
SensorClone: A Framework for Harnessing Smart Devices with
Virtual Sensors

Huber Flores
University of Helsinki

huber.�ores@helsinki.�

Pan Hui
HKUST

University of Helsinki

pan.hui@helsinki.�

Sasu Tarkoma
University of Helsinki

sasu.tarkoma@helsinki.�

Yong Li
Tsinghua University

liyong07@tsinghua.edu.cn

Theodoros Anagnostopoulos
Athens University of Applied Sciences

thanags@di.uoa.gr

Vassilis Kostakos
The University of Melbourne

vassilis.kostakos@unimelb.edu.au

Chu Luo
The University of Melbourne

chu.luo@unimelb.edu.au

Xiang Su
University of Oulu

xiang.su@oulu.�

ABSTRACT

IoT services hosted by low-power devices rely on the cloud infras-

tructure to propagate their ubiquitous presence over the Internet. A

critical challenge for IoT systems is to ensure continuous provision-

ing of IoT services by overcoming network breakdowns, hardware

failures, and energy constraints. To overcome these issues, we pro-

pose a cloud-based framework namely SensorClone, which relies on

virtual devices to improve IoT resilience. A virtual device is the dig-

ital counterpart of a physical device that has learned to emulate its

operations from sample data collected from the physical one. Sen-

sorClone exploits the collected data of low-power devices to create

virtual devices in the cloud. SensorClone then can opportunistically

migrate virtual devices from the cloud into other devices, poten-

tially underutilized, with higher capabilities and closer to the edge

of the network, e.g., smart devices. Through a real deployment of

our SensorClone in the wild, we identify that virtual devices can

be used for two purposes, 1) to reduce the energy consumption of

physical devices by duty cycling their service provisioning between

the physical device and the virtual representation hosted in the

cloud, and 2) to scale IoT services at the edge of the network by

harnessing temporal periods of underutilization of smart devices.

To evaluate our framework, we present a use case of a virtual sensor

created from an IoT service of temperature. From our results, we

verify that it is possible to achieve unlimited availability up to 90%

and substantial power e�ciency under acceptable levels of quality

of service. Our work makes contributions towards improving IoT

scalability and resilience by using virtual devices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3204952

CCS CONCEPTS

• Computer systems organization → Client-server architec-

tures; Embedded systems; Redundancy; •Networks→Network

reliability;

KEYWORDS

Cloud computing, Internet of Things, Virtual Sensor, Edge Comput-

ing, Resilience, Opportunistic Migration

ACM Reference Format:

Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Theodoros Anagnostopoulos,

Vassilis Kostakos, Chu Luo, and Xiang Su. 2018. SensorClone: A Framework

for Harnessing Smart Devices with Virtual Sensors. In MMSys’18: 9th ACM

Multimedia Systems Conference, June 12–15, 2018, Amsterdam, Netherlands.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3204949.3204952

1 INTRODUCTION

The vision of Internet of Things (IoT) [2] is gradually becoming a

reality1. Currently, a large number of low-power devices (e.g., sen-

sors and actuators) can be connected by heterogeneous networks

with ease. This is possible due to the advances in cloud computing

technologies, which provide the "as-a-service" platforms to easily

develop and deploy applications on the �y. For 2020, the installed

base of IoT devices is forecast to grow to almost 31 billion world-

wide2. Thus, to improve IoT resilience, non-centralized systems

and architectures need to be investigated.

As shown in Figure 1, a typical IoT environment consists of large-

scale deployments of low-power devices, e.g., Arduino3, Raspberry

pi4, that lack scalable resources (e.g., battery, memory, communica-

tion, and CPU) to provision its services continuously to others (1).

One way to overcome this scarcity is to use the cloud to propagate

devices’ presence in a ubiquitous manner, such that a device’s ser-

vices can be consumed anytime and anywhere through the cloud

by other devices or IoT services. Unfortunately, this approach is

1https://www.technologyreview.com/business-report/the-internet-of-things/
2https://www.statista.com/statistics/471264/iot-number-of-connected-devices-
worldwide/
3https://www.arduino.cc/
4https://www.raspberrypi.org/

328

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands H. Flores et al.

Figure 1: Internet of disconnected-things.

vulnerable to network failures, communication latency, device mal-

function and increased energy consumption (2). As a result, a device

is likely to become intermittently available, and at times unreach-

able by other devices (3).

Overcoming intermittent availability is a critical challenge in

an IoT environment, because IoT applications are created sponta-

neously through interdependent relations between IoT services.

Moreover, intermittent availability caused by drastic changes in

communication (increased latency) harms the energy and perfor-

mance of devices. Thus, a transparent mechanism is needed to

ensure that IoT does not become an Internet of disconnected-Things.

Since devices need to keep continuous connectivity to cloud to

propagate or access IoT services, oscillating communication latency

remains a major concern for improving the battery life and perfor-

mance of low-power devices. Several work has investigated how

to overcome the provisioning issues of IoT services by reducing

data transferred, �xing communication protocols and optimizing

computational operations (e.g., duty cycle) of devices [1, 12, 16, 18].

More recent solutions have attempt to create virtual representa-

tions of devices in the cloud by collecting and analyzing data from

physical devices (e.g., Digital Twin5 of IBM). Virtual devices are

used mainly for troubleshooting applications in time and detect-

ing device’s malfunction in di�erent simulated environments. In

this paper, we argue that virtual devices can be used further to

improve IoT resilience by helping physical devices to extend their

continuous operations and ubiquitous presence.

On the other hand, smart devices, e.g., smart fridges, smart TVs,

etc., are ubiquitous in our daily lives and have computational ca-

pabilities that are comparable with cloud servers [7]. In addition,

smart devices are at the edge of the network. Thus, other devices

can easily access services hosted in smart devices without a compu-

tational overhead. Smart devices are also underutilized during the

day, and thus their resources can be harnessed without disrupting

the owner, e.g., idle time when the device is in the pocket, at the

5https://www.ibm.com/blogs/internet-of-things/iot-digital-twin-enablers/

o�ce, at the bus, or during the night. These opportunistic times can

be exploited to migrate virtual devices from the cloud into smart

devices, such that the physical counterpart of a virtual device can

save energy, and help others to obtain service provisioning in a low

latency environment. Thus, in this paper, we propose a cloud-based

framework namely SensorClone, which can be used to create virtual

devices that can be migrated opportunistically into smart devices.

Speci�cally, we investigate how the data collected from any IoT

device with sensing capabilities can be processed in the cloud to

build a virtual device that matches the behavior of the physical one.

By using our approach, we identify two key opportunities. First, the

virtual device can be migrated into smart devices from the cloud,

e.g., end smartphones, to provision the same service that other

devices access in the cloud. Second, a physical device can reduce

its own power consumption as it can duty cycle more e�ciently

its service provisioning between its real and virtual representation.

In other words, the physical device can turn into idle mode while

the virtual is operating, and then, the physical device just gets

into operational mode to re-calibrate the accuracy of the service

provisioning of the virtual device. SensorClone enables the virtual

device to re-calibrate based on software-de�ned networking (SDN)

policies, which allows de�ning calibration based on di�erent levels

of Quality of Service (QoS).

Additionally, since the service provisioning of a virtual device

can be subject to errors if the virtual device is not re-calibrated

periodically with its physical counterpart, SensorClone implements

a mechanism to monitor QoS degradation, such that the virtual

device can include its current level of service quality when pro-

viding its service to other devices. In this manner, other devices

can be aware about using or not the virtual service based on its

own needs. To evaluate our framework, we present a use case of a

virtual device created from an IoT service that provisions temper-

ature information. Thus, here thereafter we refer a virtual device

as a virtual sensor. Our results indicate that harnessing smart de-

vices opportunistically is a feasible approach for improving IoT

scalability and resilience.

Summary of Contributions

The contributions of the paper are summarized as follows:

• We develop, design and deploy SensorClone in a realistic

setup. We demonstrate the feasibility of migrating virtual

sensors from the cloud into smart devices to opportunisti-

cally harness their resources in underutilized periods.

• We quantify the theoretical and practical amounts of energy

that can be saved when duty cycling sensor service provi-

sioning by swapping between virtual and real sensors. Our

results show that power e�ciency can be increased up to

90%.

• Unlike other work, we present the �rst adaptive system

that considers the trade o� between power e�ciency and

service accuracy when using virtual devices. While in theory

virtual sensors can induce major gains in energy, we �nd that

those gains are not matched in practice as they are highly

dependent on hardware speci�cations and operations modes

of devices, e.g., Arduino.

329

SensorClone: A Framework for Harnessing Smart Devices with Virtual Sensors MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

The rest of the paper is organized as follows. In Section 2, we

present the related work. We then highlight in Section 3, the chal-

lenges and technical problems of virtualizing the sensing behavior

of a device in the cloud. We present our SensorClone framework in

Section 4. We evaluate the bene�ts that can be obtained by lever-

aging SensorClone by providing a use case based on temperature

sensing using a real testbed in Section 5. In the light of the results,

we present a discussion in Section 6. Lastly, we conclude the paper

in Section 7.

2 RELATED WORK

Previous work on improving the continuous provisioning of IoT

services focuses on �xing communication de�ciencies in the pro-

tocols and adapting the size of the communication channel by

tuning the quality of the service of IoT applications [1, 7, 12, 18, 28].

Middleware solutions have been also proposed for the remote man-

agement of sensor data [14, 29]. Other solutions to overcome this

challenge fake the presence of the service when a device is unavail-

able by using its last known state of service provisioning [27]. One

such example is the "device shadows" feature of Amazon’s AWS

IoT. While this approach introduces fault tolerance in the system,

it lacks QoS policies, which are critical for applications such as

healthcare [26], transport systems [5], and urban mobility [4, 30].

While these approaches provide partial solutions to the problem,

they remain agnostic regarding energy consumption and device

malfunction. In terms of cooperation between devices, collaborative

solutions for o�oading sensing to other devices also have been

investigated [8, 13, 20, 25]

The modeling and prediction of sensor data to improve the re-

silience of systems has also been explored [11, 21], but without

opportunistic migration and quanti�cation of power e�ciency for

IoT devices, which is the focus of our work. The virtualization of

sensors has been explored from a scalability point of view with-

out introducing energy e�ciency policies [21]. Moreover, IBM has

proposed the term of Digital twin, which consists of creating a

virtual representation of the device in the cloud by collecting and

analyzing data from the physical device. The digital twin is then

used for troubleshooting the device based on di�erent scenarios. In

our work, we argue that virtual devices can be used to improve IoT

resilience. We envision a virtual device that can be use to extend the

battery life of a physical device counterpart by improving its duty

cycling. In addition, we envision that a virtual device can exploit

opportunistic times of other physical end devices, e.g., smartphones,

such that a virtual device can be migrated from the cloud to the

end smart devices temporally for providing an alternative service

closer to users (low latency).

3 THE CASE OF VIRTUAL SENSORS:
CHALLENGES AND TECHNICAL ISSUES

Certainly, a virtual sensor can be created by sampling data about its

operations [21]. However, many challenges arise when constructing

a virtual sensor in the cloud and then migrating its behavior into

other devices. To achieve this, we must be able to: 1) model its

behavior with minimal e�ort, 2) detect opportunities to migrate

it without disturbing users, and 3) control the migration into the

devices. We next present these relevant challenges.

3.1 Virtualizing and Difussing Behavior

DataModeling—Instead of relying on the device itself to construct

the sensor model for the virtual sensor, we envision the cloud as a

platform that can construct the sensor models from opportunistic

collected data [21]. This will reduce the e�ort of constructing and

migrating sensors as it is centralized in the cloud. Thus, the key

challenge is to model the data transparently in the cloud for creating

a virtual sensor, which can learn to emulate the behavior from a

physical counterpart sensor by producing similar outcomes [17].

Certainly, learning from the data is challenging as very diverse

types of information can be produced by a device. However, the

principal goal of the learning process is to identify patterns in the

data that can be used to reduce the sensing process of the real

device [22]. In other words, if the device readings can be predicted

with high con�dence, the device does not actually have to make

those readings, since they can be considered redundant.

For example, Figure 2 depicts 16 exemplar data patterns com-

monly found in micro-mechanical artifacts and software-based

sensors that are embedded in a device. While the sensor frequency

is important, these examples show that exploitable patterns can

be found regardless. Our vision is that by collecting enough data

from a given device, it is possible to build a model that emulates its

behavior intermittently. Naturally, since the behavior of each sensor

depends on contextual factors [15], a model needs to be tailored for

each speci�c sensor in a particular context.

Opportunistic migration — The detection of opportunities to

migrate virtual sensors from the cloud depends on the type of device.

Base stations, hot spots and other telecommunication infrastruc-

tures are the main target to migrate functionality for longer periods

as the sensor execution can be piggybacked as part of other’s ap-

plication execution. Smart devices in �xed locations, e.g., smart

television, smart refrigerators, etc., can be used for migration of vir-

tual sensors when devices change to an idle mode. Personal devices,

e.g., mobile devices, smart watches, personal computers, etc., can

be used for migration in periods where the device is not being used

by the mobile user, charging times or even when the battery is com-

pletely charged. In addition, opportunities to migrate functionality

also depend on the stability of devices to provision services in a spe-

ci�c location, which correlates with users’ mobility patterns [10].

For instance, a mobile device that is located in an o�ce for two

hours is better candidate than a mobile device detected for a few

minutes in a bus ride. In [8], we identify di�erent types of stability

for devices detected in the wild (Figure 3). Stability is modeled as

the duration and frequency in which a device is encountered. We

classify the levels of stability into low, medium and high (Figure 3a).

The level of stability is a parameter that needs to be considered

when migrating a virtual sensor temporally into smart devices.

We identify that devices with medium and high stability levels are

strong candidates to migrate virtual sensor functionality in the wild

(Figure 3b models the stability of infrastructure encountered by 1

user in a one month experiment).

3.2 Controlling Operations

Device management —While the exploitation of data patterns in

the sensor data of the physical device allows the cloud to build a vir-

tual sensor, the understanding of the physical device environment

330

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands H. Flores et al.
[i

n
 m

B
ar

]

t

Barometric pressure

[i
n

 L
u

x
]

t

Ambient Luminance

[0
-1

]

t

Proximity

[0
-1

0
0

 %
]

t

Cloud coverage

[0
-n

]

t

Timer

[i
n

 a
su

]

t

GSM signal strenght

[i
n

 d
B

m
]

t

GSM towers signal strenght

[i
n

 m
/s

2
]

t

Accelerometer

[0
-1

0
0

 %
]

t

Humidity

[i
n

 µ
T

2
]

t

Magnetometer

[i
n

 d
ec

ib
el

s]

t

Ambient Noise

[i
n

 H
z]

t

Noise frequency

[0
-n

]

t

Active satellites

[0
-n

]

t

Wifi APs

[i
n

 c
el

si
u

s]

t

Temperature

[0
-1

]
t

Gyroscope

Figure 2: Samples of data patterns that can are produced by di�erent sensors.

can also bene�t the process of its virtualization. Table 1 summarizes

how the deployment settings of a device can be used to in�uence

its operational behavior from the cloud. Speci�cally, we classify

deployment settings into three broad categories: standalone (e.g.

automated sprinklers), scaled (air pollution in a city), and heteroge-

neous (temperature and humidity in a building). The di�erences

between these categories are related to the number of data sources,

the homogeneity of the data, the control policy, and data modeling

we expect to use.

In a standalone deployment, a single sensor is used to collected

data. In this case, a prediction model can be created by learning

from this homogeneous dataset. In turn, the control policy of the

device is based on operational scheduling. This means that the

device is scheduled to change between operation modes based on

whether the virtual sensor is able to predict the values of the real

sensor with acceptable QoS. For instance, let us consider a sensor

that controls an automatic sprinkler in a plantation of mushrooms

that need to be kept under a certain humidity. The device senses

the level of humidity in the ground at �xed intervals. To reduce

the amount of readings and save energy, a virtual sensor predicts

the sensor readings while the real device is in sleep mode. The real

device is scheduled to be active a few times just to validate the

predicted values provided by the virtual sensor. This validation is

done in the cloud and consists in synchronizing the behavior of

virtual sensor with its real counterpart.

In a scaled deployment, data from multiple identical sensors is

collected. In this case, a predictive model is created by learning from

that homogeneous data per each sensor. The model can attempt to

exploit correlations in the values of multiple devices, and therefore

the cloud can use a single model to predict the data of multiple

devices. Moreover, to validate the prediction, we can coordinate

the real sensors to obtain actual readings from a minimal subset of

devices, such that the rest of the devices remain asleep. For instance,

let us consider hundreds of sensors located across a city to measure

air pollution/air quality. We can expect that sensors that are close to

each other have similar measurements. Thus, a virtual sensor in the

cloud can produce data to emulate the presence of multiple devices.

Furthermore, we can coordinate the real devices to become active

in a round-robin fashion in order to validate the model predictions

given by the virtual sensor. This means that the gains in energy

for each device will multiply, since the burden of sensing is now

shared and balanced between multiple devices.

331

SensorClone: A Framework for Harnessing Smart Devices with Virtual Sensors MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

D
u

ra
ti

o
n

 [
in

 m
in

]

Frequency

WiFi-direct
Bluetooth

(b)

Figure 3: Opportunistic migration of virtual sensors in proximal infrastructure [8]. (a) Levels of stability of encountered in-

frastructure, (b) Quanti�cation of encountered infrastructure.

Lastly, in a heterogeneous deployment, data from multiple types

of devices is collected. A virtual sensor can be created by learn-

ing from the patterns of each sensor. Additionally, it is possible to

identify causal relationships involving multiple types of sensors.

For instance, let us consider multiple temperature and humidity

sensors located in a building. The readings of a temperature sensor

can be used to predict the values of nearby humidity sensors and

temperature sensors. The rationale of this is that while the temper-

ature describes how much heat is in the air, the humidity describes

how much water vapor is in the air. Thus, when air temperature

changes, humidity relative to that temperature also changes. As a

result, both types of sensors can be coordinated and scheduled to

improve energy e�ciency. A virtual sensor can capture this relation

and predict dual values for it.

Runtime environment — The migration of a virtual sensor

into a smart devices, e.g., smartphone, smart home appliances, that

does not perform that kind of sensing but it has service provisioning

capabilities, it requires that the target device is equipped with the

same runtime environment for executing the sensor model. For

instance, a virtual sensor built in R6 is easily executed in the cloud,

but for executing the same model in a smartphone, it requires that

the device is equipped with R for Android7. Otherwise, the virtual

sensor cannot be executed.

Since the virtual sensor also can replace the service provisioning

of the real sensor, approaches for managing the device from a re-

mote location need to be in place. Approaches for remote managing,

include, computation o�oading [7], push noti�cations, REST-based

requests, and agents [23], among others.

6https://www.r-project.org/
7http://www.r-ohjelmointi.org/?p=1434

4 OPPORTUNISTIC MIGRATION OF VIRTUAL
SENSORS

By capturing the behavior of a physical device into a virtual sensor,

we envision a system that can migrate the presence of a sensor

into other devices opportunistically [24]. An opportunistic migration

occurs when there is an opportunity to rely on resources to perform a

task without inducing any counterproductive e�ect on those resources8.

However, in the case that there are not opportunistic smart devices

for migration, then SensorClone can be used instead to duty cycle

the operations of the physical device between the physical device

itself and the virtual sensor. By doing this, the physical device avoids

using remote network communication to propagate its presence

over Internet, and as a result, the physical device improves its

energy consumption. The overall system of SensorClone is shown

in Figure 4 and consists of the following components.

Analyzer — It builds the virtual sensor that learns from the

collected data of the physical device. As proof of concept, we con-

sider a simple model (sliding window prediction [9]) for the virtual

sensor to demonstrate the potential of the approach. Naturally,

more sophisticated models improve the accuracy of the sensor pre-

diction [17]. Other techniques such as compressive sensing [3] or

deep learning [19] can be used instead. Our model is built based

on historical observations of the past behavior of a sensor. This

allows the model to infer the future values of a sensor in order to

emulate behavior. Let us de�ne the model. Assuming that the values

v of the sensors are notated by a binary class attribute c = {0, 1}.

Each recorded pair of values of the train dataset is then formed the

following tuple t =< v, c >. In the training phase, the model is built

by incorporating all the past tuples observed by the sensor. For each

consecutive sequence of c binary class attribute the v values are

8If there is an e�ect, then the e�ect is considered as marginal or it is compensated to
achieve a balance in the system

332

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands H. Flores et al.

Table 1: Categorization for data exploitation and modeling in IoT environments.

Operational environment Features Use cases

Deployment settings Data source Data type Control policy Data modeling Application examples

Standalone Single (1) Homogeneous Scheduling Learning Automatic sprinkler

Scaled Many (2..*) Homogeneous
Coordination

and Scheduling
Learning

Air pollution

in a city

Heterogeneous Many (2..*) Heterogeneous
Coordination

and Scheduling

Discovery

and Learning

Temperature and

humidity in a building

(a) (b)

Figure 4: (a) Overview of SensorClone, (b) Sliding window model of the virtual sensor.

aggregated in order to form a �nal tuple of T =<
∑
i v, c >, where

i is the number of the observed values for a certain c . Speci�cally, i

is called a window by means of v value continuity within a certain

c . The model is composed by a number of subsequent tuples T .

In the test phase, the model is fed with a new test dataset of

certain tuples t ′ = < v ′
, c ′ >. The model is initialized with the

�rst tuple t ′ and searches the nearest match, i.e., nearest distance,

between the actual value v ′ and the value of
∑
i v of the tupleT for

a certain c . When the match is achieved, the model predicts that

the sensor will have the predicted value
∑
i v for the next window

size i records. During these records the sensor becomes idle thus

being power e�cient. When the window size is reached the sensor

becomes active and it reads the next actual value v ′. The model

uses a sliding window to change the length of records to predict

as shown in Figure 4b. The process is repeated until the end of the

test dataset.

The metrics used to evaluate the model during the test phase

are the prediction accuracy p and the power consumption e . The

number of correctly classi�ed instances de�nes prediction accuracy

and it is computed by the test dataset during the test phase by

assessing the nearest distance between the actual value v ′ and the

predicted value
∑
i v for certain c out of the number of all instances

in the test dataset. Speci�cally, prediction accuracy p is framed by

a threshold θ and a relaxation parameter r ∈ [0, 1] i.e., p ≤ θ + r · θ .

The threshold θ is computed by the train dataset during the train

phase as the average distance between the actual value v and the

predicted value
∑
i v . Prediction accuracy p is then standardized in

order to fall in the range p ∈ [0, 100].

Power e�ciency e parameter is computed as the di�erence from

unity of the number of times that the certain sensor becomes active

during the test phase out of the number of all instances in the test

phase. Subsequently, power e�ciency e is standardized in order to

fall in the range e ∈ [0, 100]. Lastly, the prediction accuracy p of

the model can be con�gured dynamically during runtime in order

to control the power e�ciency of the device. Naturally, the higher

the prediction accuracy p, the lower is the power e�ciency e thus

the amount of energy that can be saved from the device.

SDN controller— It allows a centralized authority to de�ne the

policies for emulating a device in the cloud. A policy de�nes the

conditions in which the behavior of a device can be emulated. For

instance, a policy to preserve power can de�ne the minimum level

of accuracy that a virtual sensor must guarantee. By adjusting the

length of the prediction window, the system can reduce the power

consumption of the device: while the virtual sensor is predicting

behavior, the physical sensor can remain asleep and can avoid sens-

ing data transmission. Other policies can cover network availability,

333

SensorClone: A Framework for Harnessing Smart Devices with Virtual Sensors MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

transmission costs, and can also consider sensor data. For instance,

sensors in a smart home can be emulated using a virtual sensor

if no inhabitants are detected inside the house. Our motivation to

use SDN is to control the threshold between power e�ciency and

accuracy of virtual sensors dynamically. In addition, SDN policies

are used for changing migration candidates (smart devices) on the

�y.

Smart connector — It provides an interface to connect a device

to the cloud, such that the device can transfer its sensing data

using protocols such as XMPP, HTTP, and CoAP. The connector

propagates the presence of the device to other connected devices

to achieve inter-operation among devices. The main task of the

connector is deciding when a virtual sensor is migrated to other

devices. There aremany considerations for decidingwhen tomigrate.

For instance, the availability of the infrastructure, e.g. base stations,

laptop, etc, the compatibility of the target with the virtual sensor,

the stability of the device in a location, the leasing of a device from

a user, and so on. Since we focus on the issues of development and

deployment of the system, we simply consider that a candidate

device is chosen based on its stability in a location as presented

in [6].

Once a device is chosen for migration, the connector sends a

noti�cation to the device, such that the device can retrieve the

virtual sensor and execute it. The connector also informs other

devices in the same location about the alternative proximal service

via push noti�cation. Lastly, if devices for migration are not found,

then the connector uses the virtual sensor to manage the duty cycle

of the service provisioning of physical devices whose behavior �ts

the virtual sensor.

5 CASE STUDY: EVALUATION AND RESULTS

To demonstrate the feasibility of our SensorClone, we present an

experimental case study. We consider an IoT service that provisions

temperature information that is hosted in the cloud. The service

relies on readings of an actual temperature sensor artifact deployed

in the �eld. We emphasize that the main goals of the case study

are to show that it is possible 1) to create a virtual sensor and 2) to

control the operational behavior of the physical device from the

cloud. When ful�lling these two requirements, the migration of the

virtual sensor becomes possible.

5.1 SensorClone setup

Our complete experimental setup is depicted in Figure 5. We use

an Arduino micro-controller9 as a sensing device. We con�gure

the device to transmit temperature data to SensorClone in JSON

format. We rely on Arduino HTTPClient andWiFlyHQ libraries10

for implementing the HTTP functionality. The device is controlled

through the watchdog timer provided by the JeeLib library11, which

controls the change between operations modes, such that once the

virtual sensor is active, the physical sensor can change to idle. As

noti�cation mechanisms, we rely on GCM12 (Google Cloud Mes-

saging) and XMPP frameworks. GCM is a proprietary mechanism

9http://www.arduino.cc
10http://www.arduino.cc/en/Tutorial/HttpClient
11http://jeelabs.net/pub/docs/jeelib/
12https://developers.google.com/cloud-messaging/

Figure 5: Experimental setup composition.

for Android, and XMPP13 is an open mechanism that can used in

any device independently of the provider.

SensorClone is developed using Java. It controls the Arduino

through REST requests. We develop our own SDN component as

the policies to control the trade-o� (accuracy vs power e�ciency)

and sensor migration are not based on network tra�c but quality

of service provisioning and stability of devices. The SDN controller

implements a power consumption policy in its Analyzer compo-

nent, which relies on a stochastic model to analyze the sensor data

(explained in detail in section 4). The virtual sensor is built based on

historical observations of the past behavior of the sensor. Therefore,

prior to predict data, the virtual sensor is fed up with a tempera-

ture dataset collected from the physical device. In the prediction

process, when an input is passed to the Analyzer, this one uses the

virtual sensor to �nd the closest match in the dataset by calculating

the distance of the input against each record in the dataset, i.e.,

nearest distance. Based on the length of the window de�ned by

the authority of the device, the model predicts n sequential values

after the input. During the sensor prediction, the physical device is

changed to idle mode by SensorClone. Thus, the device improves

power e�ciency. The virtual sensor wakes up the device at the end

of each window in order to get a real value that can be used to

synchronize the virtual sensor with its physical counterpart.

5.2 Testbed: setup and methodology

The aim of the experiment is to determine the bene�ts and trade-

o�s when creating a virtual sensor in the cloud. The key insight

of the experiment is that the cloud can toggle the physical device

(micro-controller) between active and inactive modes to reduce

power consumption. In active mode, the micro-controller transmits

sensor data to the cloud to propagate its presence. When another

device requests the temperature service, the cloud service responds

to the request with the actual values sensed by the micro-controller.

Alternatively, in inactive mode the micro-controller is in an idle

state and does not transmit data. Thus, when another device re-

quests the temperature service, the cloud responds the request with

the values predicted by the virtual sensor.

13https://xmpp.org/uses/instant-messaging.html

334

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands H. Flores et al.

 25

 30

 35

 40

 45

 50

 55

 60

 0 200 400 600 800 1000 1200 1400 1600

T
em

p
er

at
u

re
 [

in
 c

el
si

u
s]

Time [in seconds]

(a)

 25

 30

 35

 40

 45

 50

 55

 60

 0 400 800 1200 1600

Window=1

 26

 28

 30

 32

 34

 36

 38

 40

 0 400 800 1200 1600

Window=2

 25

 30

 35

 40

 45

 50

 55

 60

 0 400 800 1200 1600

Window=3

 26

 28

 30

 32

 34

 36

 38

 40

 0 400 800 1200 1600

Window=4

 25

 30

 35

 40

 45

 50

 55

 0 400 800 1200 1600

Window=5

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 0 400 800 1200 1600

Window=6

 25

 30

 35

 40

 45

 50

 55

 60

 0 400 800 1200 1600

Window=7

 26

 28

 30

 32

 34

 36

 38

 40

 0 400 800 1200 1600

Window=8

 25

 30

 35

 40

 45

 50

 55

 60

 0 400 800 1200 1600

Window=9

(b)

Figure 6: (a) Real data collected from a temperature sensor, (b) Virtual temperature data produced by SensorClone.

 0.1

 1

 1 240

D
el

iv
er

y
 t

im
e

[i
n

 s
ec

o
n

d
s]

Number of messages (GCM)

(a)

 0.1

 1

 1 240

D
el

iv
er

y
 t

im
e

[i
n

 s
ec

o
n

d
s]

Number of messages (XMPP)

(b)

Figure 7: (a) Performance of GCM, (b) Performance of XMPP

In our setup, we expose the temperature sensor to high and low

temperature induced by a nearby heater. Since our intention is to

demonstrate how sensor data can be modeled to predict behavior

from any system, we simulated a cooling system. From this setup,

we took ≈1600 readings with an inter-arrival rate of ≈1 min.

We also measure the performance of two noti�cation mechanism.

Noti�cations are important when informing devices about available

end devices that host a virtual sensor. The aim of the experiments

is to determine the latency between a provider submitting a request

and the target device receiving the noti�cation (responsiveness).

Messages are �xed to a size of 254 bytes, which is the lowest com-

mon denominator of the allowed message sizes of the considered

approaches. Messages are formatted with similar characteristics

so that they can ensure a fair comparison that is not a�ected by

transportation factors such as data size, among others.

Messages are sent every second for 15 seconds in sequence,

which is followed by a 30 minute sleep time, and then another set

of 15 messages, repeating the procedure for 8 hours (240 messages

in total). The frequency of the messages is set in this way in order

to mitigate the possibility of being detected as a potential attacker

to the cloud vendor, e.g. Denial of Service, and to refresh the noti-

�cation service from a single requester and possible undelivered

data. Moreover, the duration of the experiments guarantee having

an overview of the service under di�erent mobile loads, which may

arise during di�erent hours of the day.

SensorClone is deployed on Amazon EC2 in the Ireland region

using a t2.large server. To measure the energy consumed by the

micro-controller we rely on the Mobile Device Power Monitor14.

14https://www.msoon.com/LabEquipment/PowerMonitor/

335

SensorClone: A Framework for Harnessing Smart Devices with Virtual Sensors MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10
 99.3

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

A
cc

u
ra

cy
 [

%
]

P
o

w
er

 e
ff

ic
ie

n
cy

 [
%

]

Window size

Accuracy
Power efficiency

Figure 8: Conceptual improvements in power e�ciency that

can be achieved through SensorClone depending on accu-

racy level.

5.3 Results

Initially, we validate the poor scalability of the micro-controller and

identify the demand to propagate its presence via the cloud. There-

fore, we stressed the device with concurrent requests. We found

that in average the device is able to handle ≈4 users simultaneously.

Next, we proceed to evaluate SensorClone. Figure 6a presents the

actual data collected by the sensor. By learning from this historical

data, we create a virtual sensor from an IoT service that provisions

temperature information. Figure 6b shows the values predicted

by the virtual sensor. From Figure 6b, we observe that di�erent

windows length can be used to schedule the operation modes when

the micro-controller needs to transmit data and not. By default, the

device is always in idle mode and the cloud wakes up the device

to receive a real value. This value is used to synchronize with the

actual data of the micro-controller and predict the sequence of the

next values. We can observe (as expected) that the accuracy of

the predicted values increase as the window length decreases. In

contrast, as the window length gets longer, the device reduces its

power consumption (by avoiding transmission) but the accuracy

level of the emulated service drops. This trade-o� is visualized in

Figure 8.

Noti�cation performance results are presented in Figure 7a and

Figure 7b. Summary statistics are also shown in Table 2. According

to the results, GCM provides poor delivery rates for noti�cations,

with an average of ≈0.75 sec, median of ≈0.66 and standard devi-

ation (SD) of ≈0.69. From the GCM delivery rate diagram, it can

be observed that the QoS starts to decrease as the number of mes-

sages increase across time. Consequently, messages tend to arrive

without a speci�c order. Some of the reasons that can cause that

behavior include: the utilization of multiple servers, where each

server handles its own individual queue; the unequal distribution of

messages among the active servers sending noti�cation; and high

utilization of the noti�cation system. Android is one of the most

popular platforms for developers. Thus, the noti�cation service is

expected to handle the heavy load of messages. In contrast, XMPP

Mechanism
Average delivery

(mean) [s]

Median delivery

(median) [s]

Delivery

variability (SD)

GCM 0.75 0.66 0.69

XMPP 0.6 0.75 0.10

Table 2: Summary statistics of message delivery time for

both mechanism.

mechanism shows to provide better reliability for delivering mes-

sages, with an average delivery time of ≈0.6 sec, median of ≈0.75

and SD of ≈0.10. However, we need to mention that GCM handles

a worldwide load of devices sending noti�cations, while XMPP is a

private ad-hoc deployment.

However, the practical power e�ciency is slightly di�erent from

the conceptual e�ciency due to hardware considerations. While

we assume that the idle mode requires less energy, this is not al-

ways the case. For instance, the idle mode of Arduino consumes

almost the same energy as the active mode. In our experiments,

the measured energy that the device consumes when transmitting

data to the cloud (≈2.12mA) is comparable to that consumed in idle

mode (≈1.93mA). Thus, to determine the actual gains in power con-

sumption, we compare the actual energy consumption in our use

case presented with the energy consumption when using a virtual

sensor with a window of length 1 (as shown in Figure 6b). We use a

window of length 1 as it provides similar levels of quality of service

when compared with its real counterpart. From our use case, we

measure about 3450mA for the normal service provisioning of the

device, and 3098mA for the service provisioning using a virtual

sensor. This is translated into an improvement in energy saving of

≈10% for the micro-controller.

6 DISCUSSION

Based on the results of our experiments, we present in this section

a discussion about the bene�ts and drawbacks of virtual sensors.

Virtual sensor for power e�ciency: While the conceptual re-

sults indicate that it is possible to increase the power e�ciency of

the device up to 90%, in practice, the gains of energy depend on the

hardware’s ability to enter to a low-power idle mode. In our case

study, we need to consider that Arduino is an economic hardware

that does not really support a low-power idle mode. Consequently,

while there are signi�cant gains in energy, those are less when

compared with the conceptual model. However, more sophisticated

devices that optimize their operation modes can bene�t from our

approach to save signi�cant amounts of energy.

Virtual sensor modeling: Intuitively, based on our deployment

categorization, the sensor data collected in standalone deployments

requires more time and data to bootstrap the system, because a

single device needs to provide all the possible cases of behavior.

In contrast, the sensor data collected in scaled deployments can

bootstrap the system faster as multiple devices act as data sources.

Finally, the sensor data collected in heterogeneous deployments

requires a priori analysis before can be used to create virtual sensors.

We cannot immediately bootstrap emulation of a device until we

are able to identify linked relations. Once that is achieved, we can

336

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands H. Flores et al.

expect substantial gains since we can substantially increase the

window length of each individual device.

While our case study successfully demonstrated the feasibility

of creating a virtual sensor from a physical device and control op-

eration modes of the physical device, these �ndings open a wide

spectrum of questions towards the optimal coordination and sched-

uling of the sensors. We consider addressing these issues in our

future work as more detail analysis is required.

Virtual sensor awareness: Our work shows that it is possible to

create a virtual sensor which emulates the behavior of a real sensor.

This virtual sensor can be migrated into other devices, e.g., base

stations, to provision sensing services closer to users. The bene�ts

of the approach are avoiding communication to remote resources

that can harm the energy and performance of IoT devices. However,

certain user’s considerations must be taken also into account when

relying on virtual sensors, for instance, should a user be noti�ed

when its mobile device is relying on virtual sensor data rather than

the real one? at what extent is acceptable for a user to rely on virtual

sensor data? We leave these considerations for future work, where

we plan to conduct a user study that quanti�es the perception of

users towards di�erent levels of service accuracy.

Virtual sensor for IoT: IoT resilience is di�cult to achieve as

it is in�uenced by many factors. While several approaches have

been proposed in industry (e.g., device shadows of AWS IoT, IBM

Gryphon, and Digital Twin among others) and academy sectors (e.g.,

sensor prediction approaches and proxy sensors), it is still unknown

whether it is possible to achieve continuous service provisioning

for IoT services in the wild. The utilization of virtual sensors is a

promising solution that compliments existing systems and archi-

tectures. Naturally, the bene�ts of virtual sensors will increase on

time as the models to create virtual sensors that capture behavior of

physical devices get more accurate. In this context, we emphasize

that our main contribution to advance the art is that SensorClone

takes a step further when compared with other solutions as it leads

to an intelligent and adaptive virtualization of a physical device

behavior that can be migrated, such that it can be embedded in

other environments via host devices.

7 CONCLUSIONS

In this article, we propose SensorClone, a cloud-based framework

that extends the energy of IoT devices by harnessing underutilized

smart devices, e.g., smartphones, smart home appliances. Sensor-

Clone builds in the cloud a virtual sensor of a physical device by

collecting its behavioral data. SensorClone optimizes the energy of

a physical device by duty cycling its service provisioning between

its real and virtual representation. In addition, SensorClone exploits

opportunistic and underutilized times of other devices at the edge of

the network to migrate a virtual sensor which then can be used by

others to obtain service provisioning in a low latency network. We

build a prototype of SensorClone and present a case study based on

a standalone IoT service that provisions temperature information

to demonstrate the feasibility and potential of our approach. Lastly,

we provide the source code of our case study as open source in

GitHub15.

15https://github.com/huber�ores/Energy-AwareO�oading-IoT

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their insightful

comments.

REFERENCES
[1] Vaneet Aggarwal, Emir Halepovic, Je�rey Pang, Shobha Venkataraman, and He

Yan. 2014. Prometheus: toward quality-of-experience estimation for mobile apps
from passive network measurements. In Proceedings of the 15th ACM Workshop
on Mobile Computing Systems and Applications (HotMobile 2014). Santa Barbara,
California, US.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things:
A survey. Computer networks 54, 15 (2010), 2787–2805.

[3] Richard G Baraniuk. 2007. Compressive sensing [lecture notes]. IEEE signal
processing magazine 24, 4 (2007), 118–121.

[4] Yin Chen, Takuro Yonezawa, Kazunori Takashio, Yutaro Kyono, Jin Nakazawa,
and Hideyuki Tokuda. 2015. A public vehicle-based urban sensing system. In
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp 2015): Adjunct. Osaka, Japan.

[5] Zipei Fan, Xuan Song, Ryosuke Shibasaki, Tao Li, and Hodaka Kaneda. 2016.
CityCoupling: bridging intercity human mobility. In Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp
2016). Heidelberg, Germany.

[6] Huber Flores, Denzil Ferreira, Chu Luo, Vassilis Kostakos, PanHui, Rajesh Sharma,
Sasu Tarkoma, and Yong Li. 2016. Social-aware device-to-device communication:
a contribution for edge and fog computing?. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp
2016): Adjunct. Heidelberg, Germany.

[7] Huber Flores, Pan Hui, Sasu Tarkoma, Yong Li, Satish Srirama, and Rajkumar
Buyya. 2015. Mobile Code O�oading: From Concept to Practice and Beyond.
IEEE Communications Magazine 4 (2015).

[8] Huber Flores, Rajesh Sharma, Denzil Ferreira, Vassilis Kostakos, Jukka Manner,
Sasu Tarkoma, Pan Hui, and Yong Li. 2017. Social-aware hybrid mobile o�oading.
Pervasive and Mobile Computing 36 (2017), 25–43.

[9] Ray J Frank, Neil Davey, and Stephen P Hunt. 2001. Time series prediction and
neural networks. Journal of intelligent and robotic systems 31, 1-3 (2001), 91–103.

[10] Raghu Ganti, Mudhakar Srivatsa, Anand Ranganathan, and Jiawei Han. 2013.
Inferring human mobility patterns from taxicab location traces. In Proceedings of
the ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp 2013). Zurich, Switzerland.

[11] Marisol García-Valls, Javier Ampuero-Calleja, and Luis Lino Ferreira. 2017. In-
tegration of Data Distribution Service and Raspberry Pi. In Proceedings of the
International Conference on Green, Pervasive, and Cloud Computing (GPC 2017).
Cetara, Amal� Coast, Italy.

[12] Bo Han, Pan Hui, VS Anil Kumar, Madhav V Marathe, Jianhua Shao, and Aravind
Srinivasan. 2012. Mobile data o�oading through opportunistic communications
and social participation. IEEE Transactions on Mobile Computing 11, 5 (2012),
821–834.

[13] Samuli Hemminki, Kai Zhao, Aaron Yi Ding, Martti Rannanjärvi, Sasu Tarkoma,
and Petteri Nurmi. 2013. Cosense: A collaborative sensing platform for mobile
devices. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems (SenSys 2013). Rome, Italy.

[14] Christopher K Hess, Manuel Román, and Roy H Campbell. 2002. Building appli-
cations for ubiquitous computing environments. In International Conference on
Pervasive Computing (Pervasive 2002). Zurich, Switzerland.

[15] Geo� Hulten, Laurie Spencer, and Pedro Domingos. [n. d.]. Mining time-changing
data streams. In Proceedings of the 7th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD 2000). San Francisco, Ca, USA.

[16] Michael O Jewell, Enrico Costanza, and Jacob Kittley-Davies. 2015. Connecting
the things to the internet: an evaluation of four con�guration strategies for wi-�
devices with minimal user interfaces. In Proceedings of the ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2015). Osaka,
Japan.

[17] Hongbo Jiang, Shudong Jin, and Chonggang Wang. 2011. Prediction or not?
An energy-e�cient framework for clustering-based data collection in wireless
sensor networks. IEEE Transactions on Parallel and Distributed Systems 22, 6
(2011), 1064–1071.

[18] Karthik Kumar and Yung-Hsiang Lu. 2010. Cloud computing for mobile users:
Can o�oading computation save energy? Computer 43, 4 (2010), 51–56.

[19] Nicholas D Lane and Petko Georgiev. 2015. Can deep learning revolutionize
mobile sensing?. In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications (HotMobile 2015). Santa Fe, New Mexico.

[20] Youngki Lee, Younghyun Ju, Chulhong Min, Seungwoo Kang, Inseok Hwang,
and Junehwa Song. 2012. Comon: Cooperative ambience monitoring platform
with continuity and bene�t awareness. In Proceedings of the ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys 2012). Low

337

SensorClone: A Framework for Harnessing Smart Devices with Virtual Sensors MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Wood Bay, Lake District, United Kingdom.
[21] Sanjay Madria, Vimal Kumar, and Rashmi Dalvi. 2014. Sensor cloud: A cloud of

virtual sensors. IEEE software 31, 2 (2014), 70–77.
[22] Adam J Oliner, Anand P Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma.

2013. Carat: Collaborative energy diagnosis for mobile devices. In Proceedings of
the ACM Conference on Embedded Networked Sensor Systems (SenSys 2013). Rome,
Italy.

[23] Shumao Ou, Kun Yang, Antonio Liotta, and Liang Hu. 2007. Performance analysis
of o�oading systems in mobile wireless environments. In Proceedings of the IEEE
International Conference on Communications (ICC 2007). Glasgow, Scotland, UK.

[24] Luciana Pelusi, Andrea Passarella, and Marco Conti. 2006. Opportunistic net-
working: data forwarding in disconnected mobile ad hoc networks. IEEE Com-
munications Magazine 44, 11 (2006).

[25] Kiran K Rachuri, Christos Efstratiou, Ilias Leontiadis, Cecilia Mascolo, and Peter J
Rentfrow. 2014. Smartphone sensing o�oading for e�ciently supporting social
sensing applications. Pervasive and Mobile Computing 10 (2014), 3–21.

[26] Suman Sankar Bhunia. 2015. Adopting internet of things for provisioning health-
care. In Proceedings of the ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp 2015): Adjunct. Osaka, Japan.

[27] Mahadev Satyanarayanan. 2001. Pervasive computing: Vision and challenges.
IEEE Personal Communications 8, 4 (2001), 10–17.

[28] Mojca Volk, Janez Sterle, Urban Sedlar, and Andrej Kos. 2010. An approach to
modeling and control of QoE in next generation networks. IEEE Communications
Magazine 48, 8 (2010), 126–135.

[29] Royu Want, Trevor Pering, Gunner Danneels, Muthu Kumar, Murali Sundar, and
John Light. 2002. The personal server: Changing the way we think about ubiqui-
tous computing. In International Conference on Ubiquitous Computing (Pervasive
2002). Zurich, Switzerland.

[30] Fengli Xu, Pengyu Zhang, and Yong Li. 2016. Context-aware real-time population
estimation for metropolis. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp 2016). Heidelberg,
Germany.

338

