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Abstract—This paper demonstrates the feasibility of control-
ling motion and vibration of a class of flexible systems with
inaccessible or unknown outputs through measurements taken
from their actuators which are used as single platforms for
measurements, whereas flexible dynamical systems are kept free
from any attached sensors. Based on the action reaction law
of dynamics, the well-known disturbance observer is used to
determine the incident reaction forces from these dynamical
systems on the interface planes with their actuators. Reaction
forces are considered as feedback-like signals that can be used
as alternatives to the inaccessible system outputs. The sensorless
action reaction based motion and vibration control technique is
implemented on a flexible system with finite modes and all results
are verified experimentally.

I. INTRODUCTION

Desire for systems with high speeds, lighter weights and

less powerful actuators became significant for majority of

nowadays design specifications. On one hand, these flexible

systems have numerous advantages over rigid ones. On the

other hand, their actuators must attempt to satisfy two de-

mands, namely motion control and active residual vibration

suppression. The problem of controlling motion and vibration

of flexible systems was extensively studied over the past

few decades. However, outputs of these systems are assumed

accessible or known. This work is concerned with motion

control and active vibration suppression of a class of flexible

systems with inaccessible outputs.

Much effort has been expended to suppress flexible system’s

residual vibration, the most common technique for reducing

residual vibration is to pre-filter the control input using either

a low-pass or a notch filter [1]-[2] in order to take away

any energy at system’s resonant frequencies such that the

flexible modes will not be excited. Point-to-point motion

control is capable of achieving zero residual vibration if the

control input waveform succeeded to eliminate any kinetic and

potential energy from the elastic elements at the end of the

travel [3]-[4]. Introducing additional switching times to the

conventional bang-bang control input eliminates the undesired

residual vibrations for non-rigid systems [5]-[6]. A novel Pre-

shaping technique was proposed in [7] for eliminating residual

vibration, based on convolving an arbitrary control signal with

a sequence of impulses chosen such that it would not cause

residual vibration in the absence of control input. Minimum

Energy control of residual vibration was proposed in [9] by

imposing additional constrain to the optimal control problem

to guarantee the uniqueness of the control law. However, the

minimum energy control ignores the higher frequency reso-

nances which would contribute to residual vibration. Cooper

and Skaar [10] mentioned that this problem can be alleviated

if the control input was to be a minimum ”Jerk” rather than a

”minimum energy solution”.

Each of the previous vibration control technique has special

characteristics and drawbacks. None is completely satisfactory

under all headings. Furthermore, they all depend on the

availability of system states or outputs by either using sensors

to measure each state variable or by designing state observers

based on availability of system outputs.

A question naturally arises: can we realize motion and vibra-

tion suppression control if system outputs are inaccessible and

non of them can be measured for certain reasons ? This work

presents a motion control and active vibration suppression

framework based on realization of the action reaction law of

dynamics to control motion and vibration of flexible structures

with finite or infinite modes through measurements taken from

their actuators.

The proposed algorithm depends on two measurements

from the actuator keeping the flexible system free from any

additional measurement. Therefore, the word ”Sensorless”

refers to the flexible plant excluding the actuator, these two

measurements are used as inputs to the well-known distur-

bance observer [12]-[13]. Then disturbance observer structure

is modified in order to decouple incident reaction forces from

flexible system out of the total disturbance [14]-[15]. Reaction

forces are conceptually considered as feedback-like signals

which can be used as alternatives to the system inaccessible

outputs.

Remainder of this paper is organized as follows, Section II



includes a design procedure of an action reaction state observer

to estimate system states from measurements taken from the

actuator side. Motion and vibration suppression control law

is realized in Section III. Experimental results which are

conducted on a flexible system with 3-dof are included in

Section IV. Eventually, conclusions and final remarks are

discussed in Section V.

II. ACTION REACTION STATE OBSERVER

The class of dynamical flexible system with inaccessible

outputs that we consider is modeled by

ẋ = Ax + Bu , y = Cx (1)

where x ∈ Rn and y ∈ Rm are the state and measurement

vectors, respectively. A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n

are the system matrix, distribution vector of input and obser-

vation column vector, respectively. We assume that system (1)

has a single input u. It can be shown that system (1) can be

partitioned as follows

ẋa = Aaxa + Baua + Breacfreac(x, ẋ) (2)

ẋp = Apxp + Bpfreac(x, ẋ)

where xa and xp are actuator and plant state vectors, respec-

tively. The subscripts (a) and (p) denote the actuator and plant.

freac(x, ẋ) is the incident instantaneous reaction force on the

actuator, Breac is the reaction force distribution vector. For

the dynamical system depicted in Fig.1, there exists a flexible

element between the plant and the actuator with stiffness k.

Therefore, the reaction force is nothing but the product of

the elastic element stiffness with its deflection k(xa − x1).
Furthermore, if there exist an energy storage element with

viscous damping coefficient c, the reaction force would be

c(ẋa − ẋ1) + k(xa − x1).
freac(x, ẋ) is conceptually considered as a feedback-like

component which can be used to design state observer to

estimate plant states (xp) through actuator states (xa). In other

words, it is required to estimate plant states (xp) without

measuring any of its outputs that are assumed unknowns or

inaccessible. However, actuator states (xa) are available. For

the system depicted in Fig.1, reaction force can be shown to

be c(ẋa − ẋ1) + k(xa − x1), it includes a variable (x1) from

the flexible plant. Nevertheless, this variable does not have to

be measured in order to determine freac(x, ẋ) since reaction

force can be estimated from measurements taken from the

actuator [13]. First disturbance force has to be estimated using

Fig. 1. Dynamical system with n-dof .

the well-known disturbance observer [18]-[19]. Then, reaction

force can be decoupled out of the disturbance force and used

to design the state observer.

Considering the actuator parameter deviation, (2) can be

rewritten as follows

ẋa = (Aan + ∆Aa)xa + (Ban + ∆Ba)ua + Breacfreac(x, ẋ)
(3)

Aa = Aan + ∆Aa , Ba = Ban + ∆Ba (4)

∆Aa is a deviation of Aa and ∆Ba is the deviation of Ba

from the nominal values with the subscript n. Rewriting (3)

ẋa = Aanxa+Banua+(∆Aaxa+∆Baua+Breacfreac(x, ẋ))
(5)

The third term of (5) is well-known as disturbance (d) with

force or torque units [11]-[12]-[13]

d , ∆Aaxa + ∆Baua + Breacfreac(x, ẋ) (6)

Applying (6) on the following actuator motion equation

(man + ∆ma)ẍa + freac(x, ẋ) = (kfn + ∆kf )ia (7)

where ma, kf and ia are the actuator mass, force constant and

current, disturbance force can be written as

d = ∆maẍa + freac(x, ẋ) − ∆kf ia (8)

where the first and last terms of (d) represents actuator force

ripple and actuator self-varied mass [13]. Then, disturbance

force can be determined through actuator current and acceler-

ation

d = manẍa − kfnia (9)

Disturbance force can be estimated through a low-pass filter

with a cutoff frequency gdist to avoid the high amplification

of noise level due to direct differentiation

d̂ =
gdist

s + gdist

[gdistmanẋa + iakfn] − gdistmanẋa (10)

the estimation error d̃ can be expressed by subtracting (9) and

(10) (d̃ = d − d̂) Therefore, the estimation error dynamics is

˙̃
d + gdistd̃ = Ω (11)

Ω , g
2

distmanẋa+gdistiakfa+(s+gdist)
[

kf ia−maẍa−gdistmanẋa

]

From (11), one can see that selecting (gdist > 0) guarantees

that the estimated disturbance force (d̂) would converge to the

actual disturbance force (d), estimating disturbance force has

to be followed by estimating the reaction force (freac(x, ẋ)).
Reaction force (freax(x, ẋ)) can be estimated through (8).

However, the actuator force ripple (∆kf ia) and self-varied

mass (∆maẍa) have to be determined. Therefore, (∆ma) and

(∆kf ) have to be identified, rewriting (8)

dpar = ∆kf ia − ∆maẍa (12)

where d̂par is the estimated disturbance force due to actuator

parameter deviation. (∆ma) and (∆kf ) are actuator’s inherent



properties. Therefore, they can be identified from the actuator

through (12) [14]-[15].

[
△kf −△ma

]
1×2

[
ia

ẋa

]

2×r

=
[

d̂par

]
(13)

[
△̂kf −△̂ma

]
= H

†
[

d̂par

]
, H ,

[
im ẍa

]T

(14)

Matrix H consists of two vectors, actuator current (ia) and

acceleration data points (ẍa). H† is the pseudo inverse of H.

rewriting (8) using estimated disturbance force and identified

parameters obtained through (10) and (15), respectively.

d̂ = ∆̂maẍa + freac(x, ẋ) − ∆̂kf ia (15)

Similar to (10), reaction force can be estimated through the

following low-pass filter with cutoff frequency g

f̂reac(x, ẋ) =
g

s + g
[g∆̂maẋa + ia∆̂kf + d̂]−g∆̂maẋa (16)

Similar to the well-known Luenberger observer, structure of

the action reaction state observer can be written as follows

˙̂x = Ax̂ + Bu + M
(
f̂reac(x, ẋ) − freac(x̂, ˙̂x)

)
(17)

f̂reac(x, ẋ) is the estimated reaction force which can be

obtained through (16) while freac(x̂, ˙̂x) is the reaction force

computed using the estimated states (x̂)

freac(x̂, ˙̂x) = c(ẋa − ˙̂x1) + k(xa − x̂1) (18)

M is the observer gain vector. It is at least intuitively clear

that, observability of system (1) has to be analyzed when

measurements are only allowed to be taken from the actuator

which implies that the observation vector can be written as

C =
[

1 1 0 · · · 0
]

(19)

The change of coordinates x = Tξ transforms the system (1)

into the form

ξ̇ = T−1ATξ + T−1Bu = Âξ + B̂u (20)

y = CTξ = Ĉξ

selecting the non-singular matrix T as

T =




1 1 1 . . . 1

λ1 λ2 λ3 . . . λn

λ2
1 λ2

2 λ2
3 . . . λ2

n

...
...

...
. . .

...

λn−1
1 λn−1

2 λn−1
3 . . . λn−1

n




(21)

guarantees that system (20) has a diagonal form. Where,

λ1, . . . , λn are the eigenvalues of the system matrix A. Here-

after, system (20) can be written in the following form

[
ξ̇a

ξ̇p

]
=

[
Âa φ

φ Âp

] [
ξa

ξp

]
+

[
B̂a

B̂p

]
u (22)

Âa and Âp are the actuator and plant diagonal system matrices,

respectively. B̂a and B̂p are the actuator and plant input

distribution vectors. respectively.

A regular procedure for estimating states of the flexible

plant depicted in Fig.1 is to measure some of its states

(xp = Tξp), then using these measurements to design state

observer. In this work, plant states (xp) are assumed inacces-

sible. However, the reaction force freac(x, ẋ) is conceptually

considered as a natural feedback from the plant on the actuator

and therefore used as an alternative to any measurement from

the plant required to design the state observer. Computing Ĉ

Ĉ =
[

1 + λ1 1 + λ2 1 + λ3 . . . 1 + λn

]
(23)

taking the time derivatives of the output equation of system

(20) we obtain the following matrix equation




y

ẏ

ÿ
...
y

...




︸︷︷ ︸
ℵ(y)

=




Ĉ

ĈÂ

ĈÂ2

ĈÂ3

...




︸ ︷︷ ︸
O

ξ +




0 0 0 0 · · ·

ĈB̂ 0 0 0 · · ·

ĈÂB̂ ĈB̂ 0 0 · · ·

ĈÂ2B̂ ĈÂB̂ ĈB̂ 0 · · ·

...
...

...
...

. . .




︸ ︷︷ ︸
Γ




u

u̇

ü
...
u

...




︸︷︷ ︸
ℵ(u)

(24)

Putting (24) in the following compact form

ℵ(y) = O ξ + Γ ℵ(u) (25)

where ℵ(y) and ℵ(u) are the Nordsieck vectors of the output

and the input, respectively.
Computing the observability matrix O using (23) and (24),

we obtain

O =



















1 + λ1 1 + λ2 1 + λ3 . . . 1 + λn−1

λ1 + λ2

1 λ2 + λ2

2 λ3 + λ2

3 . . . λn−1 + λ2

n−1

λ2

1 + λ3

1 λ2

2 + λ3

2 λ2

3 + λ3

3 . . . λ2

n−1 + λ3

n−1

...
...

...
. . .

...

λn−1

1
+ λn

1 λn−1

2
+ λn

2 λn−1

3
+ λn

3 . . . λn−1

n + λn
n



















(26)

It can be easily shown that O is full ranked if all eigenvalues

of the system matrix A are distinct. Therefore, plant states (xp)

can be observed from measurements taken from the actuator

(xa) under the condition that all eigenvalues of A are distinct.

The similarity transformation xp = Tξp allows obtaining the

unique structure of the observability matrix O. Now from (1)

and (17), estimation error is e = x − x̂, thus error dynamics

is governed by

ė = (I − cML)−1(A + kML)e = Ae (27)

L = [1 0 · · · 0]

Therefore, estimation error (e) will converge to zero if all

eigenvalues of (A = (I − cML)−1(A + kML)) lie on the

left-half plane. Selection of the observer gain (M) is a regular

pole placement problem. It can be shown now that the state

observer (17) does not necessitate taking any measurement



Fig. 2. Action reaction state observer.

from the plant side, plant states (xp) are not measured at all.

However, the incident reaction force is conceptually consid-

ered as a natural feedback from the sensorless plant. Thus,

used to design the state observer (17) which only requires two

measurements from the actuator to estimate disturbance and

reaction forces through (10) and (16), respectively. The action

reaction state observer is depicted in Fig.2 where flexible plant

is kept free from any measurement except the reaction force

that is estimated through actuator variables and considered as

a single feedback from the flexible plant.

III. MOTION AND VIBRATION SUPPRESSION CONTROL

In order to achieve vibrationless point-to-point motion con-
trol of the flexible lumped system depicted in Fig.1, the end
conditions have to be

ξ |t=T =















ξa

0

...

0















, ξ̇ |t=T =















0

0

...

0















(28)

which indicates that in order to achieve vibrationless motion

control manoeuvre, potential and kinetic energy have to vanish

at the end of the travel (t = T ). Solution of (20) can be

expressed in terms of the following convolution integral [1]

ξ(t) = ξ(0)eÂt +

∫ t

0

eÂ(t−τ).B̂u(τ)dτ (29)

assuming zero initial condition and replacing the actual state

(x = Tξ) with the estimated ones (x̂ = Tξ̂) obtained through

(17)

e−Âtξ̂(t) =

∫ t

0

eÂ(−τ).B̂u(τ)dτ (30)

Using constrain equation (30) to determine the control u

which minimizes the energy content of the flexible plant.

Therefore, the performance index can be expressed as

J =

∫ t

0

|u|2dτ + λT

[
e−Âtξ̂(t) −

∫ t

0

e−Âτ .B̂u(τ)dτ

]
(31)

where λ is a vector of Lagrange multipliers. Variation δJ can

be shown to be

δJ =

∫ t

0

[
2u∗ − λT e−Âτ .B̂

]
δu dτ (32)

the variation δJ will vanish if the integrand of (32) is zero.

Therefore, the control u is

u =
1

2
λT e−Â∗t.B̂ (33)

Equation (33) along with the estimated states obtained through

(17) allow controlling motion and vibration of any non-

collocated mass along the flexible plant from measurements

taken from its actuator. In (33), the control law is depending

on the Lagrange multipliers which can be computed from the

estimated states obtained through (17).



(a) Microsystems workstation (b) Flexible plant with 3-dof

Fig. 3. Experimental setup.
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Fig. 4. Experimental states estimation results of a dynamical system with 3-dof (x3, x5 and x7 represent first, second and third masses positions, respectively).
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Fig. 5. Sensorless vibrationless motion control experimental result of the 2
nd non-collocated mass.

IV. EXPERIMENTAL RESULTS

Experiments are conducted on a flexible system with 3-

dof as depicted in Fig.3. The experimental setup consists of a

microscope mounted on the top of the 3-dof flexible system. A

linear actuator is used as a single platform for measurements.



Optical encoders are attached to each lumped mass as depicted

in Fig.3-b in order to verify validity of the action reaction

state observer (17) by comparing the actual measurements with

the estimated ones. The nominal experimental parameters are

included in table.I.

The estimated states obtained through the action reaction

state observer are compared with the actual measured ones in

Fig.4. The third, fifth and seventh states represent positions

of each lumped mass along the flexible system. Convergence

time of the estimated states to the actual ones is 0.5 Seconds

which can be shortened by placing the poles of the observer

(17) in different locations of the s-plane through the observer

vector gain M. Furthermore, convergence time of the estimated

states can be shortened by changing the positive gains of both

the disturbance and the reaction force observers, gdist and g,

respectively. Figure 5 illustrates the sensorless vibrationless

control result of the second non-collocated mass for a step

reference input of 475µm. The previous experiments are con-

ducted on a microsystems workstation where sensor utilization

is costly or impractical due to the limited workspace size along

with the associated problems with sensors utilization.

V. CONCLUSION

The problem of motion control and active vibration sup-

pression of a class of flexible structures with inaccessible

outputs is addressed in this work. The action reaction law

of dynamics is interpreted in a way that allows determination

of a feedback-like signal which is conceptually considered as

natural feedback from these systems. The natural feedback or

the reaction force is then used in the design of a state observer.

Flexible plant dynamical states are then estimated through the

action reaction state observer. The proposed observer allows

estimating flexible system states from measurement taken from

its actuator if the system matrix has distinct eigenvalues.

Experimental results showed 0.5 Seconds convergence time

due to the phase lag induced by both disturbance and reaction

force observers. However, observer poles can be located such

that they are twice faster than the controller poles. The

estimated states are then used in the sensorless vibrationless

control law (33). The control law is satisfying the boundary

condition which guarantee that flexible system contains zero

potential and kinetic energy in its energy storage elements at

the end of the travel.

Experimental results demonstrated the validity of the pro-

posed control framework which can be easily repeated. Appli-

cations of the proposed framework are oriented toward control

of dynamical system with inaccessible outputs, microsystems,

TABLE I
EXPERIMENTAL PARAMETERS.

Parameters Value Parameter Value

kfn 6.43 N/A gdist 100 Hz
man 59 gm g 100 Hz

m1n,2n,3n 19 gm kbn 5.25 mv/rpm

micromanipulation operation and other operation at which

sensors utilization is costly or even impractical.
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