Kapur, Nithya Ramanathan,
Tom Schoellhammer, Thanos Stathapoulos, Karen Weeks, Kevin Chang, Lew
Girod, Deborah Estrin “Experiences with the Extensible Sensing System ESS,”
in proceedings of CENS Technical Report #60, March 2006.

[10] Nithya Ramanathan, Kevin Chang, Rahul Kapur, Lewis Girod, Eddie Kohler,
Deborah Estrin, “Sympathy for the Sensor Network Debugger,” in SenSys,
November 2005.

[11] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and
Kristofer S. J. Pister, “System Architecture Directions for Networked Sensors,” in
Architectural Support for Programming Languages and Operating Systems, 2000,
pp. 93–104,

[12] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ra-
manathan, Deborah Estrin “EmStar: A Software Environment for Developing
and Deploying Wireless Sensor Networks,”, in USENIX Annual Technical Con-
ference, General Track 2004: 283-296

[13] Kevin Chang, Nithya Ramanathan, Deborah Estrin, Jens Palsberg. “D.A.S. –
Deployment Analysis System,”, in Sensys Demo: 301, 2005.

[14] M. Wimbrow, Eric Graham “http://dms.jamesreserve.edu/”


