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Abstract — Controlled induction motor drives without mechan-

ical speed sensors at the motor shaft have the attractions of low
cost and high reliability. To replace the sensor, the information
on the rotor speed is extracted from measured stator voltages
and currents at the motor terminals. Vector controlled drives
require estimating the magnitude and spatial orientation of the
fundamental magnetic flux waves in the stator or in the rotor.
Open loop estimators or closed loop observers are used for this
purpose. They differ with respect to accuracy, robustness, and
sensitivity against model parameter variations. Dynamic perfor-
mance and steady-state speed accuracy in the low speed range
can be achieved by exploiting parasitic effects of the machine.
The overview in this paper uses signal flow graphs of complex
space vector quantities to provide an insightful description of the
systems used in sensorless control of induction motors.
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1.  INTRODUCTION

AC drives based on full digital control have reached the
status of a mature technology. The world market volume is
about 12,000 millions US$ with an annual growth rate of 15%.

Ongoing research has concentrated on the elimination of
the speed sensor at the machine shaft without deteriorating
the dynamic performance of the drive control system [1].
Speed estimation is an issue of particular interest with induc-
tion motor drives where the mechanical speed of the rotor is
generally different from the speed of the revolving magnetic
field. The advantages of speed sensorless induction motor
drives are reduced hardware complexity and lower cost, re-
duced size of the drive machine, elimination of the sensor
cable, better noise immunity, increased reliability and less
maintenance requirements. The operation in hostile environ-
ments mostly requires a motor without speed sensor.

A variety of different solutions for sensorless ac drives have
been proposed in the past few years. Their merits and limits
are reviewed based on a survey of the available literature.

Fig. 1 gives a schematic overview of the methodologies
applied to speed sensorless control. A basic approach requires
only a speed estimation algorithm to make a rotational speed

sensor obsolete. The v/f control principle adjusts a constant
volts-per-Hertz ratio of the stator voltage by feedforward con-
trol. It serves to maintain the magnetic flux in the machine at
a desired level. Its simplicity satisfies only moderate dynam-
ic requirements. High dynamic performance is achieved by
field orientation, also called vector control. The stator cur-
rents are injected at a well defined phase angle with respect to
the spatial orientation of the rotating magnetic field, thus over-
coming the complex dynamic properties of the induction mo-
tor. The spatial location of the magnetic field, the field angle,
is difficult to measure. There are various types of models and
algorithms used for its estimation as shown in the lower por-
tion of Fig. 1. Control with field orientation may either refer
to the rotor field, or to the stator field, where each method has
its own merits.

Discussing the variety of different methods for sensorless
control requires an understanding of the dynamic properties
of the induction motor which is treated in a first introductory
section.

2.  INDUCTION MACHINE DYNAMICS

2.1  An introduction to space vectors

The use of space vectors as complex state variables is an
efficient method for ac machine modelling [2]. The space vec-

Fig. 1. Methods of sensorless speed control
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dividual phases can be represented by the spatial addition of
the contributing phase currents. For this purpose, the phase
currents need to be transformed into space vectors by impart-
ing them the spatial orientation of the pertaining phase axes.
The resulting equation

is sa sb sc= + +( )2
3

1 2i a i a i (1)

defines the complex stator current space vector is. Note that
the three terms on the right-hand side of (1) are also complex
space vectors. Their magnitudes are determined by the in-
stantaneous value of the respective phase current, their spa-
tial orientations by the direction of the respective winding
axis. The first term in (1), though complex, is real-valued
since the winding axis of phase a is the real axis of the
reference frame. It is normally omitted in the notation of (1)
to characterize the real axis by the unity vector 1 = ej0. As a
complex quantity, the space vector 1.isa represents the sinu-
soidal current density distribution generated by the phase
current isa.

Fig. 2.  Stator winding with only phase a energized
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Fig. 3.  Current densitiy distribution resulting from the phase
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tor approach represents the induction motor as a dynamic sys-
tem of only third order, and permits an insightful visualiza-
tion of the machine and the superimposed control structures
by complex signal flow graphs [3]. Such signal flow graphs
will be used throughout this paper. The approach implies that
the spatial distributions along the airgap of the magnetic flux
density, the flux linkages and the current densities (magneto-
motive force, mmf) are sinusoidal. Linear magnetics are as-
sumed while iron losses, slotting effects, deep bar and end
effects are neglected.

To describe the space vector concept, a three-phase stator
winding is considered as shown in Fig. 2(a) in a symbolic
representation. The winding axis of phase a is aligned with
the real axis of the complex plane. To create a sinusoidal flux
density distribution, the stator mmf must be a sinusoidal func-
tion of the circumferential coordinate. The distributed phase
windings of the machine model are therefore assumed to have
sinusoidal winding densities. Each phase current then creates
a specific sinusoidal mmf distribution, the amplitude of which
is proportional to the respective current magnitude, while its
spatial orientation is determined by the direction of the re-
spective phase axis and the current polarity. For example, a
positive current isa in stator phase a creates a sinusoidal cur-
rent density distribution that leads the windings axis a by 90°,
having therefore its maximum in the direction of the imagi-
nary axis as shown in Fig. 2(b).

The total mmf in the stator is obtained as the superposition
of the current density distributions of all three phases. It is
again a sinusoidal distribution, which is indicated in Fig. 3 by
the varying diameter of the conductor cross sections, or, in an
equivalent representation, by two half-moon shaped segments.
Amplitude and spatial orientation of the total mmf depend on
the respective magnitudes of the phase currents isa, isb and
isc. As the phase currents vary with time, the generated cur-
rent density profile displaces in proportion, forming a rotat-
ing current density wave.

The superposition of the current density profiles of the in-
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Such distribution is represented in Fig. 2(b). In the second
term of (1), a = exp(j2p/3) is a unity vector that indicates the
direction of the winding axis of phase b, and hence a isb is the
space vector that represents the sinusoidal current density dis-
tribution generated by the phase current isb. Likewise does a2

isc represent the current density distribution generated by isc,
with a2 = exp(j 4p/3) indicating the direction of the winding
axis of phase c.

Being a complex quantity, the stator current space vector is
in (1) represents the sinusoidal spatial distribution of the total
mmf wave created inside the machine by the three phase cur-
rents that flow outside the machine. The mmf wave has its
maximum at an angular position that leads the current space
vector is by 90° as illustrated in Fig. 3. Its amplitude is pro-
portional to is = |is|.

The scaling factor 2/3 in (1) reflects the fact that the total
current density distribution is obtained as the superposition
of the current density distributions of three phase windings
while the contribution of only two phase windings, spaced
90° apart, would have the same spatial effect with the phase
current properly adjusted. The factor 2/3 also ensures that the
contributing phase currents isa, isb and isc can be readily re-
constructed as the projections of is on the respective phase
axes, hence

  

i

i a

i a

sa s

sb s

sc s

= { }
= ⋅{ }
= ⋅{ }

Re

Re

Re

i

i

i

2 (2)

Equation (2) holds on condition that zero sequence currents
do not exist. This is always true since the winding star point
of an inverter fed induction motor is never connected [4].

At steady-state operation, the stator phase currents form a
balanced, sinusoidal three-phase system which cause the sta-
tor mmf wave to rotate at constant amplitude in synchronism
with the angular frequency ws of the stator currents.

The flux density distribution in the airgap is obtained by
spatial integration of the current density wave. It is therefore
also a sinusoidal wave, and it lags the current density wave
by 90° as illustrated in Fig. 4. It is convenient to choose the
flux linkage wave as a system variable instead of the flux den-
sity wave as the former contains added information on the
winding geometry and the number of turns. By definition, a
flux linkage distribution has the same spatial orientation as
the pertaining flux density distribution. The stator flux link-
age distribution in Fig. 4 is therefore represented by the space
vector ys.

A rotating flux density wave induces voltages in the indi-
vidual stator windings. Since the winding densities are sinu-
soidal spatial functions, the induced voltages are also sinuso-
idally distributed in space. The same is true for the resistive
voltage drop in the windings. The total of both distributed
voltages in all phase windings is represented by the stator
voltage space vector us, which is a complex variable. Against
this, the phase voltages at the machine terminals are discrete,
scalar quantities. They define the stator voltage space vector

us sa sb sc= + +( )2
3

2u a u a u (3)

in a same way as the phase currents define the stator current
space vector in (1).

Note that current space vectors are defined in a different
way than flux linkage vectors: They are always –90° out of
phase with respect to the maximum of the current density dis-
tribution they represent, Fig. 3. Against this, flux linkage vec-
tors are always aligned with the maximum of the respective
flux linkage distribution, Fig. 4. This is a convenient defini-
tion, permitting to establish a simple relationship between both
vectors, for instance ys = ls is, where ls is the three-phase
inductance of the stator winding. The three-phase inductance
of a distributed winding is 1.5 times the per phase inductance
of that very winding [2].

2.2 Machine equations

To establish the machine equations, all physical quantities
are considered normalized, and rotor quantities are referred
to the stator, i. e. scaled in magnitude by the stator to rotor
winding ratio. A table of the base quantities used for normal-
ization is given in Appendix A. The normalization includes
the conversion of machines of arbitrary number p of pole pairs
to the two-pole equivalent machine that is shown in the illus-
trations. It has been found convenient to normalize time as
t = wsRt, where wsR is the rated stator frequency of the ma-
chine.

 A rotating coordinate system is chosen to establish the volt-
age equations of the induction motor. This coordinate system
rotates at an angular stator velocity wk, where the value of
wk is left unspecified to be as general as possible. Of course,
when a specific solution of the system equations is sought,
the coordinate system must be defined first.

Fig. 4.  Flux densitiy distribution resulting from the stator currents
in Fig. 3
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aaaThe stator voltage equation in the general k-coordinate sys-
tem is

  
u is s s

s
k sj= + +r

d
d
y

yτ ω (4)

where rsis is the resistive voltage drop and rs is the stator
resistance. The sum of the last two terms in (4) represents the
induced voltage, or back emf, of which dys/dt is the station-
ary term that accounts for the variations in time of the stator
flux linkage as seen from the moving reference frame. The
second term jwkys is the motion-induced voltage that results
from the varying displacement of the winding conductors
with respect to the reference frame.

In the rotor, this displacement is wk – w, where w is the
angular mechanical velocity of the rotor, and hence the rotor
voltage equation is

  
0 = + + −( )r

d
dr r

r
k rji

y
yτ ω ω . (5)

The left-hand side shows that the rotor voltage sums up to
zero in a squirrel cage induction motor.

Equations (4) and (5) represent the electromagnetic sub-
system of the machine as a second order dynamic system by
two state equations, however, in terms of four state variables:
is, ys, ir, yr. Therefore, two flux linkage equations

  ys s s m r= +l li i (6)

  yr m s r r= +l li i (7)

are needed to establish completeness. In (6) and (7), ls is the
stator inductance, lr is the rotor inductance, and lm is the
mutual inductance between the stator and the rotor winding;
all inductances are three-phase inductances having 1.5 times
the value of the respective phase inductances.

Equations (4) and (5) are easily transformed to a different
reference frame by just substituting wk with the angular ve-
locity of the respective frame. To transform the equations to
the stationary reference frame, for instance, wk is substituted
by zero.

The equation of the mechanical subsystem is

τ ω
τm e L

d
d

T T= − (8)

where tm is the mechanical time constant, w is the angular
mechanical velocity of the rotor, Te is the electromagnetic
torque and TL is the load torque. Te is computed from the z-
component of the vector product of two state variables, for
instance as

      T i ize s s s s= × = −y i y ya b b a (9)

when ys = ysa + jysb and is = ia + j ib are the selected state
variables, expressed by their components in stationary coor-
dinates.

2.3 Stator current and rotor flux as selected state variables

 Most drive systems have a current control loop incorpo-
rated in their control structure. It is therefore advantageous to
select the stator current vector as one state variable. The sec-
ond state variable is then either the stator flux, or the rotor
flux linkage vector, depending on the problem at hand. Se-
lecting the rotor current vector as a state variable is not very
practical, since the rotor currents cannot be measured in a
squirrel cage rotor.

Synchronous coordinates are chosen to represent the ma-
chine equations, ωk = ωs. Selecting the stator current and the
rotor flux linkage vectors as state variables leads to the fol-
lowing system equations, obtained from (4) through (7):

  
τ τ ω τ τ ωτσ σ

σ σ
' '

d
d

k
r r

i
i i us
s s s

r

r
r r sj j+ = − − −( ) +1

1y (10a)

  
τ τ ω ω τr

r
r s r r m sj

d
d

l
y

y y+ = − −( ) + i (10b)

The coefficients in (10) are the transient stator time constant
τσ' = σ ls/rσ and the rotor time constant tr = lr/rr, where σ ls
is the total leakage inductance, σ  = 1 – lm2/ls lr is the total
leakage factor, rσ = rs + kr

2rr is an equivalent resistance, and
kr = lm/lr is the coupling factor of the rotor.

The selected coordinate system rotates at the electrical an-
gular stator velocity ws of the stator, and hence in synchro-
nism with the revolving flux density and current density waves
in the steady-state. All space vectors will therefore assume a
fixed position in this reference frame as long as the steady-
state prevails.

The graphic interpretation of (8) to (10) is the signal flow
diagram Fig. 5. This graph exhibits two fundamental winding
structures in its upper portion, representing the winding sys-
tems in the stator and the rotor, and their mutual magnetic
coupling. Such fundamental structures are typical for any ac
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Fig. 5.  Induction motor signal flow graph; state variables: stator
current vector, rotor flux vector; representation in synchronous
coordinates
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machine winding. The properties of such structure shall be
explained with reference to the model of the stator winding in
the upper left of Fig. 5. Here, the time constant of the first
order delay element is τσ'. The same time constant reappears
as factor jτσ' in the local feedback path around the first order
delay element, such that the respective state variable, here is,
gets multiplied by jω sτσ'. The resulting signal jω sτσ' is, if
multiplied by rσ, is the motion-induced voltage that is gener-
ated by the rotation of the winding with respect to the select-
ed reference frame. While the factor ω s represents the angu-
lar velocity of the rotation, the sign of the local feedback sig-
nal, which is minus in this example, indicates the direction of
rotation: The stator winding rotates anti-clockwise at ws in a
synchronous reference frame.

The stator winding is characterized by the small transient
time constant τσ', being determined by the leakage inductanc-
es and the winding resistances both in the stator and the rotor.
The dynamics of the rotor flux are governed by the larger ro-
tor time constant τr if the rotor is excited by the stator current
vector is, Fig. 5. The rotor flux reacts on the stator winding
through the rotor induced voltage

  
uir

r

r
r rj= −( )k

τ ωτ 1 y (11)

in which the component jωyr predominates over yr/τr unless
the speed is very low. A typical value of the normalized rotor
time constant is τr = 80, equivalent to 250 ms, while yr is
close to unity in the base speed range.

The electromagnetic torque as the input signal to the me-
chanical subsystem is expressed by the selected state vari-
ables and derived from (6), (7) and (9) as

  T k ze r r s= ⋅ ×y i (12)

2.4 Speed estimation at very low stator frequency

The dynamic model of the induction motor is used to in-
vestigate the special case of operation at very low stator fre-
quency, ωs → 0. The stator reference frame is used for this
purpose. The angular velocity of this reference frame is zero
and hence ωs in (10) is replaced by zero. The resulting signal

flow diagram is shown in Fig. 6.
At very low stator frequency, the mechanical angular ve-

locity ω depends predominantly on the load torque. Particu-
larly, if the machine is fed by a voltage us at zero stator fre-
quency, can the mechanical speed be detected without a speed
sensor? The signals that can be exploited for speed estimation
are the stator voltage vector us and the measured stator cur-
rent is. To investigate this question, the transfer function of
the rotor winding

  
˜ ˜yr

m

r r
sj

= + −
l

sτ ωτ1
i (13)

is considered, where y
~
r and  i

~
s are the Laplace transforms of

the space vectors yr and is, respectively. Equation (13) can
be directly verified from the signal flow graph Fig. 6.

The signal that acts from the rotor back to the stator in Fig.
6 is proportional to (jωτr – 1)yr. Its Laplace transform is ob-
tained with reference to (13):

  
  

˜ ˜ ˜u
iir r

r
r r

r

r
m

r

r r
sj

j
jr

k
r

k
r

l
sσ σ στ ωτ τ

ωτ
τ ωτ= −( ) =

−
+ −1

1
1

y . (14)

As ωs approaches zero, the feeding voltage vector us ap-
proaches zero frequency when observed in the stationary ref-
erence frame. As a consequence, all steady-state signals tend
to assume zero frequency, and the Laplace variable s → 0.
Hence we have from (14)

lim
˜ ˜

s
ir r

r
m s→ = −0

u
i

r
k

r
l

σ στ . (15)

The right-hand side of (15) is independent of ω, indicating
that, at zero stator frequency, the mechanical angular velocity
ω of the rotor does not exert an influence on the stator quanti-
ties. Particularly, they do not reflect on the stator current as
the important measurable quantity for speed identification. It
is concluded, therefore, that the mechanical speed of the rotor
is not observable at ωs = 0.

The situation is different when operating close to zero sta-
tor frequency. The aforementioned steady-state signals are now
low frequency ac signals which get modified in phase angle
and magnitude when passing through the τr-delay element on
the right-hand side of Fig. 6. Hence, the cancelation of the
numerator and the denominator in (14) is not perfect. Particu-
larly at higher speed is a voltage of substantial magnitude in-
duced from the rotor field into the stator winding. Its influ-
ence on measurable quantities at the machine terminals can
be detected: the rotor state variables are then observable.

The angular velocity of the revolving field must have a
minimum nonzero value to ensure that the induced voltage in
the stator windings is sufficiently high, thus reducing the in-
fluence of parameter mismatch and noise to an acceptable lev-
el. The inability to acquire the speed of induction machines
below this level constitutes a basic limitation for those esti-
mation models that directly or indirectly utilize the induced
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Fig. 6.  Induction motor at zero stator frequency, signal flow graph
in stationary coordinates
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voltage. This includes all types of models that reflect the ef-
fects of flux linkages with the fundamental magnetic field.

Speed estimation at very low stator frequency is possible,
however, if other phenomena like saturation induced anisotro-
pies, the discrete distribution of rotor bars, or rotor saliency
are exploited. Such methods bear a promise for speed identi-
fication at very low speed including sustained operation at
zero stator frequency. Details are discussed in Section 8.

Other than the mechanical speed, the spatial orientation of
the fundamental flux linkages with the machine windings, i.
e. the angular orientation of the space vectors ys or yr, is not
impossible to identify at low and even at zero electrical exci-
tation frequency if enabling conditions exist. Stable and per-
sistent operation at zero stator frequency can be therefore
achieved at high dynamic performance, provided the compo-
nents of the drive system are modelled with satisfying accu-
racy.

2.5 Dynamic behavior of the uncontrolled machine

The signal flow graph Fig. 5 represents the induction mo-
tor as a dynamic system of 3rd order. The system is nonlinear
since both the electromagnetic torque Te and the rotor induced
voltage are computed as products of two state variables, yr
and ir, and w  and yr, respectively. Its eigenbehavior is char-
acterized by oscillatory components of varying frequencies

which make the system difficult to control.
To illustrate the problem, a large-signal response is dis-

played in Fig. 7(a), showing the torque-speed characteristic
at direct-on-line starting of a non-energized machine. Large
deviations from the corresponding steady-state characteristic
can be observed. During the dynamic acceleration process,
the torque initially oscillates between its steady-state break-
down value and the nominal generating torque –TeR. The ini-
tial oscillations are predominantly generated from the elec-
tromagnetic interaction between the two winding systems in
the upper portion of Fig. 5, while the subsequent limit cycle
around the final steady-state point at w = wR is more an elec-
tromechanical process.

The nonlinear properties of the induction motor are reflect-
ed in its response to small-signal excitation. Fig. 7(b) shows
different damping characteristics and eigenfrequencies when
a 10% increase of stator frequency is commanded from two
different speed values. A detailed study of induction motor
dynamics is reported in [5].

3.  CONSTANT VOLTS-PER-HERTZ CONTROL

3.1  Low cost and robust drives

One way of dealing with the complex and nonlinear dy-
namics of induction machines in adjustable speed drives is
avoiding excitation at their eigenfrequencies. To this aim, a
gradient limiter reduces the bandwidth of the stator frequen-
cy command signal as shown in Fig. 8. The band-limited sta-
tor frequency signal then generates the stator voltage refer-
ence magnitude us* while its integral determines the phase
angle arg(us*).

The v/f characteristic in Fig. 8 is derived from (4), neglect-
ing the resistive stator voltage drop rsis and, in view of band-
limited excitation, assuming steady-state operation, dys/dt ≈
0. This yields

  us s sj= ω y (16)

or us /ws = const. (or v/f = const.) when the stator flux is
maintained at its nominal value in the base speed range. Field
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weakening is obtained by maintaining us = us max = const.
while increasing the stator frequency beyond its nominal
value. At very low stator frequency is a preset minimum
value of the stator voltage programmed to account for the
resistive stator voltage drop.

The signals us* and arg(us*) thus obtained constitute the
reference vector us* of the stator voltage, which in turn con-
trols a pulsewidth modulator (PWM) to generate the switch-
ing sequence of the inverter. Overload protection is achieved
by simply inhibiting the firing signals of the semiconductor
devices if the machine currents exceed a permitted maximum
value.

Since v/f -controlled drives operate purely as feedforward
systems, the mechanical speed w  differs from the reference
speed ws* when the machine is loaded. The difference is the
slip frequency, equal to the electrical frequency w r of the ro-
tor currents. The maximum speed error is determined by the
nominal slip, which is 3 - 5% of nominal speed for low power
machines, and less at higher power. A load current dependent
slip compensation scheme can be employed to reduce the speed
error [6].

Constant volts-per-hertz control ensures robustness at the
expense of reduced dynamic performance, which is adequate
for applications like pump and fan drives, and tolerable for
other applications if cost is an issue. A typical value for torque
rise time is 100 ms. The absence of closed loop control and
the restriction to low dynamic performance make
v/f-controlled drives very robust. They operate stable even in
the critical low speed range where vector control fails to main-
tain stability (Section 7.1). Also for very high speed applica-
tions like centrifuges and grinders is open loop control an ad-
vantage: The current control system of closed loop schemes
tends to destabilize when operated at field weakening up to 5
to 10 times the nominal frequency of 50 or 60 Hz. The ampli-
tude of the motion-induced voltage jω sτσ'is in the stator, Fig.
5, becomes very high at those high values of the stator fre-
quency ω s. Here, the complex coefficient jω s introduces an
undesired voltage component in quadrature to any manipulat-

ed change of the stator voltage vector that the current control-
lers command. The phase displacement in the motion-induced
voltage impairs the stability.

The particular attraction of v/f  controlled drives is their ex-
tremely simple control structure which favors an implemen-
tation by a few highly integrated electronic components. These
cost-saving aspects are specifically important for applications
at low power below 5 kW. At higher power, the power com-
ponents themselves dominate the system cost, permitting the
implementation of more sophisticated control methods. These
serve to overcome the major disadvantage of v/f  control: the
reduced dynamic performance. Even so, the cost advantage
makes v/f  control very attractive for low power applications,
while their robustness favors its use at high power when a fast
response is not required. In total, such systems contribute a
substantial share of the market for sensorless ac drives.

3.2  Drives for moderate dynamic performance

An improved dynamic performance of v/f-controlled drives
can be achieved by an adequate design of the control struc-
ture. The signal flow graph Fig. 9 gives an example [7].

The machine dynamics are represented here in terms of the

state variables ys and yr. The system equations are derived in
the stationary reference frame, letting ω k = 0 in equations (4)
through (7). The result is
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(17a)
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where τr’  = στr = σ lr /rr is a transient rotor time constant,
and ks is the coupling factor of the stator. The corresponding
signal flow graph of the machine model is highlighted by the
shaded area on the right-hand side of Fig. 9. The graph shows
that the stator flux vector is generated as the integral of us –
rs

.is, where

Fig. 9.  Drive control system for moderate dynamic requirements
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is

s
s r r= −( )1

σ l
ky y . (18)

The normalized time constant of the integrator is unity.
The key quantity of this control concept is the active stator

current isp, computed in stationary coordinates as

    
i

u
i isp

s s

s
s s= = +

u i*
* cos sin
o

a bϑ ϑ (19)

from the measured orthogonal stator current components isa
and isb in stationary coordinates, where is = isa + jisb and ϑ
is the phase angle of the stator voltage reference vector us*
= us

*
 
.
 ejϑ, a control input variable. The active stator current

isp is proportional to the torque. Accordingly, its reference
value isp

*  is generated as the output of the speed controller.
Speed estimation is based on the stator frequency signal ωs
as obtained from the isp-controller, and on the active stator
current isp, which is proportional the rotor frequency. The
nominal value isp R of the active stator current produces
nominal slip at rotor frequency ωrR, thus ŵr = ωr R/isp R. isp.
The estimated speed is then

ˆ ˆω ω ω= −s r (20)where -
he hatch marks ŵr as an estimated variable.

An inner loop controls the active stator current is p, with its
reference signal limited to prevent overloading the inverter
and to avoid pull-out of the induction machine if the load
torque is excessive.

Fig. 9 shows that an external rs.is-signal compensates elim-
inates the internal resistive voltage drop of the machine. This
makes the trajectory of the stator flux vector independent of
the stator current and the load. It provides a favorable dynam-
ic behavior of the drive system and eliminates the need for
the conventional acceleration limiter (Fig. 8) in the speed ref-
erence channel. A torque rise time around 10 ms can be
achieved, [7], which matches the dynamic performance of a
thyristor converter controlled dc drive.

4.  MACHINE MODELS

Machine Models are used to estimate the motor shaft speed,
and, in high-performance drives with field oriented control,
to identify the time-varying angular position of the flux vec-
tor. In addition, the magnitude of the flux vector is estimated
for field control.

Different machine models are employed for this purpose,
depending on the problem at hand. A machine model is im-
plemented in the controlling microprocessor by solving the
differential equations of the machine in real-time, while us-
ing measured signals from the drive system as the forcing func-
tions.

The accuracy of a model depends on the degree of coinci-
dence that can be obtained between the model and the mod-
elled system. Coincidence should prevail both in terms of
structures and parameters. While the existing analysis meth-

ods permit establishing appropriate model structures for in-
duction machines, the parameters of such model are not al-
ways in good agreement with the corresponding machine data.
Parameters may significantly change with temperature, or with
the operating point of the machine. On the other hand, the
sensitivity of a model to parameter mismatch may differ, de-
pending on the respective parameter, and the particular vari-
able that is estimated by the model.

Differential equations and signal flow graphs are used in
this paper to represent the dynamics of an induction motor
and its various models used for state estimation. The charac-
terizing parameters represent exact values when describing
the machine itself; they represent estimated values for ma-
chine models. For better legibility, the model parameters are
mostly not specifically marked (ˆ) as estimated values.

Suitable models for field angle estimation are the model of
the stator winding, Fig. 11, and the model of the rotor wind-
ing shown in Fig. 10 below. Each model has its merits and
drawbacks.

4.1  The rotor model

The rotor model is derived from the differential equation
of the rotor winding. It can be either implemented in stator
coordinates, or in field coordinates. The rotor model in stator
coordinates is obtained from (10b) in a straightforward man-
ner by letting ωs = 0.

  
τ τ ωτr

r
r r r m sj

d
d

l
y

y y+ = + i (21)

Fig. 10 shows the signal flow graph. The measured values
of the stator current vector is, and of the rotational speed ω
are the input signals to the model. The output signal is the
rotor flux linkage vector yr

(S), marked by the superscript (S)

as being referred to in stator coordinates. The argument arg(yr)
of the rotor flux linkage vector is the rotor field angle δ. The
magnitude yr is required as a feedback signal for flux control.
The two signals are obtained as the solution of

    

yr r r

r r

(S) j

j

= +
= +
y y
y y

cos sinδ δ

α β
(22)
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Fig. 10.  Rotor model in stator coordinates
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where the subscripts α and β mark the respective compo-
nents in stator coordinates. The result is

  
δ β

α
α β= = +arctan ,

y
y y y yr

r
r r r

2 2 (23)

The rotor field angle δ  marks the angular orientation of the
rotor flux vector. It is always referred to in stator coordi-
nates.

The functions (23) are modeled at the output of the signal
flow graph Fig. 10. In a practical implementation, these func-
tions can be condensed into two numeric tables that are read
from the microcontroller program.

The accuracy of the rotor model depends on the correct set-
ting of the model parameters in (21). It is particularly rotor
time constant τ r  that determines the accuracy of the estimat-
ed field angle, the most critical variable in a vector controlled
drive. The other model parameter is the mutual inductance
l m. It acts as a gain factor as seen in Fig. 10 and does not
affect the field angle. It does have an influence on the magni-
tude of the flux linkage vector, which is less critical.

4.2  The stator model

The stator model is used to estimate the stator flux linkage
vector, or the rotor flux linkage vector, without requiring a
speed signal. It is therefore a preferred machine model for
sensorless speed control applications. The stator model is de-
rived by integrating the stator voltage equation (4) in stator
coordinates, w k = 0, from which

  ys s s s= −( )∫ u ir dτ (24)

is obtained. Equations (6) and (7) are used to determine the
rotor flux linkage vector from (24):

  
y y yr

r
s s s s s

r
s= −( ) −( ) = −( )∫1 1

k
r d l

k
u i iτ σ σ (25)

The equation shows that the rotor flux linkage is basically
the difference between the stator flux linkage and the leakage
flux ys.

One of the two model equations (24) or (25) can be used to
estimate the respective flux linkage vector, from which the
pertaining field angle, and the magnitude of the flux linkage
is obtained. The signal flow diagram Fig. 11(a) illustrates ro-
tor flux estimation according to (25).

The stator model (24), or (25), is difficult to apply in prac-
tice since an error in the acquired signals us and is, and offset
and drift effects in the integrating hardware will accumulate
as there is no feedback from the integrator output to its input.
All these disturbances, which are generally unknown, are rep-
resented by two disturbance vectors uz(t) and iz(t) in Fig.
11(a). The resulting runwaway of the output signal is a funda-
mental problem of an open integration. A negative, low gain
feedback is therefore added which stabilizes the integrator and
prevents its output from increasing without bounds. The feed-
back signal converts the integrator into a first order delay hav-
ing a low corner frequency 1/t1, and the stator models (24)
and (25) become

   
  
τ τ τ σ1 1

1d
d

r
k

l
y

y y ys
s s s s r

r
s s s+ = −( ) = −( )u i i, (26)

and

  
τ τ

τ
τσ1

1d
d k

r l
d
d

y
yr

r
r

s s s s
s+ = − −



u i

i
(27)

respectively.
 The Bode diagram Fig. 11(b) shows that the first order

delay, or low pass filter, behaves as an integrator for frequen-
cies much higher than the corner frequency. It is obvious that
the model becomes inaccurate when the frequency reduces to
values around the corner frequency. The gain is then reduced
and, more importantly, the 90° phase shift of the integrator is
lost. This causes an increasing error in the estimated field angle
as the stator frequency reduces.
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Fig. 11.  Stator model in stationary coordinates; the ideal integrator is substituted by a low pass filter

(a)  signal flow graph

(b)  Bode diagram
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The decisive parameter of the stator model is the stator re-
sistance rs. The resistance of the winding material increases
with temperature and can vary in a 1:2 range. A parameter
error in rs affects the signal rsis in Fig. 11. This signal domi-
nates the integrator input when the magnitude of us reduces
at low speed. Reversely, it has little effect on the integrator
input at higher speed as the nominal value of rsis is low. The
value ranges between 0.02 - 0.05 p.u., where the lower values
apply to high power machines.

To summarize, the stator model is sufficiently robust and
accurate at higher stator frequency. Two basic deficiencies
let this model degrade as the speed reduces: The integration
problem, and the sensitivity of the model to stator resistance
mismatch. Depending on the accuracy that can be achieved in
a practical implementation, the lower limit of stable opera-
tion is reached when the stator frequency is around 1 - 3 Hz.

5.  ROTOR FIELD ORIENTATION

Control with field orientation, also referred to as vector
control, implicates processing the current signals in a specific
synchronous coordinate system. Rotor field orientation uses
a reference frame aligned with the rotor flux linkage vector.
It is one of the two basic subcategories of vector control shown
in Fig. 1.

5.1  Principle of rotor field orientation

A fast current control system is usually employed to force
the stator mmf distribution to a desired location and intensity
in space, independent of the machine dynamics. The current
signals are time-varying when processed in stator coordinates.
The control system then produces an undesirable velocity er-
ror even in the steady-state. It is therefore preferred to imple-
ment the current control in synchronous coordinates. All sys-
tem variables then assume constant values at steady-state and
zero steady-state error can be achieved.

The bandwidth of the current control system is basically
determined by the transient stator time constant τσ' , unless
the switching frequency of the PWM inverter is lower than

about 1 kHz. The other two time constants of the machine
(Fig. 5), the rotor time constant τr and the mechanical time
constant τm, are much larger in comparison. The current con-
trol therefore rejects all disturbances that the dynamic eigen-
behavior of the machine might produce, thus eliminating the
influence of the stator dynamics. The dynamic order reduces
in consequence, the system being only characterized by the
complex rotor equation (10b) and the scalar equation (8) of
the mechanical subsystem. Equations (10b) and (8) form a
second order system. Referring to synchronous coordinates,
ω k = ωs, the rotor equation (10b) is rewritten as

  
τ τ ω τr

r
r r r r m sj

d
d

l
y

y y+ = − + i , (28)

where ω r is the angular frequency of the induced rotor volt-
ages. The resulting signal flow graph Fig. 12 shows that the
stator current vector acts as an independent forcing function
on the residual dynamic system. Its value is commanded by
the complex reference signal is* of the current control loop.

To achieve dynamically decoupled control of the now de-
cisive system variables Te and yr, a particular synchronous
coordinate system is defined, having its real axis aligned with
the rotor flux vector [8]. This reference frame is the rotor field
oriented dq-coordinate system. Here, the imaginary rotor flux
component, or q-component yrq, is zero by definition, and
the signals marked by dotted lines in Fig. 12 assume zero val-
ues.

To establish rotor field orientation, the q-component of the
rotor flux vector must be forced to zero. Hence the q-compo-
nent of the input signal of the τr-delay in Fig. 12 must be also
zero. The balance at the input summing point of the τr-delay
thus defines the condition for rotor field orientation

  l im q r r rd= ω τ y , (29)

which is put into effect by adjusting ω r appropriately. If
condition (29) is enforced, the signal flow diagram of the
motor assumes the familiar dynamic structure of a dc ma-
chine, Fig. 13. The electromagnetic torque Te is now propor-
tional to the forced value of the q-axis current iq and hence
independently controllable. Also the rotor flux is indepen-
dently controlled by the d-axis current id, which is kept at its
nominal, constant value in the base speed range. The ma-

Fig. 12.  Induction motor signal flow graph at forced stator cur-
rents. The dotted lines represent zero signals at rotor field orienta-
tion.
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chine dynamics are therefore reduced to the dynamics of the
mechanical subsystem which is of first order. The control
concept also eliminates the nonlinearities of the system, and
inhibits its inherent tendency to oscillate during transients,
illustrated in Fig. 7.

5.2  Model reference adaptive system based on the rotor flux

The model reference approach (MRAS) makes use of the
redundancy of two machine models of different structures that
estimate the same state variable on the basis of different sets
of input variables [9]. Both models are referred to in the sta-
tionary reference frame. The stator model (26) in the upper
portion of Fig. 14 serves as a reference model. Its output is
the estimated rotor flux vector ŷr

S. The superscript S indi-
cates that ŷr originates from the stator model.

The rotor model is derived from (10b), where ω s is set to
zero for stator coordinates

  
τ τ ωτr

r
r r r m sj

d
d

l
y

y y+ = + i . (30)

This model estimates the rotor flux from the measured stator
current and from a tuning signal, ŵ in Fig. 14. The tuning
signal is obtained through a proportional-integral (PI) con-
troller from a scalar error signal e = ŷ r

S × ŷ r
Rz =

ŷr
S ŷr

R sin α, which is proportional the angular displace-
ment α between the two estimated flux vectors. As the error
signal e gets minimized by the PI controller, the tuning
signal ŵ approaches the actual speed of the motor. The rotor
model as the adjustable model then aligns its output vector
ŷr

R with the output vector ŷr
S of the reference model.

The accuracy and drift problems at low speed, inherent to
the open integration in the reference model, are alleviated by
using a delay element instead of an integrator in the stator
model in Fig. 14. This eliminates an accumulation of the drift
error. It also makes the integration ineffective in the frequency
range around and below 1/τ1, and necessitates the addition
of an equivalent bandwidth limiter in the input of the adjust-
able rotor model. Below the cutoff frequency ωs R/τ1 ≈

1 - 3 Hz, speed estimation becomes necessarily inaccurate.
A reversal of speed through zero in the course of a tran-
sient process is nevertheless possible, if such process is
fast enough not to permit the output of the τ1-delay ele-
ment to assume erroneous values. However, if the drive is
operated close to zero stator frequency for a longer period
of time, the estimated flux goes astray and speed estima-
tion is lost.

The speed control system superimposed to the speed es-
timator is shown in Fig. 15. The estimated speed signal ŵ
is supplied by the model reference adaptive system Fig.
14. The speed controller in Fig. 15 generates a rotor fre-
quency signal ŵr, which controls the stator current magni-
tude

  
i

ls
r

s
r r1+=

ˆ
ˆy ω τ2 2 , (31)

and the current phase angle

δ ω τ ω τ= + ( )∫ ˆ arctan ˆ
s r rd . (32)

Equations (31) and (32) are derived from (29) and from the
steady-state solution id = yr/lm of (21) in field coordinates,
where yrq ≈ 0, and hence yrd = yr, is assumed since field
orientation exists.

It is a particular asset of this approach that the accurate
orientation of the injected current vector is maintained even
if the model value of τr differs from the actual rotor time con-
stant of the machine. The reason is that the same, even erro-
neous value of τr is used both in the rotor model and in the
control algorithm (31) and (32) of the speed control scheme
Fig. 15. If the tuning controller in Fig. 14 maintains zero er-
ror, the control scheme exactly replicates the same dynamic
relationship between the stator current vector and the rotor
flux vector that exists in the actual motor, even in the pres-
ence of a rotor time constant error [9]. However, the accuracy
of speed estimation, reflected in the feedback signal ŵr to the
speed controller, does depend on the error in τr. The speed
error may be even higher than with those methods that esti-

Fig. 15.  Speed and current control systen for MRAS estimators;
CR PWM: current regulated pulsewidth modulator
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mate the rotor frequency ωr and use (20) to compute the speed:
ŵ = ωs – ŵr. The reason is that the stator frequency ωs is a
control input to the system and therefore accurately known.
Even if ŵr in (20) is erroneous, its nominal contribution to ŵ
is small (2 - 5% of ωsR). Thus, an error in ŵr does not affect
ŵ very much, unless the speed is very low.

A more severe source of inaccuracy is a possible mismatch
of the reference model parameters, particularly of the stator
resistance rs. Good dynamic performance of the system is re-
ported by Schauder above 2 Hz stator frequency [9].

5.3  Model reference adaptive system based on the induced
voltage

The model reference adaptive approach, if based on the rotor
induced voltage vector rather than the rotor flux linkage vec-
tor, offers an alternative to avoid the problems involved with

open integration [10]. In stator coordinates, the rotor induced
voltage is the derivative of the rotor flux linkage vector. Hence
differentiating (25) yields

  

d
d k

r l
d
d

yr

r
s s s s

s
τ τσ= − −





1
u i

i
, (33)

which is a quantity that provides information on the rotor
flux vector from the terminal voltage and current, without
the need to perform an integration. Using (33) as the refer-
ence model leaves equation (21)

  
τ τ ωτr

r
r r r m s+ j

d
d

l
y

y y= − + i , (34)

to define the corresponding adjustable model. The signal
flow graph of the complete system is shown in Fig. 16.

The open integration is circumvented in this approach and,
other than in the MRAC system based on the rotor flux, there
is no low pass filters that create a bandwidth limit. However,
the derivative of the stator current vector must be computed
to evaluate (33). If the switching harmonics are processed as
part of us, these must be also contained in is (and in dis/dt as
well) as the harmonic components must cancel on the right of
(33).

5.4  Feedforward control of stator voltages

In the approach of Okuyama et al. [11], the stator voltages
are derived from a steady-state machine model and used as
the basic reference signals to control the machine. Therefore,
through its model, it is the machine itself that lets the inverter
duplicate the voltages which prevail at its terminals in a given
operating point. This process can be characterized as self-con-
trol.

The components of the voltage reference signal are derived
in field coordinates from (10) under the assumption of steady-
state conditions, d/dτ ≈ 0, from which yrd = lm id follows.

Using using the approximation ω ≈ ωs we
obtain

u r i l id d s s qs= − ω σ (35a)

u r i l iq q s s ds= + ω (35b)

 The d-axis current id is replaced by its ref-
erence value id*. The resulting feedforward
signals are represented by the equations
marked by the shaded frames in Fig. 17. The
signals depend on machine parameters, which
creates the need for error compensation by
superimposed control loops. An id-controller
ensures primarily the error correction of ud,
thus governing the machine flux. The signal
iq*, which represents the torque reference, is
obtained as the output of the speed controller.
The estimated speed ŵ is computed from (20)
as the difference of the stator frequency ωs
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Fig. 16.  Model reference adaptive system for speed estimation;
reference variable: rotor induced voltage
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and the estimated rotor frequency ŵr; the latter is proportion-
al to, and therefore derived from, the torque producing cur-
rent iq. Since the torque increases when the velocity of the
revolving field increases, ωs and, in consequence, the field
angle δ can be derived from the iq-controller.

Although the system thus described is equipped with con-
trollers for both stator current components, id and iq, the in-
ternal cross-coupling between the input variables and the state
variables of the machine is not eliminated under dynamic con-
ditions; the desired decoupled machine structure of Fig. 13 is
not established. The reason is that the position of the rotating
reference frame, defined by the field angle d, is not deter-
mined by the rotor flux vector yr . It is governed by the q-
current error instead, which, through the iq-control-
ler, accelerates or decelerates the reference frame.

To investigate the situation, the dynamic behavior
of the machine is modeled using the signal flow graph
Fig. 5. Only small deviations from a state of correct
field orientation and correct flux magnitude control
are considered. A reduced signal flow graph Fig. 18
is thereby obtained in which the d-axis rotor flux is
considered constant, denoted as yrd 0. A nonzero val-
ue of the q-axis rotor flux yrq indicates a misalign-
ment of the field oriented reference frame. It is now
assumed that the mechanical speed ω changes by a
sudden increase of the load torque TL. The subsequent
decrease of ω increases ω r and hence produces a neg-
ative dyrq/dτ at signal the input of the τr-delay. Si-
multaneously is the q-axis component – kr /rσ . ω yrd 0
of the rotor induced voltage increased, which is the
back-emf that acts on the stator. The consequence is
that iq rises, delayed by the transient stator time con-
stant τσ', which restores dyrq/dτ to its original zero
value after the delay. Before this readjustment takes

place, though, yrq has already assumed a per-
manent nonzero value, and field orientation
is lost.

A similar effect occurs on a change of ωs*
which instantaneously affects dyrq/dτ, while
this disturbance is compensated only after a
delay of τσ' by the feedforward adjustment
of uq* through ωs.

Both undesired perturbations are eliminat-
ed by the addition of a signal proportional
to –diq/dτ to the stator frequency input of
the machine controller. This compensation
channel is marked A in Fig. 17 and Fig. 18.

Still, the mechanism of maintaining field
orientation needs further improvement. In
the dynamic structure Fig. 5, the signal –
jωτryr, which essentially contributes to back-
emf vector, influences upon the stator cur-
rent derivative. A misalignment between the

reference frame and the rotor flux vector produces a nonzero
yrq value, giving rise to a back-emf component that changes
id. Since the feedforward control of ud* is determined by (35a)
on the assumption of existing field alignment, such deviation
will invoke a correcting signal from the id-controller. This
signal is used to influence, through a gain constant kq, upon
the quadrature voltage uq* (channel B in Fig. 17 and Fig. 18)
and hence on iq as well, causing the iq-controller to accelerate
or decelerate the reference frame to reestablish accurate field
alignment.

Torque rise time of this scheme is reported around 15 ms;
speed accuracy is within ± 1% above 3% rated speed and ± 12
rpm at 45 rpm [11].
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5.5  Rotor field orientation with improved stator model

A sensorless rotor field orientation scheme based on the
stator model is described by Ohtani [12]. The upper portion
of Fig. 19 shows the classical structure in which the control-
lers for speed and rotor flux generate the current reference
vector is* in field coordinates. This signal is transformed to
stator coordinates and processed by a set of fast current con-
trollers. A possible misalignment of the reference frame is
detected as the difference of the measured q-axis current from
its reference value iq*. This error signal feeds a PI controller,
the output of which is the estimated mechanical speed. It is
added to an estimated value ω̂ r  of the rotor frequency, ob-
tained with reference to the condition for rotor field orienta-
tion (29), but computed from the reference values iq* and yr*.
The reason is that the measured value iq is contaminated by
inverter harmonics, while the estimated rotor flux linkage
vector ŷr is erroneous at low speed. The integration of ωs
provides the field angle δ.

The stator model is used to estimate the rotor flux vector
yr. The drift problems of an open integration at low frequen-
cy are avoided by a band-limited integration by means of a
first-order delay. This entails a severe loss of gain in yr at low
stator frequency, while the estimated field angle lags consid-
erably behind the actual position of the rotor field. The Bode
plot in Fig. 11(b) demonstrates these effects.

An improvement is brought about by the following consid-
erations. The transfer function of an integrator is

  
˜ ˜ ˜yr ir ir= =

+
+

1 1 1
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1s s
s
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u u
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τ (36)

where y
~
r and ûir are the Laplace transforms of the respective

space vectors, and uir is the rotor induced voltage in the
stator windings (11). The term in the right is expanded by a
fraction of unity value. This expression is then decomposed
as
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One can see from (36) that the factor ûir/s on the right equals
the rotor flux vector y

~
r, which variable is now substituted by

its reference value y
~
r
* :
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1s s
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This expression is the equivalent of the pure integral of ûir,
on condition that y

~
r = y

~
r
* . A transformation to the time do-

main yields two differential equations
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where uir is expressed by the measured values of the terminal
voltages and currents referring to (4), (6) and (7), and

  
τ τ1
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r2 r

Sd
d
y

y y+ = *( ) . (40)

It is specifically marked here by a superscript that yr
*(S) is

referred to in stator coordinates and hence is an ac variable,
the same as the other variables.

The signal flow graph Fig. 20 shows that the rotor flux vec-
tor is synthesized by the two components yr1 and yr2, accord-
ing to (39) and (40). The high gain factor t1 in the upper chan-
nel lets yr1 dominate the estimated rotor flux vector ŷr at higher
frequencies. As the stator frequency reduces, the amplitude
of us reduces and ŷr gets increasingly determined by the sig-
nal yr2 from the lower channel. Since yr

*  is the input variable
of this channel, the estimated value of ŷr is then replaced by
its reference value yr

*  in a smooth transition. Finally, we have
ŷr ≈ yr

*  at low frequencies which deactivates the rotor flux
controller in effect. However, the field angle d as the argu-
ment of the rotor flux vector is still under control through the
speed controller and the iq-controller, although the accuracy
of d reduces. Field orientation is finally lost at very low stator
frequency. Only the frequency of the stator currents is con-
trolled. The currents are then forced into the machine without
reference to the rotor field. This provides robustness and cer-
tain stability, although not dynamic performance. In fact, the
q-axis current iq is directly derived in Fig. 20 as the current
component in quadrature with what is considered the estimat-
ed rotor flux vector

    
i z
q

r s

r

=
×ˆ

ˆ

y i

y
, (41)

independently of whether this vector is correctly estimated.
Equation (41) is visualized in the lower left portion of the
signal flow diagram Fig. 20.

As the speed increases again, rotor flux estimation becomes
more accurate and closed loop rotor flux control is resumed.
The correct value of the field angle is readjusted as the q-axis
current, through (41), now relates to the correct rotor flux
vector. The iq-controller then adjusts the estimated speed, and
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Fig. 20.  Rotor flux estimator for the structure in Fig. 19;
N: Numerator, D: Denumerator



aaain consequence also the field angle for a realignment of the
reference frame with the rotor field.

At 18 rpm, speed accuracy is reported to be within ± 3 rpm.
Torque accuracy at 18 rpm is about ± 0.03 pu. at 0.1 pu. refer-
ence torque, improving significantly as the torque increases.
Minimum parameter sensitivity exists at τ1 = τr [12].

5.6  Adaptive Observers

The accuracy of the open loop estimation models described
in the previous chapters reduces as the mechanical speed re-
duces. The limit of acceptable performance depends on how
precisely the model parameters can be matched to the corre-
sponding parameters in the actual machine. It is particularly
at lower speed that parameter errors have significant influ-
ence on the steady-state and dynamic performance of the drive
system.

The robustness against parameter mismatch and signal noise
can be improved by employing closed loop observers to esti-
mate the state variables, and the system parameters.

5.6.1  Full order nonlinear observer
A full order observer can be constructed from the machine

equations (4) through (7). The stationary coordinate system
is chosen, ω k = 0, which yields

  
τ τ τ ωτσ

σ σ
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1y (42a)
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l
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These equations represent the machine model. They are visu-
alized in the upper portion of Fig. 21. The model outputs the
estimated values îs and ŷr of the stator current vector and the

rotor flux linkage vector, respectively.
Adding an error compensator to the model establishes the

observer. The error vector computed from the model current
and the measured machine current is ∆is = îs – is. It is used to
generate correcting inputs to the electromagnetic subsystems
that represent the stator and the rotor in the machine model.
The equations of the full order observer are then established
in accordance with (42). We have
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Kubota et al. [13] select the complex gain factors Gs(ŵ)
and Gr(ŵ) such that the two complex eigenvalues of the ob-
server λλλλλ1,2 obs = k . λλλλλ1,2 mach, where λλλλλ1,2 mach are the machine
eigenvalues, and k > 1 is a real constant. The value of k > 1
scales the observer by pole placement to be dynamically fast-
er than the machine. Given the nonlinearity of the system, the
resulting complex gains Gr(ŵ) and Gr(ŵ) in Fig. 21 depend
on the estimated angular mechanical speed ŵ, [13].

 The rotor field angle is derived with reference to (23) from
the components of the estimated rotor flux linkage vector.

The signal ŵ is required to adapt the rotor structure of the
observer to the mechanical speed of the machine. It is ob-
tained through a PI-controller from the current error ∆is. In
fact, the term ŷr × ∆is||z represents the torque error ∆Te, which
can be verified from (9). If a model torque error exists, the
modeled speed signal ŵ is corrected by the PI controller in
Fig. 21, thus adjusting the input to the rotor model. The phase
angle of ŷr, that defines the estimated rotor field angle as per

(23), then approximates the true field angle that pre-
vails in the machine. The correct speed estimate is
reached when the phase angle of the current error
∆is, and hence the torque error ∆Te reduce to zero.

The control scheme is reported to operate at a min-
imum speed of 0.034 p.u. or 50 rpm [13].

5.6.2  Sliding mode observer
The effective gain of the error compensator can

be increased by using a sliding mode controller to
tune the observer for speed adaptation and for rotor
flux estimation. This method is proposed by Sang-
wongwanich and Doki [14]. Fig. 22 shows the dy-
namic structure of the error compensator. It is inter-
faced with the machine model the same way as the
error compensator in Fig. 21.

 In the sliding mode compensator, the current er-
ror vector ∆is is used to define the sliding hyper-
plane. The magnitude of the estimation error ∆is is
then forced to zero by a high-frequency nonlinear
switching controller. The switched waveform can
be directly used to exert a compensating influence

Fig. 21. Full order nonlinear observer; the dynamic model of the
electromagnetic subsystem is shown in the upper portion
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on the machine model, while its average value controls an
algorithm for speed identification. The robustness of the slid-
ing mode approach ensures zero error of the estimated stator
current. The H∞-approach used in [14] for pole placement in
the observer design minimizes the rotor flux error in the pres-
ence of parameter deviations. The practical implementation
requires a fast signalprocessor. The authors have operated the
system at 0.036 p.u. minimum speed.

5.6.3  Extended Kalman filter
Kalman filtering techniques are based on the complete

machine model, which is the structure shown in the upper
portion in Fig. 21, including the added mechanical subsystem
as in Fig. 5. The machine is then modeled as a 3rd-order sys-
tem, introducing the mechanical speed as an additional state
variable. Since the model is nonlinear, the extended Kalman
algorithm must be applied. It linearizes the nonlinear model
in the actual operating point. The corrective inputs to the dy-
namic subsystems of the stator, the rotor, and the mechanical
subsystem are derived such that a quadratic error function is
minimized. The error function is evaluated on the basis of
predicted state variables, taking into account the noise in the
measured signals and in the model parameter deviations.

The statistical approach reduces the error sensitivity, per-
mitting also the use of models of lower order than the ma-
chine [15]. Henneberger et al. [16] have reported
the experimental verification of this method using
machine models of 4th and 3rd order. This relaxes
the extensive computation requirements to some
extent; the implementation, though, requires float-
ing-point signalprocessor hardware. Kalman filter-
ing techniques are generally avoided due to the
high computational load.

5.6.4  Reduced order nonlinear observer
Tajima and Hori et al. [17] use a nonlinear ob-

server of reduced dynamic order for the identifi-
cation of the rotor flux vector.

The model, shown in the right-hand side frame
in Fig. 23, is a complex first order system based
on the rotor equation (21). It estimates the rotor
flux linkage vector ŷr, the argument ̂δ  = arg(ŷr)

of which is then used to establish field orientation in the su-
perimposed current control system, in a structure similar to
that in Fig. 27. The model receives the measured stator cur-
rent vector as an input signal. The error compensator, shown
in the left frame, generates an additional model input

  

∆i G

i
i

u
s r

r
s r

s
s

r

s
s

r

r
r rj

= ( )
+ + −





− + −( )























ˆ

ˆ
ˆ

ˆ ˆ
ω

τ τ
τ
τ

τ
τ ωτ

σ
σ

σ

d
d

k
l

'
1

1 y

(44)

which can be interpreted as a stator current component that
reduces the influence of model parameter errors. The field
transformation angle d̂  as obtained from the reduced order
observer is independent of rotor resistance variations [17].

The complex gain Gr(ŵ) ensures fast dynamic response of
the observer by pole placement. The reduced order observer
employs a model reference adaptive system as in Fig. 14 as a
subsystem for the estimation of the rotor speed. The estimat-
ed speed is used as a model input.

6.  STATOR FIELD ORIENTATION

6.1  Impressed stator currents

Control with stator field orientation is preferred in combi-
nation with the stator model. This model directly estimates
the stator flux vector. Using the stator flux vector to define
the coordinate system is therefore a straightforward approach.

A fast current control system makes the stator current vec-
tor a forcing function, and the electromagnetic subsystem of
the machine behaves like a complex first-order system, char-
acterized by the dynamics of the rotor winding.

To model the system, the stator flux vector is chosen as the
state variable. The machine equation in synchronous coordi-
nates, ω k = ωs, is obtained from (10b), (6) and (7) as
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Fig. 23.  Reduced order nonlinear observer; the MRAS block contains the
structure Fig. 14;   kd = tr /ts' + (1 – s)/s
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where τr' = στr is the transient rotor time constant. Equation
(45) defines the signal flow graph Fig. 24. This first-order
structure is less straightforward than its equivalent at rotor
field orientation, Fig. 12, although well interpretable: Since
none of the state variables in (45) has an association to the
rotor winding, such state variable is reconstructed from the
stator variables. The leakage flux yσ = σ ls is is is computed
from the stator current vector is, and added to the stator flux
linkage vector ys. Thus  the signal kryr  is obtained, which,
although reduced in magnitude by kr, represents the rotor
flux linkage vector. Such synthesized signal is then used to
model the rotor winding, as shown in the upper right portion
of Fig. 24. The proof that this model represents the rotor
winding is in the motion dependent term –jωrτr kryr . Here,
the velocity factor ωr indicates that the winding rotates anti-
clockwise at the electrical rotor frequency which, in a syn-
chronous reference frame, applies only for the rotor winding.
The substitution ys → yr also explains why the rotor time
constant characterizes this subsystem, although its state vari-
able is the stator flux linkage vector ys.

The stator voltage is not available as an input to generate
the stator flux linkage vector. Therefore, in addition to is, also
the derivative τr' dis/dτ of the stator current vector must be an
input. In fact, τr' ls dis/dτ  = στr ls dis/dτ   is the derivative of
the leakage flux vector (here multiplied by τr) which adds to
the input of the τr-delay to compensate for the leakage flux
vector ys that is added from its output.

To establish stator flux orientation, the stator flux linkage
vector ys must align with the real axis of the synchronous
reference frame, and hence ysq = 0. Therefore, the q-axis com-
ponent dysq/dτ  at the input of the τr-delay must be zero, which
is indicated by the dotted lines in Fig. 24. The condition for
stator flux orientation can be now read from the balance of
the incoming q-axis signals at the summing point
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In a practical implementation, stator flux orientation is im-
posed by controlling wr so as to satisfy (46). The resulting
dynamic structure of the induction motor then simplifies as
shown in the shaded area of Fig. 25.

6.2  Dynamic decoupling

In the signal flow graph Fig. 25, the torque command ex-
erts an undesired influence on the stator flux. Xu et al [18]
propose a decoupling arrangement, shown in the left of Fig.
25, to eliminate the cross-coupling between the q-axis cur-
rent and the stator flux. The decoupling signal depends on the
rotor frequency w r . An estimated value ŵr is therefore com-
puted from the system variables, observing the condition for
stator field orientation (46), and letting ysd = ys, since field
orientation exists
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An inspection of Fig. 25 shows that the internal influence
of iq is cancelled by the external decoupling signal, provided
that the estimated signals and parameters match the actual
machine data.

To complete a sensorless control system, an estimator for
the unknown system variables is established. Fig. 26 shows
the signal flow graph. The stator flux linkage vector is esti-
mated by the stator model (24). The angular velocity of the
revolving field is then determined from the stator flux link-
age vector using the expression

    
ω τs

s
s

s= ⋅ ×1
2ˆ

ˆ
ˆ

y
y

yd
d

z

, (48)

which holds if the steady-state approximation dys/dt ≈ jwsys
is considered. Although ws is computed from an estimated
value of  in (48), its value is nevertheless obtained at good
accuracy. The reason is that the uncertainties in  are owed to
minor offset and drift components in measured currents and
voltage signals, Fig. 11. These disturbances exert little influ-
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ence on the angular velocity at which the space vectors  and
d/dt rotate. Inaccuracies of signal acquisition are further
discussed in Section 7.

The stator field angle  is obtained as the integral of the sta-
tor frequency ws. Equations (47) and (48) permit computing
the angular mechanical velocity of the rotor as

ˆ ˆω ω ω= −s r (49)

from (20). Finally, the rotor frequency is needed as a decou-
pling signal in Fig. 25. Its estimated value is defined by the
condition for stator field orientation (47). The signal flow
graph of the complete drive control system is shown in Fig.
27.

Drift and accuracy problems that may originate from the
open integration are minimized by employing a fast signal-
processor, taking samples of band-limited stator voltage sig-
nals at a frequency of 65 kHz. The bandwidth of this data

stream is subsequently condensed by a moving av-
erage filter before digital integration is performed
at a lower clock rate. The current signals are ac-
quired using selfcalibrating A/D converters, and
automated parameter initialization [19]. Smooth
operation is reported at 30 rpm at rated load torque
[18].

6.3  Accurate speed estimation based on rotor
slot harmonics

The speed estimation error can be reduced by
on-line tuning of the model parameters. The ap-
proach in [20] is based on a rotor speed signal that
is acquired with accuracy by exploiting the rotor
slot harmonic effect. Although being precise, this
signal is not suited for fast speed control owing to
its reduced dynamic bandwidth. A high dynamic
bandwidth signal is needed in addition which is
obtained from a stator flux estimator. The two sig-

nals are compared and serve for adaptive tuning of the model
parameters. The approach thus circumvents the deficiency in
dynamic bandwidth that associates with the high-accuracy
speed signal.

The rotor slots generate harmonic components in the air-
gap field that modulate the stator flux linkage at a frequency
proportional to the rotor speed, and to the number Nr of rotor
slots. Since Nr is generally not a multiple of three, the rotor
slot harmonics induce harmonic voltages in the stator phases

u u Nsl sl r s= ±( )ˆ sin ω ω τ , (50)

that appear as triplen harmonics with respect to the funda-
mental stator voltage us1. In (50), Nr = 3n   m  1, n = 1, 2, 3, ...
As all triplen harmonics form zero sequence systems, they
can be easily separated from the much larger fundamental
voltage. The zero sequence voltage is the sum of the three
phase voltages in a wye-connected stator winding

u u u uzs a b c= + +( )1
3

. (51)

When adding the phase voltages, all nontriplen compo-
nents, including the fundamental, get cancelled while
the triplen harmonics add up. Also part of uzs are the
triplen harmonics that originate from the saturation de-
pendent magnetization of the iron core. These contrib-
ute significantly to the zero sequence voltage as exem-
plified in the upper trace of the oscillogram Fig. 28. To
isolate the signal that represents the mechanical angular
velocity ω of the rotor, a bandpass filter is employed
having its center frequency adaptively tuned to the rotor
slot harmonic frequency  Nrω +ωs = 2π /τsl in (50). The
time constant τsl thus defined enters the filter transfer
function

Fig. 26.  Estimator for stator flux, field angle, speed and rotor frequen-
cy; the estimator serves to control the system Fig. 27;  N: Numerator,
D: Denominator
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which is simple to implement in software.
The signal flow graph Fig. 29 shows how the speed estima-

tion scheme operates. The adaptive bandpass filter in the up-
per portion extracts the rotor slot harmonics signal usl. The
signal is shown in the lower trace of the oscillogram Fig. 28.
The filtered signal is digitized by detecting its zero crossing
instants tz. A software counter is incremented at each zero
crossing by one count to memorize the digitized rotor posi-

tion angle J. A slot frequency signal is then obtained by dig-
ital differentiation, the same way as from an incremental en-
coder. The accurate rotor speed wsl determined by the slot
count is subsequently computed with reference to (50). This
signal is built from samples of the average speed, where the
sampling rate decreases as the speed decreases. The sampling
rate becomes very low at low speed, which accounts for a low
dynamic bandwidth. Using such signal as the feedback signal
in a closed loop speed control system would severely deterio-

rate the dynamic performance. The speed signal is
therefore better suited for parameter adaptation in a
continuous speed estimator, as shown in Fig. 29.

For this purpose, an error signal is derived from
two different rotor frequency signals. A first, accu-
rate rotor frequency signal is obtained as w r sl = ws
– wsl. It serves as a reference for the rotor frequency
estimator in the lower portion of Fig. 29. The sec-
ond signal is the estimated rotor frequency  as de-
fined by the condition for stator field orientation (46).
The difference between the two signals is the error
indicator.

Fig. 29 shows that the magnitudes of the two sig-
nals wsl and  are taken. This avoids that the sign of
the error signal D inverts in the generator mode. The
error signal D is then low-pass filtered to smoothen
the step increments in wsl. The filter time constant
is chosen as high as T1 = t1/wsR  = 0.7 s to eliminate
dynamic errors during acceleration at low speed. The
filtered signal feeds a PI-controller, the output of
which eliminates the parameter errors in a simpli-
fied rotor frequency estimator

Fig. 30.  Effect of parameter adaptation shown at different values
of operating speed; left-hand side: without parameter adaptation,
right: with adaptation
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which is an approximation of (47). Although the adaptation
signal of the PI controller depends primarily on the rotor
resistance r̂r, it corrects also other parameter errors in (47),
such as variations of the total leakage inductance sls and the
structural approximation of (47) by (53). The signal notation
r̂r is nevertheless maintained.

Fig. 30 demonstrates how the rotor resistance adaptation
scheme operates at different speed settings [20]. The oscillo-
grams are recorded at nominal load torque. Considerable speed
errors, all referred to the rated speed wsR, can be observed
without rotor resistance adaptation. When the adaptation is
activated, the speed errors reduce to less than 0.002 p.u. The
overshoot of the w* = 2 curve is a secondary effect which is
owed to the absence of a torque gain adjustment at field weak-
ening.

7.  PERFORMANCE OF THE FUNDAMENTAL  MODEL

AT VERY LOW SPEED

The important information on the field angle and the me-
chanical speed is conveyed by the induced voltage of the sta-
tor winding, independent of the respective method that is used
for sensorless control. The induced voltage ui = us – rsis is
not directly accessible by measurement. It must be estimated,
either directly from the difference of the two voltage space
vector terms us and rsis, or indirectly when an observer is
employed.

In the upper speed range above a few Hz stator frequency,
the resistive voltage rsis is small as compared with the stator
voltage us of the machine, and the estimation of ui can be
done with good accuracy. Even the temperature-dependent
variations of the stator resistance are negligible at higher speed.
The performance is exemplified by the oscillogram Fig. 31,
showing a speed reversal between ±4500 rpm that includes
field weakening. If operated at frequencies above the critical

low speed range, a sensorless ac drive performs as good as a
vector controlled drive with a shaft sensor; even passing
through zero speed in a quick transition is not a problem.

As the stator frequency reduces at lower speed, the stator
voltage reduces almost in direct proportion, while the resis-
tive voltage rsis maintains its order of magnitude. It becomes
the significant term at low speed. It is particularly the stator
resistance rs that determines the estimation accuracy of the
stator flux vector. A correct initial value of the stator resis-
tance is easily identified by conducting a dc test during ini-
tialization [20]. Considerable variations of the resistance take
place when the machine temperature changes at varying load.
These need to be tracked to maintain the system stable at low
speed.

7.1  Data acquisition errors

As the signal level of the induced voltage reduces at low
speed, data acquisition errors become significant [21]. Cur-
rent transducers convert the machine currents to voltage sig-
nals which are subsequently digitized by analog-to-digital (A/
D) converters. Parasitic dc offset components superimpose to
the analog signals appear as ac components of fundamental
frequency after their  transformation to synchronous coordi-
nates. They act as disturbances on the current control system,
thus generating a torque ripple, Fig. 32(a).

Unbalanced gains of the current acquisition channels map
a circular current trajectory into an elliptic shape. The magni-
tude of the current vector then varies at twice the fundamen-
tal frequency, producing undesired torque oscillations as
shown in Fig. 32(b).

Deficiencies like current signal offset and gain unbalance
have not been very detrimental so far. A lower speed limit for
persistent operation is anyway imposed by drift and error prob-
lems of the flux estimation schemes. Data acquisition errors
may require more attention as new solutions of the flux inte-
gration problem gradually evolve, Section 7.4.

Fig. 31.  Stator flux oriented control without speed sensor;  speed
reversal from – 4500 rpm to + 4500 rpm with field weakening
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The basic limitation is owed to unavoidable dc offset com-
ponents in the stator voltage acquisition channels. These ac-
cumulate as drift when being integrated in a flux estimator.
Limiting the flux signal to its nominal magnitude leads to
waveform distortions, Fig. 33. The field transformation angle
as the argument of the flux vector gets modulated at four times
the fundamental frequency, which introduces a ripple compo-
nent in the torque producing current iq. The resulting speed
oscillations may eventually render the system unstable as the
effect is more and more pronounced as the stator frequency
reduces.

7.2  PWM inverter model

At low speed, also the voltage distortions introduced by the
nonlinear behavior of the PWM inverter become significant.
They are caused by the forward voltage of the power devices.
The respective characteristics are shown in Fig. 34. They can

be modeled by an average threshold voltage uth, and an aver-
age differential resistance rd as marked by the dotted line in
Fig. 34. A more accurate model is used in [22]. The differen-
tial resistance appears in series with the machine winding; its
value is therefore added to the stator resistance of the ma-
chine model. Against this, the influence of the threshold volt-
age is nonlinear which requires a specific inverter model.

Fig. 35 illustrates the inverter topology over a switching
sequence of one half cycle. The three phase currents ia, ib and
ic, flow either through an active device, or a recovery diode,
depending on the switching state of the inverter. The direc-
tions of the phase currents, however, do not change in a larger
time interval of one sixth of a fundamental cycle. Also the
effect of the threshold voltages does not change as the switch-
ing states change in the process of pulsewidth modulation.
The inverter always introduces voltage components of identi-
cal magnitude uth to all three phases, while it is the directions
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ŵ
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of the respective phase currents that determine their signs.
Writing the device voltages as a voltage space vector (3) de-
fines the threshold voltage vector

  uth th a th b
2

th c= sign( ) + a sign( ) + a sign( )u i u i u i , (54)

where a = exp(j2p/3). To separate the influence of the stator
currents, (54) is expressed as

u sec ith th s= 2 ( )u ⋅ , (55)

where

sec i( ) =
1
2

sign( ) + a sign( ) + a sign( )s a b
2

ci i i( ) (56)

is the sector indicator [21], a complex nonlinear function of
is(t) of unity magnitude. The sector indicator marks the re-
spective ±30°-sector in which is is located. Fig. 36 shows the
six discrete locations that the sector indicator sec(is) can
assume in the complex plane.

The reference signal u* of the pulsewidth modulator con-
trols the stator voltages of the machine. It follows a circular
trajectory in the steady-state. Owing to the threshold voltages
of the power devices, the average value uav of the stator volt-
age vector us, taken over a switching cycle, describes trajec-
tories that result distorted and discontinuous. Fig. 37 shows
that the fundamental amplitude of uav is less than its refer-
ence value u* at motoring, and larger at regeneration. The
voltage trajectories exhibit strong sixth harmonic components
in addition. Since the threshold voltage does not vary with
stator frequency as the stator voltage does, the distortions are
more pronounced when the stator frequency, and hence also
the stator voltages, are low. The latter may even exceed the
commanded voltage in magnitude, which then makes correct
flux estimation and stable operation of the drive impossible.
Fig. 38 demonstrates how the voltage distortion caused by
the inverter introduces oscillations in the current and the speed
signals.
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the dotted lines indicate the transitions at which the signs of the
respective phase currents change

Fig. 37.  The effect of inverter nonlinearity. The trajectories uav represent the average
stator voltage (switching harmonics excluded)

0
Re 

 jIm 

*u

*u

0

 jIm 

*u

*u

uav

is

is

Re 

thu

thu

uav

uav

uav
motor generator

Fig. 38.  Current waveform distortions and speed oscillations
caused by the threshold voltage of the inverter devices; sensorless
control at 2 Hz stator frequency, bipolar power transistors used in
the inverter

w

0 0.6
t

0.2 0.4 1 s0.8

0

0.5

0

0.1

0

0.1

isα , isβ

iq

iq

w

isα

isβ



aaa

Using the definitions (55) and (56), an estimated value ûs
of the stator voltage vector is obtained from the PWM refer-
ence voltage vector u*

ˆ *u u u is th d s= − − r , (57)

where the two substracted vectors on the right represent the
inverter voltage vector. The inverter voltage vector reflects
the respective influence of the threshold voltages through
uth, and of the resistive voltage drop of the power devices
through rd is. A signal flow graph of the inverter model (57)
is shown in the left hand side of Fig. 39.

Note that uth is the threshold voltage of the power devices,
while uth is the resulting threshold voltage vector. We have
therefore from (55) the unusual relationship |uth| = 2 uth. The
reason is that, unlike in a balanced three-phase system, the
three phase components in (54) have the same magnitude,
which is unity.

7.3  Identification of the inverter model parameters

The threshold voltage uth can be identified during self-com-
missioning from the distortions of the reference voltage vec-
tor u* [21, 22]. In this process, the components ua* and ub*
of the reference voltage vector are acquired while the current
controllers inject sinusoidal currents of very low frequency
into the stator windings. In such condition, the machine im-
pedance is dominated by the stator resistance. The stator volt-
ages are then proportional to the stator currents.

Deviations from a sinewave of the reference voltages that
control the pulsewidth modulator are therefore caused by the
inverter. They are detected by substracting the fundamental
components from the reference voltages, which then yields
square wave like, stepped waveforms as shown in Fig. 40.
The fundamental components are extracted from sets of syn-
chronous samples of ua* and ub* by fast Fourier transform.

The differential resistance of the power devices, rd in (57),
establishes a linear relation between the load current and its
influence on the inverter voltage. Functionally, it adds to the
resistance rs of the stator windings and hence influences also
upon the transient stator time constant of the induction motor,
and on the design parameters of the current controllers. The
value (rs + rd) can be estimated by an on-line tuning process
described in Section 7.5.

7.4  Stator flux estimation

The inverter model (57) is used to compensate the nonlin-
ear distortions introduced by the power devices. The model
estimates the stator voltage vector us that prevails at the ma-
chine terminals, using the reference voltage vector u* of the
pulsewidth modulator as the input variable. The inverter model
thus enables a more accurate estimation of the stator flux link-
age vector. This signal flow graph is shown in the left hand
side of Fig. 39.

The right hand side of Fig. 39 shows that the stator flux
vector is obtained by pure integration [21], thus avoiding the

Fig. 39.  Signal flow graph of the inverter model and the offset compensated stator flux estimator
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aaaestimation error and bandwidth limitation associated with us-
ing a low pass filter. The method necessarily incorporates the
identification of a time-varying vector ûoff that represents the
offset voltages.

The defining equation of the stator flux estimator is

  
ˆ ˆ ˆ ˆys s s s off= − +( )∫ u i ur dτ , (58)

where is the estimated stator voltage vector (57), and

  
ˆ ˆ* ˆ
uoff 1 s s

j= −( )k ey y δ (59)

is the estimated offset voltage vector, while  is the estimated

stator field angle. The offset voltage vector in (58) is deter-

mined such that the estimated stator flux vector  rotates close

to a circular trajectory of radius ys*, which follows from (58)
and (59). The integrator drift is thus eliminated, while the
essential information on the field angle d = arg(ys) is main-
tained.

The stator field angle is computed as

    
ˆ arctanδ = ( )y ys sb a , (60)

which is symbolized by the tan–1 function block in Fig. 39.
The magnitude of the stator flux linkage vector is then ob-
tained by

    
ˆ ˆ ˆ
ys s

j= −y e δ . (61)

This value is used in (59) to determine the vector of the
actual offset voltage. The stator frequency signal is comput-
ed by

ω δ
τs = d

d

ˆ
, (62)

from which the angular mechanical velocity w is determined
with reference to (20) and (44).

7.5  Stator resistance estimation

An important measure to improve the low-speed perfor-
mance is the accurate on-line adaptation of the stator resis-
tance, which is the most relevant parameter in sensorless con-
trol. Kubota et al [23] use the observer structure Fig. 21 to
determine the component of the error vector ∆ is in the direc-
tion of the stator current vector, which is proportional to the
deviation of the model parameter  from the actual stator resis-
tance. The identifying eqation is therefore

  
ˆ ˆr ds i s= − ( )∫1

1τ τe io (63)

The identification delay of this method is reported as 1.4 s.
A faster algorithm relies on the orthogonal relationship in

steady-state between the stator flux vector and the induced
voltage [21]. The inner product of these two vectors is zero:

    
ˆ ( ) ˆ ˆ ( ) ˆ ˆy ys i s s s sq q ro ou u i= −( ) = 0 . (64)

The stator flux vector in this equation must not depend on the
stator resistance rs to facilitate the estimation of rs. An ex-
pression ŷs(q) is therefore derived from the instantaneous
reactive power q = us × is||z, which notation describes the z-
component of the vector product of the stator voltage and
current vector.

The rotor equation in terms of is and ys is obtained in syn-
chronous coordinates, wk = ws, from (4) through (7)

    
t t t tsr

s
s r sr s

sr r
s

sr
s= j j' '

d
d r r
i

i i u+ − + −



 +ω ω1 1 1y (65)

were tsr' = sls/rsr and rsr = (rs + ls/lr . rr ). Equation (65) is
now externally multiplied by the vector is, from which

    

u i
i

i i i

i

s s s
s

s r s s s

r
s s

j =

= j

× − × − ×

−



 ×

σ ω σ

ω

l
d
d

lt

t
1 y

(66)

is obtained. This operation eliminates the stator and the rotor
resistances from (65) where these parameters are contained
in tsr'. Taking the z-component of all terms in (66) and
assuming field orientation, ysd = ys and ysq = 0, we have

  

ˆ ( )ys

q d d q r s s s q
d

d
q

d
q

r

q

u i u i l i l i
di
d

i
di

d

i
i

=
−( ) − + −







+

ω σ σ τ τ

ω τ

2

(67)

The stator flux value thus defined does not depend on the
stator resistance.

To reduce the on-line computation time for the estimation
of rs, (64) is transformed to a reference frame that aligns with
the current vector. The current reference frame (xy-frame) ro-
tates in synchronism and is displaced with respect to station-
ary coordinates by the phase angle g(t) of the stator current,
as shown in Fig. 41. We have is(C) = is(S).exp(–jg) and conse-
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Fig. 41.  Vector diagram illustrating the estimation of the stator
resistance; S marks the stationary reference frame (a,b), and C
marks the current reference frame (x,y)
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quently isx = is and isy = 0. Of the superscripts, (S) refers to
stator coordinates and (C) refers to current coordinates.

The estimated value of the stator resistance is obtained as
the solution of (64) in current coordinates

  
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ ˆ ( ) sin ˆ
r

u u

i

u q

is

sx
sy

sx
sy

sx

sx s s

s
=

−
=

− −( )
y

y yω γ δ
(68)

using the geometrical relationships

  

ˆ

ˆ tan ˆy

y
sy

sx

= −( )γ δ (69)

and

u usy i= −( )ˆ cos ˆγ δ , (70)

which can be taken from the vector diagram Fig 41. We have
furthermore in a steady-state

  ̂
ˆu qi s s( )= ω y . (71)

The estimated stator resistance value  from (68) is then used
as an input signal to the stator flux estimator Fig. 39. It ad-
justs its parameter through a low pass filter. The filter time
constant Tf = wsRtf is about 100 ms.

7.6  Low speed performance achieved by improved models

The oscillogram Fig. 42 demonstrates the dynamic perfor-
mance at very low speed, exemplified by a speed reversal from
–10 rpm to +10 rpm (fs = ws/2p = ±0.33 Hz, ws = ± 0.007).
The recorded components ysa and ysb of the estimated stator
flux linkage vector exhibit sinusoidal waveforms without off-
set, drift or distortion, and smooth crawling speed is achieved.
Fig. 43 shows the response to load step changes of rated mag-
nitude while the speed is maintained constant at 5 rpm. This
corresponds to operating at a stator frequency of 0.16 Hz (ws
= 0.003) during the no-load intervals. Finally, the performance
of the stator resistance identification scheme is demonstrated
in Fig. 44. The stator resistance is increased by 25% in a step
change fashion. The disturbance causes a sudden deviation
from the correct field angle, which temporarily produces an
error in iq. The correct value of rs is identified after a short
delay, and iq readjusts to its original magnitude.

7.7  Low speed estimation by field weakening

At very low stator frequency, the induced voltage is small
and its influence on the measured terminal quantities is diffi-
cult to detect, Section 2.4.  Depenbrock [24] proposes not re-
ducing the stator frequency below a certain minimum level
ws min, a level that still permits identifying the mechanical
speed. At values below that level, the speed is controlled
through the magnetic excitation of the machine. The method
makes use the fact that the slip, or rotor frequency, increases
at field weakening. This is demonstrated by inserting (47) into
(20) and considering steady-state, d/dt = 0, from which

Fig. 42. Speed reversal at 10 rpm, fundamental frequency f1 = ωs/
2p = ±0.33 Hz (ωs = ± 0.007)
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ŷsβ

– 0.02

Fig. 43. Constant speed operation at 5 rpm (f1 = ws/2p = ±0.16 Hz,
ws = ± 0.003), with load step changes of rated magnitude applied.

0 20 s

t

4 8 12 16

1

0

–1

0

2π

ia, ib

1

0

d̂

iq

Fig. 44.  Identification of the stator resistance, demonstrated by a
25% step increase of the resistance value

0 31 2 5 s
t

4

0.05

0
iq

0.4

0
r̂s

r̂s

iq



aaa

  
ω ω ω ω τ σ

= − = −
−( )smin r smin

s q

r sd s d

l i

l iy
(72)

is obtained. The equation is used to demonstrate how con-
trolled operation at lower speed w < ws min is achieved while
operating the machine at constant stator frequency ws = ws min.
For this purpose, field weakening is introduced by reducing
id. This makes ysd  reduce after a time delay that depends on
tr' and tr, Fig. 24. The rotor frequency term on the right in
(72) then increases as the denominator decreases, and also
the numerator increases as the product ysd iq is constant at a
given load torque (9), provided that field orientation exists.

The following oscillograms illustrate the method. Fig. 45
shows controlled operation at locked rotor while the torque is
continuously varied from positive to negative values. Since
w = 0, ws = wr follows. The stator frequency reduces as Tel
reduces until ws min is reached and field weaken-
ing begins. As the machine torque becomes nega-
tive, the stator frequency is abruptly changed
from ws min to –ws min which makes the rotor fre-
quency also change its sign. The torque magnitude
subsequently increases until the machine excita-
tion has reached its nominal value. Thereafter, the
torque is again controlled through the stator fre-
quency.

When operating at very low speed at light or zero
load, the level of field weakening must be very
small. Establishing the required slip to maintain
the stator frequency high enough for speed esti-
mation may then become difficult. Fig. 46 shows
that a small torque component, although not com-
manded, is intentionally introduced to increase the
slip. This, and also the time delay required for
changing the machine flux is tolerable for certain
applications, e. g. in railway traction drives [22].

8.  SENSORLESS CONTROL THROUGH SIGNAL INJECTION

Signal injection methods exploit machine properties that
are not reproduced by the fundamental machine model de-
scribed in Section 2.2. The injected signal excites the machine
at a much higher frequency than that of the fundamental field.
The resulting high-frequency currents generate flux linkages
that close through the leakage paths in the stator and the ro-
tor, leaving the mutual flux linkage with the fundamental wave
almost unaffected. The high-frequency effects can be there-
fore considered superimposed to, and independent of, the fun-
damental behavior of the machine. High-frequency signal in-
jection is used to detect anisotropic properties of the machine.

8.1 Anisotropies of an induction machine

A magnetic anisotropy can be caused by saturation of the
leakage paths through the fundamental field. The spatial ori-

Fig. 45.  Locked rotor test to demonstrate low speed torque control by field weakening; stator and rotor frequency
are controlled to remain outside the region |ws|, |wr| < ws min to enable stator flux identification
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aaaentation of the anisotropy is then correlated with the field an-
gle d, which quantity can be identified by processing the re-
sponse of the machine to the injected signal. Other anisotro-
pic structures are the discrete rotor bars in a cage rotor. Dif-
ferent from that, a rotor may be custom designed so as to ex-
hibit periodic variations within a fundamental pole pitch of
local magnetic or electrical characteristics. Examples are vari-
ations of the widths of the rotor slot openings [25], of the
depths at which the rotor bars are buried below the rotor sur-
face, or of the resistance of the outer conductors in a double
cage, or deep bar rotor [26]. Detecting such anisotropy serves
to identify the rotor position angle, the changes of which are
used to obtain the shaft speed.

Anisotropic conditions justify the definition of a coordi-
nate system that aligns with a particular anisotropy. Consid-
ering the case of saturation induced anisotropy, the maximum
flux density occurs in the d-axis of a field oriented coordinate
system. The fundamental field saturates the stator and rotor
iron in the d-region, there producing higher magnetic resis-
tivity of the local leakage paths. The stator and rotor currents
in the conductors around the saturated d-region excite leak-
age fluxes having a dominating q-component. The total leak-
age inductance component lsq then reduces, while the com-
ponent lsd of the unsaturated q-region remains unaffected.
Such conditions lead to lsq < lsd in a saturated machine.

A more general definition of an anisotropy-related refer-
ence frame locates the d-axis at that location of the airgap
circumference that exhibits the maximum high-frequency time
constant. This associates the d-axis with the maximum total
leakage inductance, or with the minimum resistivity of con-
ductors on the rotor surface.

There is generally more than one anisotropy present in an
induction motor. The existing anisotropies have different spa-
tial orientations such as the actual angular position of the fun-
damental field, the position of the rotor bars within a rotor bar
pitch, and, if applicable, the angular position within a funda-
mental pole pair of a custom designed rotor. The response to
an injected high-frequency signal necessarily reflects all
anisotropies, field-dependent and position-dependent. While
intending to extract information on one particular anisotropy,
the other anisotropies act as disturbances.

8.2 Signal injection

The injected signals may be periodic, creating either a high-
frequency revolving field, or an alternating field in a specific,
predetermined spatial direction. Such signals can be referred
to as carriers, being periodic at the carrier frequency with re-
spect to space, or time. The carrier signals, mostly created by
additional components of the stator voltages, get modulated
by the actual orientations in space of the machine anisotro-
pies. The carrier frequency components are subsequently ex-
tracted from the machine current waveforms. They are de-
modulated and processed to retrieve the desired information.

Instead of injecting a periodic carrier, the high-frequency

content of the switched waveforms in a PWM controlled drive
system can be exploited for the same purpose. The switching
of the inverter produces a perpetual excitation of the high-
frequency leakage fields. Their distribution in space is gov-
erned by the anisotropies of the machine. Measuring and pro-
cessing of adequate voltage or current signals permits identi-
fying their spatial orientations.

8.3 Injection of a revolving carrier

A polyphase carrier rotating at frequency wc can be gener-
ated by the voltage space vector

uc
 

c
j c= ⋅u e tω , (73)

which is the controlling voltage of the pulsewidth modulator
as shown in Fig. 47. The modulation by the machine anisotro-
pies reflects in a space vector ic of carrier frequency wc,
appearing as a component of the measured stator current
vector is. It is separated by a bandpass filter BPF from the
fundamental current is1 of lower frequency, and from the
switching harmonics of higher frequencies.

A single anisotropy having one spatial cycle per pole pitch
is typical for saturation effects, or for a custom engineered
machine. Such anisotropy is characterized by a total leakage
inductance tensor
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=
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(74)

being defined with reference to a coordinate system (X) that
rotates at wx in synchronism with the anisotropy under con-
sideration (xy-coordinates). The x-axis coincides with the
most saturated region.

To compute the carrier space vector ic, (73) is multiplied
by exp(–jwx), which transforms the equation to xy-coordinates.
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Fig. 47:  Measured spectral current components from an unexcited
machine having two anisotropies, operated in a speed range w = 0
... wmax = 2p .10 Hz  (measurement data taken from [25])
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The high-frequency components are described by the differ-
ential equation
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j X cc x( ) ( )= ⋅ =−( )u e
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dt

tω ω
s (75)

which is solved for ic. Considering ωc >> ωx leads to the
solution
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which is subsequently transformed back to the stationary
reference frame.
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The result shows the existence of a current space vector ip,
rotating at carrier frequency ωc in a positive direction, and a
space vector in that rotates at the angular velocity – ωc + 2ωx,
i.e. in a negative direction. The latter component must be
processed to extract the angular orientation ωxt of the partic-
ular anisotropy.

Rotating at the frequency of the carrier signal, the trajecto-
ry (77) of the current vector ic follows in fact an elliptic path.
The axis ratio of the ellipse is lsq/lsd, a close to unity value
that ranges between 0.9 and 0.96 [25, 27]. It is therefore diffi-
cult to identify the angular inclination of the ellipse and thus
determine the angular orientation of the anisotropy. A direct
extraction is problematic, as the characterizing component in
is very small, being superimposed by the larger positive se-
quence current vector ip, and contaminated by the effect of
other anisotropies and disturbances. Finally, all these signals
are buried under the much larger fundamental current is1, and
under the switching harmonics.

To give an example, the current amplitudes ip/i1 R and in/is
R from [27], referred to the rated fundamental current is R are
shown in Fig. 47. The values are measured from an induction
machine at zero fundamental excitation, i1 = 0, such as to
avoid saturation generating an additional anisotropy. Howev-
er, the rotor has an engineered anisotropy of lsq/lsd = 0.91,
[25]. There are three categories of negative sequence currents:

• The current i2 at frequency –wc + 2w is caused by the engi-
neered rotor anisotropy. Its harmonic spectrum spreads be-
tween –wc and –wc + 2wmax when the machine speed w
varies between 0 and wmax, where wmax = 2p .10 Hz is an
assumed maximum value in Fig. 48. This frequency com-
ponent carries the speed information; its magnitude i2 =
0.022 i2R is extremely low. current i2 at frequency –wc +
2w is caused by the engineered rotor anisotropy. Its har-
monic spectrum spreads between –wc and –wc + 2wmax
when the machine speed w varies between 0 and wmax,
where wmax = 2p .10 Hz is an assumed maximum value in
Fig. 48. This frequency component carries the speed infor-
mation; its magnitude i2 = 0.022 is R is extremely low.

• The current islot at frequency –wc + N/p w is caused by the
discrete rotor slots; it extends over the frequency range –wc
to –wc + N/p wmax, where N is the number of rotor slots
and p is the number of pole pairs.

• The current iu at frequency –wc originates from winding
asymmetries, and from gain unbalances in the stator cur-
rent acquisition circuits. Note that this disturbance is in very
close spectral proximity to the speed related component i2;
both converge to the same frequency at w = 0. Also, iu > i2
in this example.

If this machine was fully fluxed and loaded, another nega-
tive sequence current isat would appear at frequency –wc +
2ws. Also this component has an extremely low spectral dis-
tance 2(ws – w) from the component i2, where ws – w is the
slip frequency.

The distribution of the significant negative sequence spec-
tra in Fig. 48 indicates that it is almost impossible to separate
these signals by filtering [28].

8.3.1  Speed and position estimation based on anisotropies
Degner and Lorenz [25] use a dynamic model of the me-

chanical subsystem of the drive motor to enable spectral sep-
aration. The modelled position angle ϑ̂  is synchronized with
the revolving machine anisotropy in a closed phase-locked
loop (PLL). The machine anisotropy is custom engineered in
this case. Additional models of other dominant anisotropies
serve to generate compensation signals which eliminate those
spectral components that are difficult to separate by filtering,
see Section 8.3. Fig. 48 shows the basic structure. An esti-
mated field angle  is used to perform current control in field
coordinates. A revolving carrier of 250 Hz is injected through
the voltage space vector uc as defined by (73). The carrier
frequency components in the measured machine currents are

Fig. 48.  Current control system and signal injection for the identi-
fication of anisotropies through an injected revolving carrier
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attenuated by a low pass filter LPF in the feedback path of the
current controller. A bandpass filter BPF extracts the carrier
generated current vector ic.

A signal flow graph of the speed and rotor position estima-
tor is shown in Fig. 49. The carrier generated space vector ic
is transformed to a +wc-reference frame in which ip appears
as a complex constant. Its contribution is nullified through
the feedback action of an integrator. The remaining signal in
contains all negative sequence components. It is transformed
to the –wc-reference frame. This transformation shifts the fre-
quency origin in Fig. 47 to  –wc; the negative sequence com-
ponents then appear as low valued positive sequence signals.

The unbalance disturbance at frequency zero is compensat-
ed by an estimated vector î u = iu exp(jĵu), and the distur-
bance generated by rotor slotting by an estimated vector î slot.
What remains is the current vector

ˆ ˆ ˆ ˆ
i2 2

j 2= +( )i e t2ω ϕ . (78)

representing the rotor anisotropy as a second harmonic com-
ponent. This signal carries the important information, since
2ω t = 2ϑ is twice the rotor position angle; ĵ2 is a phase
displacement introduced by signal filtering.

The mechanical system model in the upper right of Fig. 49
receives an acceleration torque signal formed as the difference
between the electromagnetic torque Tel and the load torque
T̂L, both being represented by their estimated values. The feed-
forward signal T̂L serves to improve the estimation dynam-
ics. It is obtained by a separate load model. The estimated
angular velocity  of the rotor is the integral of the acceleration
torque, where τm is the normalized mechanical time constant.
Integrating  yields the estimated rotor position angle ϑ̂ .

The estimated angle ϑ̂  controls two anisotropy models. The
upper model in Fig. 49 forms part of the PLL. It computes the
phase angle component 2ω̂ t = 2ϑ̂  of the negative sequence

current vector î 2, while its mag-
nitude î 2 and phase displace-
ment ĵ 2 are introduced as esti-
mated constant parameters. By
virtue of the computed phase
angle error

ε = × = ∠( )i i i i i i2 2 2 2 2 2
ˆ ˆ sin ( ,ˆ )

z
,

(79)

the PID controller forces the
resulting space vector î 2 to
align with its reference vector
i2, thus establishing ϑ̂  ≈ ϑ as
desired. This way, the aniso-
tropy model serves to impress
on the estimated current vector
î 2 the same rotor position de-
pendent variations that the real
machine, through its inherent

anisotropy, forces on the negative sequence current compo-
nent i 2.

The rotor slot related current vector î slot is estimated by
the anisotropy model in the lower portion of Fig. 49 in a sim-
ilar fashion. The vector î slot is used to compensate the undes-
ired disturbance islot that forms part of in.

The saturation induced anisotropy is not modelled in this
approach, which limits its application to unsaturated machines.
Another problem is the nonlinearity of the PWM inverter
which causes distortions of the machine currents. These gen-
erate additional negative sequence current components that
tend to fail the operation of the position estimator [29]. A
general difficulty of all revolving carrier injection methods is
the extreme low signal-to-noise ratio which is less than 10–3

in the example of Fig. 48. This calls for special efforts to en-

Fig. 49.  Speed and rotor position estimator using a PLL to identify
the response to an injected revolving carrier
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sure that the low-level signals are sufficiently reproduced when
doing the analog-to-digital conversion of the measured cur-
rents [30]. The same paper [30] proposes a particular stator
current observer to alleviate the loss of control bandwith
caused by the lowpass filter in Fig. 47.

Since the spectral separation between the different nega-
tive sequence current components is hard to accomplish,
Teske and Asher rely on the rotor slot anisotropy for position
estimation [28]. This requires compensating the saturation ef-
fects. A saturation model of the machine is used to generate
excitation and load dependent compensation signals, and that
way suppress the saturation induced disturbances. The pro-
posed structure is shown in Fig. 50. A bandpass filter BPF
separates the carrier frequency components ic from the mea-
sured stator current vector is. Subsequent transformation
to –wc-coordinates and lowpass filtering yields the space vec-
tor in that comprises all negative sequence components: î slot,
î sat and iu.

An estimation of the disturbance vector î sat is needed to
attenuate the saturation induced effects The vector î sat is
modelled by the complex functions f2(is1) and f4(is1), where
f2(is1) generates the second spatial harmonic component, and
f4(is1) the fourth harmonic, both referred to the fundamental
field. Modelling higher harmonic components may be re-
quired, depending on the properties of a particular machine.
The input signal of the complex functions is the fundamental
stator current is1

(F) in field coordinates. Its id-component char-
acterizes the mutual flux, and the iq-component the load. Both
components control the saturation of the machine. The total
disturbance vector î sat is synthesized as the sum of its har-
monic components, these being adjusted to their respective
phase displacements according to the actual angular position
d̂  of the revolving fundamental field in the machine.

The respective functions f2(is1) and f4(is1) for a particular
machine are determined in an off-line identification process
[28].

The nonlinearity of the PWM inverter, commonly known
as dead-time effect, produces distortions of the pulsewidth
modulation whenever one of the phase currents changes its
sign. With the high-frequency carrier signal superimposed to
the modulator input, the stator currents are forced to multiple
zero crossings when the fundamental phase currents are close
to zero. The effect causes severe current distortions that well
established methods for dead-time compensation cannot han-

dle.
Being time-discrete events, the current distortions are dif-

ficult to compensate in a frequency domain method. A fairly
complex off-line identification method was proposed by Te-
ske and Asher [29] which generates sets of time-variable pro-
files over one electrical revolution, one profile for every op-
erating point in terms of load and excitation level. The pro-
files model the nonlinearity effect caused by the high-frequen-
cy carrier signals of a particular inverter. Fig. 51 shows the d-
and the q-component of such profile as an example, plotted as
functions of the fundamental phase angle. During operation
of the drive, the appropriate profile is retrieved to reconstruct
that particular vector î inv that fits the actual operating point
[31].

If the compensation of saturation effects, inverter nonlin-
earity and signal unbalance, represented by the respective vec-
tors î sat, î inv and î u, is performed with sufficient accuracy,
the remaining signal

ˆ ˆ
ˆ ˆ

islot slot

j slot
=

+



i e

N
p

ϑ ϕ
. (80)

is not much distorted. This would permit replacing the com-
plex and parameter dependent PLL structure in Fig. 49 by the
simple calculation of the phase angle of î slot from (80)

ˆ arctan (ˆ ) ˆ–ϑ ϕ= −( )p
N

1 islot slot . (81)

The displacement angle ĵ slot in this equation accounts for
the phase shift of the filters used for frequency separation. It
is a function of the motor speed 28].

Current publications on revolving carrier methods show that
numerous side effects require the signal processing structures
to get more and more involved, while the dependence on pa-
rameters or on specific off-line commissioning procedures
persists.

Fig. 51.  Components in a given operating point of the compensa-
tion vector for inverter nonlinearities iˆinv, displayed over one
fundamental period
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Fig. 52.  Vector diagram showing the injected ac carrier ic in
different reference frames; is1: fundamental current, F: field ori-
ented frame, S: stationary frame
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8.4 Injection of an alternating carrier

Revolving carriers scan the whole circumferential profile
of anisotropies that exist in a machine. The objective is to
determine the characteristics of a particular anisotropy with a
view to subsequently identifying its spatial orientation. An
alternative class of methods relies on injecting not a rotating,
but alternating carrier in a specific, though time-variable spa-
tial direction. The direction is selected in an educated guess
to achieve maximum sensitivity in locating the targeted anisot-
ropy. Use is made of already existing knowledge, which is
updated by acquiring only an incremental error per sampling
period.

8.4.1 Balance of quadrature impedances
The approach of Ha and Sul [32] aims at identifying a field

angle while the machine operates at low or zero speed. The
principle is explained with reference to Fig. 52. This diagram

shows the field oriented coordinate system F, which appears
displaced by the field angle d as seen from the stationary ref-
erence frame S. A high-frequency ac carrier signal of ampli-
tude uc is added to the control input of the pulsewidth modu-
lator, written in field coordinates

us
 F

d c c qj* ( ) cos= +( ) +u u t uω (82)

The added signal excites the machine in the direction of the
estimated d-axis. This direction may have an angular dis-
placement d̂  – d from the true d-axis, the location of which is
approximately known from the identification in a previous
cycle.

The injected voltage (82) adds an ac component ic to the
regular stator currents of the machine, represented in Fig. 52
by the space vector is1 of the fundamental component. Owing
to the anisotropic machine impedance, the high-frequency ac
current ic develops at a spatial displacement g with respect to
the true field axis of the machine.

When the machine is operated in saturated conditions, its
impedance Zc at carrier frequency wc is a function of the cir-
cumferential angle a in field coordinates, as schematically
shown in Fig. 53. The impedance has a maximum value Zd in
the d-axis, and a minimum value Zq in the q-axis. Note that Zc
depends on the total leakage inductance, which makes the
estimated field angle d̂ represent neither the stator field an-
gle, nor the rotor field angle. The fact carries importance when
designing the field oriented control.

The identification of the d-axis is based the assumption of
a symmetric characteristic Zc(+a) = Zc(–a). An orthogonal
xy-coordinate system is introduced in Fig. 52, having its real
axis displaced by –π/4 with respect to the estimated d-axis.
Its displacement with the true d-axis is then –(π/4 – g).

The identification procedure is illustrated in the signal flow
graph Fig. 54, showing the current control system and the
generation of the ac carrier in its upper portion. The shaded
frame in the lower portion highlights the field angle estima-
tor. Here, the measured stator current is is bandpass-filtered
to isolate the ac carrier current ic. The current ic and also the
excitation signal uc cos wct are transformed to xy-coordinates,
and then converted to complex vectors that have the respec-
tive rms amplitudes and conserve the phase angles. The com-
plex high-frequency impedance

Z
u

i
c
 X

x y
c
 X

c
 X

j( )
( )

( )
= + =Z Z (83)

is formed which is a function of the transformation angle d̂  –
π/4; seen from the field oriented coordinate system in Fig.
52, the transformation angle is –(π/4 – g). Fig. 53 shows that
the real and imaginary components in (83), Zx and Zy, re-
spectively, would equal if accurate field alignment, g = 0,
existed. A nonzero error angle g makes Zx increase, and Zy
decrease. Hence an error signal

–p pα0

Zc

4
p

4
p
Zx

Zy
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Zq

gg

Fig. 53.  Impedance at carrier frequency vs. the circumferential
angle a in field coordinates;  g: error angle

Fig. 54.  Signal flow graph of a field angle estimation scheme
based on impedance measurement in quadrature axes
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ε γ γ= −Z Zy x( ) ( ) (84)

can be constructed which adjusts the estimated field angle d̂
to an improved value using a PI controller. Fig. 54 shows
that this angle is used for coordinate transformation. In a
condition of accurate field alignment, d̂  → d, from which g
→ 0 follows.

Measured characteristics from a 3.8-kW induction motor
show that the difference between the impedance values Zd
and Zq (54) is small when the machine is fully saturated [32].
The reduced error sensitivity then requires a high amplitude
of the injected signal. The curves in [32] also show that the
symmetry of Zc(a) may not be guaranteed for every motor.
An asymmetric characteristic would lead to estimation errors.

The oscillogram Fig. 55 demonstrates that closed loop
torque control at zero stator frequency and 150% rated load is
achieved, although the dynamic performance is not optimal
[32]. Also noticeable is the very high amplitude of the high-
frequency current when the load is applied. It is therefore pre-
ferred restricting the use of an injected carrier only to low
speed values, as demonstrated in a practical application [33].

8.4.2 Evaluation of elliptic current trajectories
The carrier injection methods described so far suffer from

certain drawbacks. We have the poor signal-to-noise ratio and
the parameter dependence of the revolving carrier methods,
and the low sensitivity of the quadrature impedance method.

Linke [34] proposes the estimation of anisotropy character-
istics based on an interpretation of the elliptic current trajec-
tories that are generated by an ac carrier signal. The ac carrier
voltage of this method is injected at an estimated displace-
ment angle d̂  with the respect to the true field axis, where d̂

deviates from the true field angle d by an error angle gu.

δ̂ δ γ= + u (85)

The carrier voltage in stationary coordinates is

uc
 S

c c
j( ) ˆ

cos= ⋅u t eω δ (86)

A transformation to field coordinates is done by multiplying
(86) by exp(–jd), which yields the differential equation

  
u l

i
c

F
c c

j F c( ) ( ˆ ) ( )cos= ⋅ =−u t e
d
dt

ω δ δ
s . (87)

The true field angle d in this equation is not known. The
excitation at carrier frequency does not interfere with the be-
havior of the machine at fundamental frequency. Hence, the
resulting carrier frequency current ic is only determined by
the anisotropic leakage inductance (74), as indicated in the
right-hand side of (87).

The solution of (87) is

  
i c

F c

c
c

d q
j

1( ) sin cos ( ˆ ) sin ( ˆ )= ⋅ − + −






u
t

l lω ω δ δ δ δ1

s s
(88)

A multiplication by exp(jd) transforms this equation back to
stationary coordinates.

To gain an insight in the physical nature of this current, the
harmonic functions are expressed by equivalent complex space
vectors. Referring to (85), the result can be written as

i i ic
S

E E
( ) = ++ − , (89a)

where

Fig. 55.  Torque controlled operation showing the dynamic perfor-
mance and demonstrating persistent operation at zero stator fre-
quency at 150% of rated torque [33]
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describes the elliptic trajectory of a current vector that ro-
tates in a positive direction, and
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(89c)

represents the elliptic trajectory of a negatively rotating cur-
rent vector. Fig. 56 shows that both elliptic trajectories are
congruent. They are composed of current vectors that them-
selves rotate on circular trajectories, and in opposite direc-
tions. As indicated by (89b), the elliptic trajectory iE

+ that
develops in a positive direction decomposes into a positive
sequence current vector ip

+ and a negative sequence current
vector in

+. Similar conditions hold for the trajectory iE
–,

building up in a negative direction and being composed,
according to (89c), of a positive sequence current vector ip

–

and a negative sequence current vector in
–.

As the true field angle d may not be exactly known, the ac
carrier voltage is injected at a spatial displacement gu from
the true field axis. The direction of the carrier voltage d + gu
coincides with the F'-axis in Fig. 56. Owing to the anisotropy
of the machine, the ac carrier current ic deviates spatially from
the injected voltage. It develops in the direction d + gi, where

|gi| ≥ |gu|. This means that the elliptic trajectories of the cur-
rent space vectors iE+ and iE– take their spatial orientation
from the existing anisotropy, independent of the direction in
which the carrier signal is injected.

The vector diagram Fig. 56 demonstrates that the geomet-
ric additions over time of all space vector components in (89)
define the locus of a straight line, inclined at the angle gi with
respect to the true field axis F. This circumstance permits iden-
tifying the misalignment of the estimated reference frame F'.

An inspection of the circular space vector components in
Fig. 56 shows that the vectors ip

+ and  ip
–, while rotating in a

positive direction, maintain the constant angular displacement
2gu. This is indicated for t = 0 in the upper left of Fig. 56. The
error angle gu can be therefore extracted by rotating the vec-
tor ic into a – (wct + d̂ )-reference frame, in which the sum of
the positive rotating vectors appears as a complex dc value.

  

i i ip p p

c

c d q
d q d q

j )j
4

u

= +

=
−

+( ) − −( )[ ]

+ −

−u
l l

l l l l eω
γ

s s
s s s s

2
(90)

The remaining components of ic get transformed to a fre-
quency 2(wc + ws) and can be easily suppressed by a lowpass
filter.

The signal flow graph Fig. 57 illustrates the field angle es-
timation scheme. The dc-vector ip defined by (90) has as the
imaginary part –sin 2gu, which is proportional to the error
angle gu = d̂  – d for small error values. This signal is sampled
at about 1 kHz. It feeds an I-controller to create the estimated
field angle d̂  in a closed loop. In doing so, reference is made
to the injected carrier signal to build the transformation
term wct + d̂ .

As the acquired signal is a dc value in principle, the sam-
pling frequency can be chosen independently from the carrier
frequency. This ensures good and dynamically fast alignment
with the field axis without the need of choosing a high carrier
frequency. Also the dynamics of the speed and torque control
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Fig. 57.  Signal flow graph of a field angle estimation scheme
based on the evaluation of elliptic current trajectories
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system is not impaired as the carrier signal does not appear in
the torque building q-current component. Therefore, the mea-
sured q-current need not be lowpass filtered, as is required
when a rotating carrier is used, Fig. 48. According to Fig. 57,
such filter is only provided for the component id in the excita-
tion axis.

The signal-to-noise ratio of the acquired signal is higher
when an alternating carrier is used. This permits operating at
low carrier level. A 100-mA carrier current was found suffi-
cient for field angle estimation in a 1-kW drive system. Fig.
58 displays the waveforms of the true and the estimated field
angles measured at 0.004 wsR, or 6 rpm, and the estimation
error that originates from other anisotropies.

8.3 High-frequency excitation by PWM switching

The switching of a PWM inverter subjects the machine to
repetitive transient excitation. The resulting changes of the
machine currents depend, in addition to the applied voltages
and the back emf, also on machine anisotropies. Appropriate
signal acquisition and processing permits extracting a char-
acteristic component of the anisotropy in that particular phase
axis in which a switching has occurred. To reconstruct the
complete spatial orientation of an anisotropy requires there-
fore the evaluation of a minimum of two switching events in
different phase axes. The switchings must be executed within
a very short time interval, such that the angular orientation of
the anisotropy remains almost unchanged.

Other than continuous carrier injection methods, which are
frequency domain methods, PWM excitation constitutes a
sequence of non-periodic time-discrete events, and hence re-
quires time-domain methods for signal processing. The ab-
sence of spectral filters enables a faster dynamic response.
Another basic difference is that the high-frequency process
cannot be seen as being independent from the fundamental
frequency behavior of the machine. This requires using the
complete machine model for the analysis.

8.3.1 The Inform method
Schroedl [35] calls his approach the INFORM method (indi-

rect flux detection by on-line reactance measurement). The
analysis starts from the stator voltage equation (10a) in stator
coordinates, ws = 0,

  
u i l

i
s

S
s

S s r

r
r rj( ) ( )= + + −( )r

d
d

k
σ σ τ τ ωτ 1 y (91)

where the tensor ls
(S) models the saturation induced anisot-

ropy. The rate of change dis/dt of the stator current vector is
measured as a difference Dis over a short time interval Dt,
and with a constant switching state vector applied as us. The
influence on Dis of the resistive voltage rsis and the back emf
is eliminated by taking two consecutive measurements while
applying two switching state vectors in opposite directions,
e. g. u1 and u4 = – u1 in Fig. 59, each for a time interval Dt.
It can be assumed that the fundamental components of is and
ys do not change between two measurements.

Inserting the two switching state vectors u1 and u4 sepa-
rately in (91) and taking the difference of the two resulting
equations yields
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Of interest in this equation are the components of the cur-
rent changes in the spatial direction of the transient excita-
tion, which is the a-axis when u1 and u4 are used, see Fig. 59.
Therefore, after multiplying (92) by the inverse
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of the leakage inductance tensor and taking the a-component
of the result, we obtain
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where the Dia are the respective changes of the a-phase
current, and us is the magnitude of the switching state vec-
tors.

The b-axis anisotropy component is obtained by acquiring
the changes Dib following transient excitations by u3 and u6
= – u3, Fig. 59. The derivation is done in a similar manner as
with (94a), but the resulting equation is rotated into the exci-
tation axis, multiplying it by exp(–2p/3) to yield

Fig. 59.  The active switching state vectors u1 to u6, representing
the stator voltages at pulsewidth modulation; a, b and c denote the
phase axes; the signs of the phase potentials are indicated in
brackets
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The c-axis anisotropy is detected using u5 and u2 = – u5 as
excitations, and exp(–4p/3) as the rotation term
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The phase current changes expressed by the equations (94)
are now added, aligning them with the real axis by the respec-
tive weights 1, a2 and a.
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The result is a field position vector

  
f = −( ) +( )1

2
2

l l u es sd q s
j∆τ δ πˆ

(96)

which can be proven by solving (92) for the respective cur-
rent changes and inserting these into (96).

The vector f(Dis) can be computed on-line from the mea-
sured current changes. Its argument is the double field angle,

phase shifted by a constant displacement p. Hence

ˆ argδ π= ( ) −f
2 (97)

represents the estimated field angle. The controlled machine
should have closed rotor slots. The slot covers shield the
rotor bars from the high-frequency leakage fields and thus
reduce, but not completely eliminate, the disturbance caused
by the slotting anisotropy.

8.3.2 Instantaneous rotor position measurement
While the rotor slot anisotropy acts as a disturbance to the

field angle identification methods, this anisotropy can be ex-
ploited to identify the rotor position angle. Magnetic satura-
tion then takes the role of the disturbance. The method devel-
oped by Jiang [36] relies on the instantaneous measurement
of the total leakage inductances per stator phase.

Fig. 60 introduces the physical background, displaying sche-
matically an induction motor having only two rotor bars. It is
assumed in Fig. 60(a) that only stator phase a is energized,
creating a flux density distribution Ba(a) as shown in Fig.
60(b). The graph below shows the location of the rotor bars at
a phase displacement angle J, which is the unknown rotor
position angle. It is obvious that the flux linkage yr of this
rotor winding  reduces as J increases, rising again for J > p,
Fig. 60(d). The mutual inductance ms1 = yr/is between the
stator and the rotor windings changes in direct proportion.
The total leakage inductance of stator phase a is then comput-
ed as

l l
m
l lσa s

s

s 1
1 –=





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1
2

(98)

where ls and l1 are the inductances of the stator winding and
of the single rotor winding, respectively. Fig. 60(e) shows
how the total leakage inductance lsa varies as a function of
the rotor position angle J.

According to (98), the total leakage inductance depends on
the square of the mutual inductance, which is true also if more
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Fig. 60: Distributions in a 2-slot machine with only phase a ener-
gized; (a) energized stator windings, (b) flux density distribution,
(c) location of the two rotor bars, (d) mutual inductance between
stator and rotor winding, (e) total leakage inductance of stator
winding phase a

Fig. 61: Phase components pa, pb and pc of the position
vector measured at 0.1 Hz stator frequency
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aaathan two rotor bars exist [27]. Therefore, a rotor having N
rotor bars shows a similar characteristic as in Fig. 60(e), but
with N maximum values. The total leakage inductances of the
other phases, lsb and lsc, change in a similar manner. They
depend on the respective positions of the rotor winding as
seen from the winding axes b and c. Since N is generally not a
multiple of three, the curves lsa(J), lsb(J) and lsc(J) are phase
shifted with respect to each other by 2p/3. Fig. 61 shows the
respective signals, measured at 0.1 Hz stator frequency and
interpreted as the position signals pa, pb, and pc versus time.
In a favorable manner, the finite widths of the rotor bars and
the rotor slots tend to blurr the sharp edges that are seen in
Fig. 60(e), which is a curve simulated with infinite thin con-
ductor diameters.

The method to measure the position signals is explained
with reference to a condition where the switching state u1 has
been turned on. The three motor terminals are then forced by
the dc link voltage ud to the respective potentials ua = ud/2
and ub = uc = – ud/2, or (+ – –) as symbolically indicated in
Fig. 59. The following approximative stator voltage equations
can be established:

u l
di
d

u l
di
d

ud a
a

ia b
b

ib= +σ στ τ– – (99)

u l
di
d

u l
di
d

ud a
a

ia c
c

ic= +σ στ τ– – (100)

which are solved considering the constraint ia + ib + ic = 0,
and assuming that the rotor induced voltages form a zero
sequence system,

u u uia ib ic+ + = 0 (101)

These conditions permit summing the three phase voltages to
form an unbalance voltage

u u u uσ = + +a b c (102)

where ua = lsa dia/dt + uia, while the phase voltages ub and

uc are expressed likewise. The result is

u

u l l l l l l

u l l l l l l

u l l l l l l

u l l l l l l
σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ1

2

2

2

2( ) =

+( )
+ −( ) +( ) +

+ −( ) +( ) +

+ −( ) +

d a b a c b c

ia a b a c b c

ib b c b a a c

ic c a c b a

–

–

–

– bb

a b b c a c

( )























+ +l l l l l lσ σ σ σ σ σ
(103)

where the superscript (1) refers to the actual switching state
vector u1.

The induced voltages ui are small at lower speed which
permits neglecting the last three terms in the numerator of
(103), especially since (101) further reduces their influence.
What remains is interpreted as the a-component of a rotor
position vector p(JN)

p u
l l l l l l

l l l l la N d
a b a c b c

a b a b c
( )

( )
ϑ =

+
+ +

σ σ σ σ σ σ

σ σ σ σ σ

– 2
(104)

as it depends only on the phase values of the leakage induc-
tances, if ud is constant. Note that  pa(JN) = us(1) is obtained
by instantaneous sampling of the phase voltages (102) as a
speed independent value.

The angle JN indicates the angular position of the rotor
within one rotor slot pitch. Hence a full mechanical revolu-
tion occurs when JN/N increments by 2p, and the time inter-
val displayed in Fig. 61 corresponds to an angular rotor dis-
placement of five rotor slots.

The same expression (104) can be also derived without ap-
proximation, taking the difference us

(1) – us
(4) = 2pa(JN) of

two sampled voltages from opposite switching state vectors
[27]. This eliminates the disturbing influence of the induced
voltages ui at higher speed.

Taking additional measurements of us while, for instance,
the switching state vector u3 is turned on permits calculating
the b-component pb. The c-component pc results from a sam-
ple with u5 being active. Alternatively, a sample at u2 yields

t

40 V

Re {p(JN)}

jIm {p(JN)}

20

Fig. 62:  Measured trajectory p(δ N) of the complex rotor position
vector recorded over 1/Nth of a full mechanical revolution of the
motor shaft; N: number of rotor bars
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Fig. 63.  From top: estimated field angle d̂ , acquired signal p'a,
saturation component psat, extracted position signal pa
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the value –pc since u2 aligns with the negative c-axis, Fig.
59. Three different voltage samples are used to compute the
complex rotor position vector Fig. 59. Three different voltage
samples are used to compute the complex rotor position vec-
tor

p( ) ( ) + a ( ) + a ( )

j

N a N b N
2

c Nϑ ϑ ϑ ϑ= ( )
= +

2
3

p p p

p pα β

, (105)

an oscillogram of which is shown in Fig. 62. A full revolu-
tion of p(JN) indicates an angular rotor displacement of one
rotor slot pitch. This emphasizes the high spatial resolution
that this method provides. Also noteworthy is the high level
of the acquired signals, which is around 35 V.

To establish a sensorless speed control system, the field
angle is derived from the rotor position J = JN/N by adding
the slip angle obtained from the condition (29) for rotor field
orientation

  
δ̂ ϑ

τ τ= + ∫p
N

l i
dN m

r

q

rdy , (106)

where p is the number of pole pairs. The state variables under
the integral in (106) are estimated by means of the rotor
model (28).

The field angle (106) can further serve to eliminate the sat-
uration induced disturbance of the position signals. It intro-
duces low-frequency components that superimpose on the
measured signal p'a in Fig. 63 if the machine is saturated. The
saturation components are in synchronism with the varying
field angle d. An adaptive spatial lowpass filter, controlled by
the estimated field angle d̂ , extracts the saturation component
psat from the distorted signal p'a, permitting to calculate an
undisturbed position signal pa = p'a – psat which is shown in
the lowest trace of Fig. 63.

Rotor position acquisition is possible at sampling rates of
several kHz [27]. The spatial resolution and the signal-to-noise
ratio are very high. This permits implementing precise incre-
mental positioning systems for high dynamic performance.
However, the incremental position is lost at higher speed when
the frequency of the position signal becomes higher than twice
the sampling frequency.

The oscillogram Fig. 64 shows a positioning cycle that re-
quires maximum dynamics at 120% rated torque. The high
magnetic saturation during the acceleration intervals tempo-
rarily reduces the amplitude of the position signals; the posi-
tion accuracy remains unaffected, as the relevant information
is contained in the phase angles.
Fig. 65 demonstrates persistent speed controlled operation at
zero stator frequency, interspersed with high dynamic chang-
es. The drive operates initially at no-load at about 60 rpm,
which is the slip speed that corresponds to 120% rated torque.

Fig. 64.  Sensorless position control showing a repetitive motor
shaft displacement of ±90º at 120% rated transient torque; traces
from top: motor shaft angle ϑ, rotor position signals pα and pβ.
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Fig. 65.  Persistent operation at zero stator frequency with 120%
rated torque applied. Positioning transients initiate and terminate
the steady-state intervals; traces from top: mechanical speed w,
normalized torque-building current iq, estimated field angle d̂
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aaaSuch torque level is then applied in a negative direction,
which forces the machine to operate at zero stator frequency
in order to maintain the speed at its commanded level. Short
dynamic overshoots occur when the load is applied, and
subsequently released. The lowest trace shows that the rotor
field remains in a fixed position while the load is applied.

9.  SUMMARY  AND PERFORMANCE COMPARISON

A large variety of sensorless controlled ac drive schemes
are used in industrial applications. Open loop control systems
maintain the stator voltage-to-frequency ratio at a predeter-
mined level to establish the desired machine flux. They are
particularly robust at very low and very high speed, but satis-
fy only low or moderate dynamic requirements. Small load
dependent speed deviations can be compensated incorporat-
ing a speed or rotor frequency estimator.

High-performance vector control schemes require a flux
vector estimator to identify the spatial location of the mag-
netic field. Field oriented control stabilizes the tendency of
induction motors to oscillate at transients, which enables fast
control of torque and speed. The robustness of a sensorless ac
drive can be improved by adequate control structures and by
parameter identification techniques. Depending on the respec-
tive method, sensorless control can be achieved over a base
speed range of 1:100 to 1:150 at very good dynamic perfor-
mance. Stable and persistent operation at zero stator frequen-
cy can be established even when using the fundamental mod-
el of the machine, provided that all drive system components
are accurately modelled and their parameters correctly adapt-
ed to the corresponding system values. Accurate speed esti-
mation in this region, however, is difficult since the funda-
mental model becomes unobservable. A fast speed transition
through zero stator frequency can be achieved without em-
ploying sophisticated algorithms.

The steady-state speed accuracy depends on the accurate
adjustment of the rotor time constant in the estimation model.
Very high speed accuracy can be achieved by exploiting the
rotor slot effect for parameter adaptation. Since cost is an
important issue, algorithms that can be implemented in stan-
dard microcontroller hardware are preferred for industrial ap-
plications.

The graph Fig. 66 gives a comparison of different methods
for speed sensorless control in terms of the torque rise time tr
and the low-speed limit of stable operation. The data are tak-
en from the cited references; the results should be considered
approximate, since the respective test and evaluation condi-
tions may differ. Only methods that use the fundamental ma-
chine model are compared in Fig. 65.

Improved low speed performance can be achieved by ex-
ploiting the anisotropic properties of induction motors. The
spatial orientations of such anisotropies are related to the field
angle, and to the mechanical rotor position. They can be iden-
tified either by injecting high-frequency carrier signals into

the stator windings and process the response of the machine,
or by making use of the transients that a PWM inverter gener-
ates. These methods have recently emerged. They bear great
promise for the development of universally applicable sen-
sorless ac motor drives.

10.  NOMENCLATURE

All variables are normalized unless stated otherwise.

1, a, a2 unity vector rotators
a, b, c stator phase axes
A current density, mmf
D denominator
f frequency
f function of complex space harmonics
f field position vector
G observer tensor
id direct axis current signal
iq quadrature axis current signal
Iph nonnormalized rms phase current
is stator current vector
iu unbalance current vector
iz disturbance current vector
i2 saturation current vector
ks coupling factor of the stator winding
kr coupling factor of the rotor winding
lm mutual inductance
ms1 mutual inductance
lr rotor inductance
ls stator inductance
N number of rotor bars
N numerator
p number of pole pairs
q instantaneous reactive power
rs stator resistance
rr rotor resistance
rs' effective transient resistance
s Laplace variable
sec(is) sector indicator vector
Te electromagnetic torque
TL load torque
ud dc link voltage
ui rotor induced voltage
usl rotor slot harmonics voltage
uss zero sequence voltage
us leakage dependent zero sequence voltage
Uph nonnormalized rms phase voltage
uir vector of the rotor induced voltage
us stator voltage vector
us zero sequence voltage
uz disturbance voltage vector
u1 ... u6 switching state vectors
Z high-frequency impedance
1, 2 marks sequence in a vector product



aaaGreek symbols

α circumferential position angle
δ field angle
ε error angle
γ stator current angle
γ field alignment error
γu error angle of carrier voltage
γi error angle of carrier current
ϑ rotor position angle
ϕ phase displacement angle
s total leakage factor
σ ls total leakage inductance
t normalized time
τm mechanical time constant
τ r rotor time constant
τs stator time constant
ω r rotor slip frequency
ω s stator fundamental excitation frequency
ω k frequency of k-coordinates
ω angular mechanical velocity of

the equivalent 2-pole machine
yr rotor flux linkage vector
ys stator flux linkage vector
yσ leakage flux linkage vector

Subscripts

a, b components in stator coordinates
a, b, c phases, winding axes
av average value
c carrier
d, q refer to synchronous coordinates
k referred to k-coordinates
max maximum value
min minimum value
n negative sequence
p positive sequence
ph per phase value
r rotor
R rated value
s stator
sat saturation
sl, slot refers to slotting effect
z z-component of a vector product
x, y xy-coordinates
s refers to leakage fluxes
1 fundamental quantity

Superscipts
(S) in stator coordinates
(F) in field coordinates
(C) in current coordinates
(X) in xy-coordinates
S, R originates from stator (rotor) model
* reference value
– average value

ˆ estimated value
ˆ peak amplitude
~ Laplace transform
' marks transient time constants
' preceeds a nonnormalized variable
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12.  APPENDIX: NORMALIZATION

The base variables are the nominal (subscript R) per-phase
values of stator voltage and current:

at star connection U Uph R R= 1
3

, I Iph R R= ,

at delta connectionU Uph R R= , I Iph R R= 1
3

The normalization values are the respective peak amplitudes.
They are given for

voltage 2 Uph R flux linkage
2 ⋅Uph R

sRω

current 2 Iph R power 3U Iph R ph R

impedance
U

I
ph R

ph R
torque 3p

U Iph R ph R

sRω

inductance
U

I
ph R

sR ph Rω ⋅ mechanical speed
ωsR

p

time
1

ωsR

Note that time is normalized as t = wsRt

Example: Faradays Law

  
'

'
u

d
dt

= y
(A1)

The string quote „ ' ” before the variable denotes a non-
normalized value.

The equation is normalized:
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to yield
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