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Sensorless Battery Internal Temperature Estimation

using a Kalman Filter with Impedance Measurement
Robert R. Richardson and David A. Howey, Member, IEEE

Abstract—This study presents a method of estimating battery
cell core and surface temperature using a thermal model coupled
with electrical impedance measurement, rather than using direct
surface temperature measurements. This is advantageous over
previous methods of estimating temperature from impedance,
which only estimate the average internal temperature. The
performance of the method is demonstrated experimentally on
a 2.3 Ah lithium-ion iron phosphate cell fitted with surface
and core thermocouples for validation. An extended Kalman
filter, consisting of a reduced order thermal model coupled
with current, voltage and impedance measurements, is shown to
accurately predict core and surface temperatures for a current
excitation profile based on a vehicle drive cycle. A dual extended
Kalman filter (DEKF) based on the same thermal model and
impedance measurement input is capable of estimating the
convection coefficient at the cell surface when the latter is
unknown. The performance of the DEKF using impedance as
the measurement input is comparable to an equivalent dual
Kalman filter using a conventional surface temperature sensor
as measurement input.

Index Terms—Lithium-ion battery, impedance, temperature,
thermal model, Kalman filter, state estimation.

I. INTRODUCTION

T
HE sustainable development of transportation relies on

the widespread adoption of electric vehicle (EV) and

hybrid electric vehicle (HEV) technology. Lithium-ion bat-

teries are suitable for these applications due to their high

specific energy and power density. However, their widespread

deployment requires reliable on-board battery management

systems to ensure safe and optimal performance. In partic-

ular, accurate on-board estimation of battery temperature is

of critical importance. Under typical operating conditions,

such as a standard vehicle drive cycle, cells may experience

temperature differences between surface and core of 20 ◦C

or more [1]. High battery temperatures could trigger thermal

runaway resulting in fires, venting and electrolyte leakage.

While such incidents are rare [2], consequences include costly

recalls and potential endangerment of human life.

The conventional approach to temperature estimation is to

use numerical electrical-thermal models [3], [4], [5], [6], [7].

Such models rely on knowledge of the cell thermal proper-

ties, heat generation rates and thermal boundary conditions.

Models without online sensor feedback are unlikely to work

in practice since their temperature predictions may drift from

the true values due to small uncertainties in measurements and
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parameters. However, using additional online measurements -

typically of the cell surface temperature and of the temperature

of the cooling fluid - coupled with state estimation techniques

such as Kalman filtering, the cell internal temperature may be

estimated with high accuracy [4], [5], [6], [7]. However, large

battery packs may contain several thousand cells [8], and so

the requirement for surface temperature sensors on every cell

represents substantial instrumentation cost.

An alternative approach to temperature estimation uses

electrochemical impedance spectroscopy (EIS) measurements

at one or several frequencies to directly infer the internal cell

temperature, without using a thermal model [9], [10], [11],

[12], [13]. This exploits the fact that impedance is related

to a type of volume averaged cell temperature, which we

define later in this article. For brevity, we refer to the use

of impedance to infer such a volume-averaged temperature as

‘Impedance-Temperature Detection’ (ITD). This has promise

for practical application, since methods capable of measuring

EIS spectra using existing power electronics in a vehicle or

other application have been developed [14], [15], [16]. How-

ever, just like conventional surface temperature sensors, ITD

alone does not provide a unique solution for the temperature

distribution within the cell. Our previous work showed that

by combining ITD with surface temperature measurements

the internal temperature distribution could be estimated [17].

However, this approach still requires each cell to be fitted

with a surface temperature sensor. Moreover, whilst the ITD

technique was validated under constant coolant temperature

conditions, the accuracy of the technique may be reduced if

the temperature of the cooling medium is varied rapidly, as

discussed in Section IV. Thus, if the cell electrical/thermal

properties are known or can be identified, this information

can be exploited to improve the estimate of the thermal state

of the cell or reduce the number of sensors required.

In this study we demonstrate that ITD can be used as the

measurement input to a thermal model in order to estimate

the cell temperature distribution. First, an extended Kalman

filter (EKF) is used to estimate the cell temperature distribu-

tion when all the relevant thermal parameters, including the

convection coefficient, are known. The thermal model consists

of a polynomial approximation (PA) to the 1D cylindrical heat

equation. The measurement input consists of the cell current

and voltage, along with periodic measurements of the real part

of the impedance at a single frequency. Second, a dual ex-

tended Kalman filter (DEKF) is used to identify the convection

coefficient online when the latter is not known. The predicted

core and surface temperatures in each case are validated

against core and surface thermocouple measurements, with
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agreement to within 0.47 ◦C (2.4% of the core temperature

increase). The performance of the combined thermal model

plus ITD estimator is comparable to the performance of

the same thermal model coupled with conventional surface

temperature measurements. Table I shows the present study

in the context of existing temperature estimation techniques,

which highlights that this is the first study to use impedance

as the measurement input to a thermal model.

Study Model Measurement

Tsurf ITD

Forgez et al. [3] X X

Lin et al. [5], [7] X X

Kim et al. [6], [4] X X

Srinivasan et al. [12], [9] X

Raijmakers et al. [11] X

Richardson et al. [17] X X

Present study X X

Table I
COMPARISON OF ONLINE TEMPERATURE ESTIMATION TECHNIQUES.

II. MEASUREMENT PRINCIPLE

The electrochemical impedance, Z (ω) = Z ′ (ω)+jZ ′′ (ω),
of lithium ion cells is a function of temperature, state of

charge (SOC) and state of health (SOH). Within an appropriate

frequency range, however, the dependence on SOC and SOH

is negligible and the impedance can thus be used to infer

information about the cell temperature [12]. Previous ITD

studies have used as a temperature-dependent parameter the

real part of the impedance at a specific frequency [10], the

phase shift at a specific frequency [12], [9], and the intercept

frequency [11]. To demonstrate our technique we use the real

part of the impedance at f = 215 Hz. Our previous work

showed that the real part of the cell admittance (the inverse of

the cell impedance) at 215 Hz can be related to the temperature

distribution using a second order polynomial fit. For an annular

cell with inner radius ri and outer radius ro the real part of

the admittance is given by [17]:

Y ′ =
2

r2o

ˆ ro

ri

r
(

a1 + a2T (r) + a3T
2(r)

)

dr (1)

where a1, a2 and a3 are the 1st, 2nd and 3rd coefficients of

the polynomial relating impedance to uniform cell temperature

(Y ′ = a1 + a2Tuniform + a3T
2
uniform), provided that the

admittivity varies in the radial direction only. This assumption

is valid if the heat transfer from the top and bottom ends of the

cell is negligible, which is approximately true for cylindrical

cells connected in series with identical cells on either end

[18], a configuration which may apply to the majority of

cells in a large battery pack. However, the application of

this approach to cooling configurations involving substantial

end cooling would require a more involved expression for the

admittance than eq. 1, as well as an appropriate modification

to the 1D thermal model described in the following section.

Moreover, although the method is applied to a cylindrical cell,

the proposed approach could be applied to other geometries

in a similar fashion. The polynomial fit (Fig. 1) was obtained
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Figure 1. Polynomial fit to experimental data of admittance at f = 215Hz
vs. uniform cell temperature.

by offline impedance measurements on the cell at multiple

uniform temperatures [17].

ITD can be viewed as identifying an EIS-based volume

average temperature TEIS , which is defined as the uniform

cell temperature that would give rise to the measured EIS1.

Thus the impedance input is similar to a conventional temper-

ature measurement since it is a scalar function of the internal

temperature distribution but does not uniquely identify the

temperature distribution. Either measurement can therefore be

used in conjunction with a thermal model, as shown in Fig.

2, to estimate core temperature.

a b

Figure 2. Schematic of (a) the conventional approach to temperature
estimation and (b) the proposed approach based on ITD.

III. THERMAL-IMPEDANCE MODEL

A. Thermal Model

The cell thermal model consists of the heat equation for 1D

unsteady heat conduction in a cylinder, given by the following

Boundary Value Problem (BVP) [2]:

ρcp
∂T (r, t)

∂t
= kt

∂2T (r, t)

∂r2
+

kt
r

∂T (r, t)

∂r
+

Q(t)

Vb

(2a)

where ρ, cp and kt are the density, specific heat capacity and

thermal conductivity respectively, Vb is the cell volume, and Q
is the heat generation rate. The boundary conditions are given

1Note that, since the impedance temperature relationship is non-linear (as
demonstrated in [19]), the EIS-based volume average temperature, TEIS ,
is not necessarily equal to the volume average temperature, T . Although, it
should also be noted that the two are typically close in value, particularly if
the temperature variation within the cell is small.
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by:

∂T (r, t)

∂r

∣

∣

∣

∣

r=ro

= −

h

kt
(T (ro, t)− T∞(t)) (2b)

∂T (r, t)

∂r

∣

∣

∣

∣

r=0

= 0 (2c)

where T∞ is the temperature of the heat transfer fluid, and h is

the convection coefficient. A commonly employed expression

for the heat source in a lithium ion battery is

Q = I(V − UOCV ) + IT
∂UOCV

∂T
(3)

which is a simplified version of the expression first proposed

by Bernardi et al [20]. The first term is the heat generation

due to ohmic losses in the cell, charge transfer overpotential

and mass transfer limitations. The current I and voltage V for

this expression are measured online. The open circuit voltage

UOCV is a function of SOC but is approximated here as a

constant value measured at 50 % SOC, since the HEV drive

cycles employed in this study operate the cell within a small

range of SOC (47 − 63%) and therefore OCV variation. If

necessary, an estimator of UOCV could also be constructed

(for example using a dynamic electrical model [21]), but for

clarity and brevity we neglect this here. The second term, the

entropic heat, is neglected in this study because (i) the term

∂Uavg/∂T is small (0 < ∂Uavg/∂T < 0.1 mVK-1) within

the operated range of SOC [3], and (ii) the net reversible heat

would be close to zero when the cell is operating in HEV

mode.

B. Polynomial Approximation

A polynomial approximation (PA) is used to approximate

the solution of eq. 2a. The approximation was first introduced

in [6] and is described in detail in that article, although the

essential elements are repeated here for completeness.

The model assumes a temperature distribution of the form

T (r, t) = a(t) + b(t)

(

r

ro

)2

+ d(t)

(

r

ro

)4

(4)

The two states of the model are the volume averaged temper-

ature T and temperature gradient γ:

T =
2

r2o

ˆ ro

0

rTdr, γ =
2

r2o

ˆ ro

0

r

(

∂T

∂r

)

dr (5)

The temperature distribution is expressed as a function of T ,

γ, and the cell surface temperature, Tsurf :

T (r, t) = 4Tsurf − 3T −

15ro
8

γ

+

[

−18Tsurf + 18T +
15ro
2

γ

](

r

ro

)2

+

[

15Tsurf − 15T −

45ro
8

γ

](

r

ro

)4

(6)

Using 2b, the surface temperature can be expressed as

Tsurf =
24kt

24kt + roh
T+

15ktro
48kt + 2roh

γ+
roh

24kt + roh
T∞ (7)

By obtaining the volume-average of eq. 2a and of its

partial derivative with respect to r, a two-state thermal model

consisting of two ODEs is obtained:

ẋ = Ax+Bu

y = Cx+Du
(8)

where x =
[

T γ
]T

, u = [Q T∞]
T

and y = [Tcore Tsurf ]
T

are state, inputs and outputs respectively. The system matrices

A, B, C, and D are defined as:

A =

[

−48αh
ro(24kt+roh)

−15αh
24kt+roh

−320αh
r2
o
(24kt+roh)

−120α(4kt+roh)
r2
o
(24kt+roh)

]

B =

[

α
ktVb

48αh
ro(24kt+roh)

0 320αh
r2
o
(24kt+roh)

]

C =

[

24kt−3roh
24kt+roh

−
120rokt+15r2

o
h

8(24kt+roh)
24kt

24kt+roh
15rokt

48kt+2roh

]

D =

[

0 4roh
24kt+roh

0 roh
24kt+roh

]

(9)

where α = kt/ρcp is the cell thermal diffusivity.

C. Impedance Measurement

Eq. 1 applies to an annulus with inner radius ri and outer

radius ro. If the inner radius is sufficiently small, the cell may

be treated as a solid cylinder, and eq. 1 becomes

Y ′ =
2

r2o

ˆ r0

0

r
(

a1 + a2T (r) + a3T
2(r)

)

dr (10)

Substituting eq. 6 in eq. 10, the real admittance can be

expressed as a function of of Tsurf , T , and γ

Y ′ = a1 + a2T + 3a3T
2
+ 2a3T

2
surf − 4a3TTsurf

+
15a3r

2
oγ

2

32
+

15a3roTγ

8
−

15a3roTsurfγ

8

(11)

Noting from eq. 7 that Tsurf is itself a function of T , γ and

T∞ and the cell parameters, admittance is ultimately a function

of T and γ, along with the known thermal parameters and

environmental temperature. In other words, for known values

of ro, kt, cp, ρ, and h, the impedance is a function of the cell

state and T∞, thus:

Z ′ = f(T , γ, T∞) (12)

IV. FREQUENCY DOMAIN ANALYSIS

In this section we analyze the error associated with the

polynomial approximation, by comparing the frequency re-

sponse of the PA model to the frequency response of a

full analytical solution of eq. (2a). We also examine the

approximation employed in [17], which used a combination

of impedance and surface temperature measurements but no

thermal model. To achieve a unique solution in that case, it was

necessary to impose the assumption of a quadratic solution to

the temperature distribution, and so we refer to this here as

the ‘quadratic assumption’ (QA) solution.
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As in [6], the frequency response function of the PA thermal

system, H(s), is calculated by

H(s) = D+C(sI−A)−1B (13)

where s = jω and I is the identity matrix. The frequency

response of the analytical model is derived in [22], and that

of the QA solution is derived in Appendix A.
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∞
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Figure 3. Comparison of frequency responses of (i) analytical solution to
the 1D cylindrical heat transfer problem, (ii) the polynomial approximation
used in the current study and (iii) the quadratic assumption used in [17].

Fig. 3 shows the impact of changes in heat generation on

Tcore and Tsurf (H11 and H21 respectively), and the impact of

changes in cooling fluid temperature T∞ on Tcore and Tsurf

(H12 and H22 respectively), for each model along with the

error relative to the analytical solution. The results in these

plots were obtained using the thermal parameters of the 26650

cell used in the present study (Table II). The response of

H11 and H21 for both the PA and QA models are in good

agreement with the analytical solution (note that the error

in the response of H21 and H22 for the QA model is 0
since it takes the measured surface temperature as one of

its inputs). However, the responses for both cases to changes

in T∞ are less satisfactory. In particular, the response H12

for the QA model shows a rapid increase in error relative to

the analytical solution at frequencies above ∼ 10−3 Hz. The

PA performs well up to higher frequencies, although its error

in H21 and H22 become unsatisfactory above ∼ 10−2 Hz.

However, the frequency range at which the PA agrees with

the analytical solution is broader than that of the QA model,

and is considered satisfactory given the slow rate at which the

cooling fluid temperature fluctuates in a typical battery thermal

management system.

V. EXPERIMENTAL

Experiments were carried out with a 2.3 Ah cylindrical cell

(A123 Model ANR26650 m1-A, length 65 mm, diameter 26

mm) with LiFePO4 positive electrode and graphite negative

electrode. The cell was fitted with two thermocouples, one

on the surface and another inserted into the core via a hole

which was drilled in the positive electrode end (Fig. 4). Cell

cycling and impedance measurements were carried out using a

Biologic HCP-1005 potentiostat/booster. The impedance was

measured using Galvanostatic Impedance Spectroscopy with a

200 mA peak-to-peak perturbation current. The environmental

temperature was controlled with a Votsch VT4002 thermal

chamber. The chamber includes a fan which operates contin-

uously at a fixed speed during operation.

In order to calibrate the impedance against temperature,

EIS measurements were first conducted on the cell in thermal

equilibrium at a range of temperatures. These experiments and

the subsequent identification of the polynomial coefficients a1,

a2, and a3 are described in [17].

Dynamic experiments were then conducted using two 3500 s

current excitation profiles - the first to parameterise the thermal

model, and the second to validate the identified parameters

and to demonstrate the temperature estimation technique. The

profiles were generated by looping over different portions of

an Artemis HEV drive cycle. The applied currents were in the

range −23 A to +30 A. For the duration of the experiments,

single frequency (215 Hz) impedance measurements were

carried out every 24 s and the surface and internal temperatures

were also monitored. In order to minimise heat loss through

the cell ends, these were insulated using Styrofoam (Fig. 4).

Before each experiment, the SOC was adjusted to 50% by

drawing a 0.9 C current. The temperature of the thermal

chamber was set to 8 ◦C and the cell was allowed to rest

until its temperature equilibrated before experiments began.

Besides being a function of temperature and SOC, the

impedance is also a function of DC current, mainly due to

the charge transfer polarization decreasing with increasing

current [23]. Previous results confirmed that when the EIS

perturbation current is superposed over an applied DC current,

the impedance measurement is altered [17]. To overcome this,

the cell was allowed to rest briefly for 4 s before each EIS

measurement was taken, i.e. 20 s periods of the excitation

current followed by 4 s rests. The duration of this rest period

was kept as short as possible to ensure that the thermal

response of the cell to the applied cycle was not significantly

altered, and it was found that the core cell temperature dropped

by at most 0.25◦C during these rest periods. The issue of

impedance measurement under DC current warrants further

investigation.

VI. MODEL PARAMETERISATION & VALIDATION

Parameterisation is performed to estimate the values of

kt, cp, and h. The density ρ was identified in advance by

measuring the cell mass and dividing by its volume. The

values from the first excitation profile (comprising cell current,

voltage plus surface, core and chamber temperatures) were

used for the estimation.

The parameterisation was carried out offline using fmin-
search in Matlab to minimise the magnitude of the Euclidean

distance between the measured and estimated core and surface
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Figure 4. Experimental setup for parameter identification and validation. (a)
schematic diagram with cutaway view showing cell core and jelly roll, (b)
cell drilling procedure, (c) prepared cell inside thermal chamber, (d) power
supply & thermal chamber.

temperatures, as in [4]. Table II compares the identified

parameters with the initial guesses and parameters for the

same cell from the literature. The estimated parameters are

close to those reported in the literature. The deviations may

be attributed to manufacturing variability, error in the heat gen-

eration calculation (due to the omission of entropic heating in

all of these studies), heat generation in the contact resistances

between the cell and connecting wires and/or measurement

uncertainty in the temperature. The convection coefficient is

within the range expected of forced convection air cooling

[24].

Parameter Units Reference Initial Identified

ρ kg m-3 2047-2118
[4], [25], [26]

- 2107

cp J kg-1 K-1 1004.9-1109.2
[3], [7], [4]

1050 1171.6

kt W m-1 K-1 0.488-0.690
[22], [25], [4]

0.55 0.404

h W m-2 - 20 39.3

Table II
COMPARISON OF REFERENCE & ESTIMATED PARAMETERS

The measured core and surface temperatures (subscript

‘exp’) and the corresponding model predictions (subscript

‘m’) for the parameterised model are shown in Fig. 5. The

root-mean-square errors (RMSE) in the surface and core

temperatures are 0.19 ◦C and 0.18 ◦C respectively.
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5

10

15

20

25

30

time / s

T
 /
 °

C

 

 

T
core,m

T
surf,m

 

 

T
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T
surf,exp

Figure 5. Model parameterisation: Comparison between measured and
predicted core and surface temperatures in the parameterised model.

The model with identified parameters was validated against

the second current excitation profile (Fig. 6). The RMSEs

in the core and surface temperatures were 0.21 ◦C and 0.16
◦C respectively in this case. These errors are only marginally

greater than those in the parameterisation test, indicating that

the estimation is satisfactory.

0 500 1000 1500 2000 2500 3000 3500
5
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25

30
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T
 /
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C

 

 

T
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T
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T
core,exp

T
surf,exp

Figure 6. Model validation. Comparison between measured and predicted
core and surface temperatures in the parameterised model applied to the
second current excitation profile.

VII. STATE ESTIMATION

Kim et al. [6] showed that the effect of changes to the value

of h on the predicted surface and core temperatures is greater
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than the effect of changes to the other thermal parameters.

Moreover, h depends strongly on the thermal management

system settings and its calculation often relies on empirical

correlations between coolant flow rates and heat transfer.

Thus, there is a need to identify the convection coefficient

online during operation. This section outlines the use of a

dual extended Kalman filter (DEKF) [27] for estimating the

core and surface temperatures and the convection coefficient.

The DEKF reduces to an EKF if the convection coefficient is

assumed known and provided to the model in advance.

We firstly modify eq. 9 by rewriting it as a discrete

time model, setting the impedance as the model output, and

explicitly including the dependency on the parameter, hk:

xk+1 = Ā(hk)xk + B̄(hk)uk + vk (14)

yk = f(xk, hk) + nk (15)

hk+1 = hk + ek (16)

where yk = Z ′ and f(xk, hk) is the non-linear function

relating the state vector to the measurement (i.e. eq. 12),

and vk, nk and ek are the noise inputs of the covariance

matrices Rv, Rn and Re. The states, inputs and measured

outputs are thus x =
[

T γ
]T

, u = [Q T∞]
T

and y = Z ′.

Note that, although the impedance is now the model output,

the core and surface temperatures are also computed from the

identified states and parameter at each time step using eq. 8,

for validation against the thermocouple measurements. Ā and

B̄ are system matrices in the discrete-time domain, given by

Ā = e(A∆t), B̄ = A−1(Ā− I)B (17)

where ∆t is the sampling time of 1 s. The update processes

are then given as follows. The time update processes for the

parameter filter are:

ĥ−

k = ĥk−1 (18)

(Ph
k )

− = Ph
k−1 +Re (19)

where ĥ−

k and ĥk are the a priori and a posteriori estimates of

the parameter h, and (Ph
k )

− and Ph
k−1 are the corresponding

error covariances.

The time update processes for the state filter are:

x̂−

k = Āk−1x̂k−1 + B̄k−1uk−1 (20)

(Px

k)
− = Āk−1P

x

k−1Ā
T
k−1 +Rv (21)

where x̂−

k and x̂k are the a priori and a posteriori estimates

of the state, and (Px

k)
− and Px

k−1 are the corresponding error

covariances. The matrices Āk−1 and B̄k−1 are calculated by:

Āk−1 = Ā(h)
∣

∣

h=ĥ
−

k

, B̄k−1 = B̄(h)
∣

∣

h=ĥ
−

k

(22)

Since the relationship between impedance and the cell state

is non-linear, the measurement model must be linearised

about the predicted observation at each measurement. The

measurement update equations for the state filter are:

Kx

k = (Px

k)
−(Hx

k)
T
(

Hx

k(P
x

k)
−(H

x

k)
T +Rn

)−1
(23)

x̂k = x̂−

k +Kx

k

(

zk − f(x̂−

k , ĥ
−

k )
)

(24)

Px

k = (I−Kx

kH
x

k)(P
x

k)
− (25)

where Kx

k is the Kalman gain for the state, and Hx

k is the

Jacobian matrix of partial derivatives of f with respect to x:

Hx

k =
∂f(xk, hk)

∂xk

∣

∣

∣

∣

∣

xk=x̂
−

k

(26)

The measurement update processes for the parameter filter are:

Kh
k = (Ph

k )
−(Hh

k )
T
(

Hh
k (P

h
k )

−(Hh
k )

T +Rn
)−1

(27)

ĥk = ĥ−

k +Kh
k

(

zk − f(x̂k, ĥ
−

k )
)

(28)

Ph
k = (I −Kh

kH
h
k )(P

h
k )

− (29)

where Hh
k is the Jacobian matrix of partial derivatives of f

with respect to h:

Hh
k =

∂f(xk, hk)

∂hk

∣

∣

∣

∣

∣

hk=ĥ
−

k

(30)

The above algorithm can be simplified to a standard EKF by

omitting the parameter update processes (eqs. 16, 18-19 and

27-30) and assuming the convection coefficient is fixed. In the

following section we investigate the performance of both the

baseline EKF and the full DEKF algorithm.

VIII. RESULTS

We first investigate the performance of an EKF estimator

whereby the convection coefficient is provided and assumed

fixed. We then compare the performance of the DEKF algo-

rithm with that of the baseline EKF when an incorrect initial

estimate of the convection coefficient is provided. Lastly, we

compare the performance of the DEKF with that of a dual

Kalman filter (DKF) based on the same thermal model but

with Tsurf as the measurement input rather than Z ′.

A. Convection Coefficient Known

The initial state estimate provided to the battery is x̂0 =
[25 0], i.e. the battery has a uniform temperature distribution

at 25 ◦C. The true initial battery state is a uniform temperature

distribution at 8 ◦C. The covariance matrices are calculated as

Rn = σ2
n and Rv = β2

vdiag(2, 2). The first tuning parameter

is chosen as σn = 1 × 10−4 Ω, which is a rough estimate

of the standard deviation of the impedance measurement. The

second tuning parameter was chosen as βv = 0.1, by trial and

error. Fig. 7 shows that, using the EKF, the core and surface

temperatures quickly converge to the correct values and are

accurately estimated throughout the entire excitation profile.

The RMSEs of core and surface temperature are 1.35 ◦C and

1.34 ◦C respectively. In contrast, the RMSEs for the open

loop model (subscript ‘m’) with no measurement feedback

are 6.66 ◦C and 4.42 ◦C respectively. It should be noted that

since the uncertainty of the impedance measurement typically

increases as impedance decreases, the temperature estimates

could be more uncertain at higher temperatures. Hence, the

implementation of this technique could be more challenging

at higher ambient temperature conditions than those studied

here.

It should be noted that we also achieved similar performance

using a simpler EKF based on Z ′ with the assumption that
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Figure 7. Temperature results for EKF using Z′ as measurement input

the impedance is related directly to T rather than to TEIS .

However, this assumption may lead to unsatisfactory results for

cells with a larger radius or when larger temperature gradients

exist within the cell. Moreover, since this approach assumes

that the impedance is a function of the state only (and not

the parameter h), it is not suitable for the application of the

DEKF discussed in the following section.

B. Convection Coefficient Unknown

Next we investigate the performance of the DEKF. The

same incorrect initial state estimate is provided to the battery,

x̂0 = [25 0]. Moreover, an incorrect initial estimate for the

convection coefficient is provided, ĥ0 = 2 × htrue. This

value of h is also provided to the EKF. The error covariance

matrix for the parameter estimator is Re = β2
e where the

tuning parameter is chosen as βe = 2.5. Fig. 8 compares

the results of both of these cases against the thermocouple

measurements. The EKF is shown to overestimate the core

temperature and underestimate the surface temperature for

the duration of the experiments. This is expected, since the

impedance measurement ensures the accuracy of the volume

averaged cell temperature but the model assumes that the

convection coefficient is higher than in reality, and therefore

the temperature difference across the cell is overestimated. In

contrast, the DEKF corrects the convection coefficient, and

thus improves the accuracy of the subsequent temperature pre-

dictions. This is evident from the errors in the core temperature

estimate (top plot of Fig. 8), which initially are similar in both

cases but drop to much smaller values for the DEKF once the

correct convection coefficient is identified. The RMSEs of core

and surface temperature in each case are shown in Table III,

along with the values for the time period, 1200 < t < 3500 s

(i.e. after the convection coefficient value has converged).

Finally, we investigate the case where Tsurf is used as the

measurement (y = Tsurf ) to the estimator rather than Z ′.

This results in a linear KF and DKF exactly equivalent to

that studied in [4]. The tuning parameters for the covariance

matrices are also chosen to be the same as those employed

in [4]. The same initial state and parameter estimates are

provided as for the DEKF. Fig. 9 shows that the standard
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Figure 8. Temperature results for DEKF using Z′ as measurement input

EKF in this case overpredicts the core temperature by a

greater margin than the EKF based on Z ′, although the surface

temperature estimate is much more accurate. This is because

the surface thermocouple ensures an accurate surface temper-

ature estimate and to reconcile this with the overestimated

convection coefficient, the core temperature estimate is forced

to be much greater. The DKF correctly identifies the correct

convection coefficient, in the same way as the DEKF. Since

the thermocouple measurement exhibits less noise than the

impedance measurement, the model converges to the correct

estimate for h more quickly than in the DEFK case, as shown

by the RMSE values in Table III.

Method 0 < t < 3500 s 1200 < t < 3500 s

Tcore Tsurf Tcore Tsurf

EKF + Z′ 2.04 2.06 1.79 1.98

KF + Tsurf 2.49 1.44 2.90 1.58

DEKF + Z′ 1.43 1.24 0.47 0.42

DKF + Tsurf 0.36 0.33 0.16 0.14

Table III
COMPARISON OF RMSES FOR CORE AND SURFACE TEMPERATURES (◦C)

WITH UNKNOWN CONVECTION COEFFICIENT.

In conclusion, the temperature and convection coefficient

estimators using Z ′ as measurement input are capable of ac-

curately estimating the core and surface temperatures and the

convection coefficient. The performance is comparable to that

of an estimator using the same thermal model coupled with

surface temperature measurements. Moreover, the performance

of the present method is superior to that of previous methods

based on impedance measurements alone, which only provide

an estimate of the average internal temperature of the cell.
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IX. CONCLUSIONS

Impedance temperature detection enables both core and sur-

face temperature estimation without using temperature sensors.

In this study, the use of ITD as measurement input to a cell

thermal model is demonstrated for the first time.

Previously, we estimated cell temperature distribution by

combining ITD with a surface temperature measurement and

imposing a quadratic assumption on the radial temperature

profile. Frequency domain analysis shows that the QA solution

may be inaccurate if the temperature of the cooling fluid has

fluctuations on the order of 10−3 Hz or higher. The PA thermal

model used in the present study is robust to higher frequency

fluctuations (∼ 10−2 Hz).

An EKF using a parameterised PA thermal model with ITD

measurement input is shown to accurately predict core and

surface temperatures for a current excitation profile based on

an Artemis HEV drive cycle. A DEKF based on the same

thermal model and measurement input is capable of accurately

identifying the convection coefficient when the latter is not

provided to the model in advance. The performance of the

DEKF using impedance as measurement input is comparable

to an equivalent DKF estimator using surface temperature as

measurement input, although the latter is slightly superior due

to the higher accuracy of the thermocouple.

Future work will investigate the application of ITD to

multiple cells in a battery pack, as well as investigating

methods of combining impedance with conventional sensors to

enable more robust temperature monitoring and fault detection,

and self-calibration.

ACKNOWLEDGEMENTS

This work was funded by a NUI Travelling Scholarship,

a UK EPSRC Doctoral Training Award and the Foley-Bejar

scholarship from Balliol College, University of Oxford. This

publication also benefited from equipment funded by the John

Fell Oxford University Press (OUP) Research Fund. Finally,

the authors would like to thank Peter Ireland and Adrien

Bizeray for valuable comments, and Robin Vincent for the

facilities to prepare the instrumented battery.

APPENDIX

A. Frequency Domain Analysis of Quadratic Assumption

The analysis leading to the frequency response plots of the

QA model in Fig. 3 is outlined in this section. The QA model

was used in [17] to obtain a unique solution for the temperature

distribution when the impedance and surface temperature were

measured but the cell thermal properties and heat generation

rates were assumed unknown. To achieve a unique solution

in that case, it was necessary to impose the assumption of a

quadratic temperature distribution based on the solution of the

1D heat equation at steady state.

Muratori et al. [22] showed that the time domain PDE of

eq. 2a, can be transformed into an equivalent ODE problem in

the frequency domain which can be solved analytically. Using

this approach the solution for the temperatures at the core and

surface of the cell are shown to be:

Tcore(s) =
1

kta2
Q(s) +

h
kt

(T∞(s)− 1
ka2Q(s))

h
kt

J0(aro)− aJ1(aro)
(31)

Tsurf (s) =
1

kta2
Q(s) +

h
kt

(T∞(s)− 1
kta2Q(s))

h
kt

J0(aro)− aJ1(aro)
J0(aro)

(32)

where a2 = sα−1, Q(s) is the transform of Q(t), and Ji
is the ith-order Bessel function of the first kind [28]. Eqs.

31 and 32 can be interpreted as the outputs of a continuous

time dynamic system [22], where u(t) = [Q(t), T∞(t)]T and

y(t) = [Tcore(t), Tsurf (t)]
T , such that the solution of the

BVP is equivalent to the impulse response of the system:
[

Tcore(s)
Tsurf (s)

]

=

[

H11(s) H12(s)
H21(s) H22(s)

] [

Q(s)
T∞(s)

]

(33)

where the H matrix is formed by the transfer functions:

H11(s) =
1

kta2

h
kt

J0(aro)− aJ1(aro)−
h
kt

h
kt

J0(aro)− aJ1(aro)
(34)

H12(s) =
h
kt

h
kt

J0(aro)− aJ1(aro)
(35)

H21(s) =
1

kta2
−aJ1(aro)

h
kt

J0(aro)− aJ1(aro)
(36)

H22(s) =
h
kt

J0(aro)
h
kt

J0(aro)− aJ1(aro)
(37)

This system of transfer functions gives frequency responses

for the analytical solution results plotted in Fig. 3. Using a

similar approach, we can develop an analytical solution to the
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QA model used in [17], where we denote the new transfer

function HQA(s). In this case, both the volume-averaged cell

temperature (identified via the impedance2) and the surface

temperature were measured directly, and it is assumed that

no other information was available. Since these two inputs

alone are not sufficient to achieve a unique solution for the

temperature distribution, it was also necessary to impose the

following constraint on the temperature profile:

TQA(r) = Tsurf + (Tcore,QA − Tsurf )

(

1−
r2

r2o

)

(38)

This is the 1D steady-state solution of the heat equation for

a cylinder with uniform heat generation [24], with T (r) and

Tcore replaced by TQA(r) and Tcore,QA.

The volume average of the QA temperature distribution is

set equal to the true volume average temperature, giving:

TQA =
2

r2o

ˆ ro

0

rTQA(r)dr = T (39)

Substituting eq. 38 in eq. 39 and integrating, the QA core

temperature becomes

Tcore,QA = 2T − Tsurf (40)

Thus, an estimate for the core temperature is obtained di-

rectly from the surface and volume averaged temperature

measurements. Since the surface temperature is measured,

the values of HQA, 21(s) and HQA, 22(s) are identical to

the corresponding values of the unsteady thermal model.

The values of HQA, 11(s) and HQA, 12(s) can be obtained

as follows: Substituting T from eq. 5 into eq. 40, the QA

approximation of the core temperature can be expressed as a

function of the temperature distribution:

Tcore,QA =
4

r2o

ˆ ro

0

(rT (r)dr − Tsurf ) dr (41)

Substituting eqs. 31 and 32, for T (r) and Tsurf , respectively,

and integrating (noting that
´ ro

0
rJ0(ar)dr = roJ1(aro)/a),

we obtain:

Tcore,QA =
Q(s)

kta2
+

h
kt

(T∞(s)− 1
kta2Q(s))

h
kt

J0(aro)− aJ1(aro)

[

4J1(aro)

aro
− J0(aro)

]

(42)

Thus, the QA system model is given by:

[

Tcore,QA(s)
Tsurf,QA(s)

]

=

[

HQA, 11(s) HQA, 12(s)
HQA, 21(s) HQA, 22(s)

] [

Q(s)
T∞(s)

]

(43)

2As discussed in Section I, the impedance actually identifies TEIS , which
is not necessarily equal to T . However, the assumption that TEIS = T
is satisfactory for the purpose of identifying the frequencies at which errors
relative to the analytical solution become significant, and is only used for this
purpose in this article.

where the H matrix is formed by the functions:

HQA, 11(s) = −

kta
2roJ1(aro)− 2hroaJ0(aro) + 4hJ1(aro)

ktroa3 (hJ0(aro)− ktaJ1(aro))

(44)

HQA, 21(s) =
−hkta

3J0aro + 4hkta
2J1aro

ktroa3 (hJ0aro − ktaJ1(aro))
(45)

HQA, 12(s) = H21(s) (46)

HQA, 22(s) = H22(s) (47)
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