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Abstract— This paper presents a sensorless torque estimation
algorithm for multidegree-of-freedom flexible systems. The pro-
posed algorithm makes it possible to estimate externally applied
torques due to flexible system’s interaction with the environment
without taking any measurement from the system. The algorithm
is based on modifying the disturbance observer in order to
decouple the reflected torque waves out of the total disturbance
on the actuator. Then Reflected torque waves are used along with
the actuator’s current and velocity to estimate flexible system
parameters, dynamics and the external torques or disturbances.
Several experimental results are included in order to confirm the
validity of the proposed torque estimation algorithm.

I. INTRODUCTION

Torque and force control have been used in wide vari-

ety of applications such as machining tasks, assembly and

grasping. And typically these applications requires using a

force sensor to provide the controller with a force feed back

signal. However, force sensor has certain disadvantages and

prevent realization of precise force control. Especially, sensor

noise that causes degradation of control performance [1].

Therefore, sensorless force estimation plays an important role

in the success of the force control process. Interaction force

between the end effector and flexible objects is estimated

using visual feedback instead of using force sensor [2]. By

making a relationship between the end effector force and the

deformation of the flexible object that can be visually detected.

A comparison between the sensorless force control systems

and force control system is performed in [1]. Where the

reaction force is estimated by assuming that the internal force

and other terms of the disturbance are identified precisely.

Force is estimated and force error observer is designed in

[3] using the velocity information without using the actual

force sensor signal. Therefore, the associated strain gage

problems are avoided, such as the narrow band width due to

the natural frequency of the sensor. In this paper, actuator is

used to estimate the externally applied forces or torques on a

flexible multidegree-of-freedom system. Where the actuator’s

current and velocity are measured and disturbance is estimated.

Surprisingly enough that disturbance which can be estimated

from the actuator side contains two types of information. The

first coupled information is related to the actuator’s parameters

such as the self varied-inertia torque and the actuator’s torque

ripple. The other coupled set of information is related to the

Fig. 1. Lumped flexible inertial system

plant, such as the reflected systems load and the externally ap-

plied torques or forces. Therefore, in this work the disturbance

observer’s structure is modified in order to decouple these

information out of the estimated total disturbance. In addition,

the reflected load from the plant is proved to contain plant’s

parameters, dynamics and externally applied disturbances.

A sensorless force estimation algorithm is then introduced

based on two actuator measurements (current and velocity),

considering the reflected mechanical load that can be estimated

by the actuator’s parameters as a natural feedback from the

plant [4].

This paper is organized as follows. In section 2, reflected

mechanical waves are investigated and proved to contain

enough information about the plant. Such as plant’s param-

eters, dynamics and disturbances. In addition, disturbance

observer is modified in order to decouple the reflected me-

chanical waves out of the total disturbance. In section 3, the

sensorless force estimation algorithm is introduced. Section

4 includes the experimental results. Finally, remarks and

conclusion are included in section 5.

II. MECHANICAL WAVES ESTIMATION

A. Mechanical Waves Analysis

For a Multidegree-of-freedom flexible system with n

lumped masses connected to an actuator as shown in Fig.1.

the equations of motion are [5]

Jmθ̈m + B(θ̇m − θ̇1) + k(θm − θ1) = τm

... (1)

Jnθ̈n − B(θ̇n−1 − θ̇n) − k(θn−1 − θn) = τextn

where, Jm and Ji are the actuator inertia and the inertia of the

ith lumped mass. k and B are the uniform system’s stiffness

and damping coefficients. θm and θi are the actuator angular
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position and the ith lumped mass’s position. τm and τexti
are

actuator’s torque and the external torque applied on the ith

lumped mass, respectively. Putting the equations of motion

together and solving for B(θ̇m − θ̇1) + k(θm − θ1) we obtain

τref �

n∑

i=1

Jiθ̈i −

n∑

i=1

τexti
(2)

� B(θ̇m − θ̇1) + k(θm − θ1)

where τref is the reflected torque wave from the dynamical

system on the actuator. The previous equation shows that the

reflected torque wave τref carries enough information about

the system’s dynamics, parameters and external disturbances

due to the system’s interaction with the environment.

B. Disturbance estimation

Equation.1 represents the mechanical dynamics of the ac-

tuator without considering its parameters variation, that are

given as follows [6]- [7]

Jm = Jmo + △Jm (3)

kt = kto + △kt

Where kt is the actuator’s torque constant, Jmo and kto are

the nominal actuator’s inertia and torque constant while △Jm

and △kt are the variation between the actual and nominal

actuator’s inertia and torque constant. Rewriting eq.1

(Jmo + △Jm)θ̈m = (kto + △kt)im − τref (4)

re-arranging the terms

Jmoθ̈m = ktoim − τref −△Jmθ̈m + △ktim (5)

Where, △Jmθ̈m and △ktim are the actuator’s varied self-

inertia torque and actuator’s torque ripple. Therefore, the

disturbance on the actuator side is

d = −τref −△Jmθ̈m + △ktim︸ ︷︷ ︸ (6)

which indicates that the disturbance on the actuator side is

composed of two components. The last two terms of the right

hand side of eq.6 represents the first disturbance component

that is related to the actuator parameters’s variations. While

the second disturbance component τref is due to the attached

system with this actuator. Therefore, disturbance d has to be

estimated then reflected torque wave has to be decoupled out

of it. From eq.5 the disturbance d can be computed as follows

d = Jmo

d2θm

dt2
− ktoim (7)

or estimated through a low pass with a corner frequency gdist

d̂ =
gdist

s + gdist

[Jmoθ̈m − imkto] (8)

Therefore, the estimation error is

d̃ = d̂ − d (9)

introducing eq.7 and eq.8 into eq.9

d̃ = [Jmoθ̈m − imkto]
gdist

s + gdist

− Jmθ̈m + imkt (10)

multiplying eq.10 by (s + gdist) and making the following

definition

ξ � gdist△Jθ̈m − sJmθ̈m + gktim + simkt

we obtain the following differential equation

d

dt
d̃ + gdistd̃ = ξ (11)

which describes the estimation error dynamics and has the

following solution

d̃(t) = e−gdistt

∫ t

o

egdistτ ξ(τ) dτ + ce−gdistt (12)

which indicates that the estimation error will exponentially

decay, and the low pass corner frequency can be considered

as the observer gain. In other words, changing the observer

gain controls the speed of the estimation convergence.

t �−→ ∞ =⇒ d̃ �−→ 0

d̃ �−→ 0 =⇒ d̂ �−→ d

The direct differentiation of the velocity signal can be avoided

by using the following observer configuration to keep the noise

amplification level as low as possible [8]- [9].

d̂ =
gdist

s + gdist

[Jmoθ̇m + ktoim] − gdistJmoθ̇m (13)

C. Reflected Torque Wave Decoupling

Disturbance estimate obtained using eq.6, can be written as

follows

τ̂ref = −d̂ −△Jmθ̈m + △ktim︸ ︷︷ ︸ (14)

which indicates that in order to decouple the reflected wave out

of the estimated disturbance, the self varied-inertia torque and

actuator’s torque ripple have to be determined first. Keeping in

mind that variation between the actual and nominal actuator’s

parameters are inherent properties of the actuator. In other

words, they are independent to the plant connected with the

actuator. Therefore, they can be estimated from the unloaded

actuator and in this case the reflected torque wave is eliminated

from equations of motion eq.1.

(Jmo + △Jm)θ̈m + Bθ̇m = (kto + △kt)im (15)

Jmoθ̈m = ktoim + dpar (16)

where dpar is the Actuator’s parameters variation disturbance

dpar = △ktim −△Jmθ̈m − Bθ̇m (17)

that can be estimated using the actuator’s current and velocity

through a low pass filter as follows

d̂par =
gdist

s + gdist

[Jmoθ̇m + imkto] − gdistJmoθ̇m (18)

eq.17 becomes

d̂par = −B θ̇m + △kto im −△Jm θ̈m (19)

where, d̂par is the estimated parameters’s disturbance vector

data point, while θ̇m, θ̈m and im are data points vectors of
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actuator’s velocity, acceleration and current. Putting eq.19 in
the following matrix form

[
△kt −B −△Jm

]
[

im
θ̇m

θ̈m

]

3×m

=
[

d̂par

]
(20)

where m is the number of data points of each vector.

H �

[
im

θ̇m

θ̈m

]

3×m

Matrix H can be obtained from the actuator side by measuring it’s
current, velocity and acceleration. Indeed, obtaining the acceleration
signal will result in high amplification of the noise level. Therefore,
an appropriate differentiation techniques have to be used in this level
[10].

Equation 20 represents an over-determined system, and it’s solu-
tion has to minimize the norm square of errors.

[
△̂kt −B̂ −△̂Jm

]
=

[
HT H

]−1

HT
[

d̂par

]

or [
△̂kt −B̂ −△̂Jm

]
= H†

[
d̂par

]
(21)

where H† is the pseudo-inverse of H . △̂kt and −△̂Jm are the
estimated actuator’s torque ripple and varied self-inertia torque,
respectively.

Rewriting eq.14 and replacing the actual parameter variations with
the estimated ones, we get the estimated reflected torque wave as
follows

τ̂ref = △̂kt im − △̂Jm θ̈m − d̂ (22)

The direct differentiation of the velocity signal can be avoided by
using the following observer’s structure

τ̂ref = G(s)[im△̂kt − d̂ + gref△̂Jm θ̇m] − gref△̂Jmθ̇m (23)

G(s) =
gref

s + gref

where gref is reflected torque observer’s constant gain. The block
diagram implementation of the reflected torque observer is shown in
Fig.2.

III. SENSORLESS TORQUE ESTIMATION

As the reflected torque wave is estimated, eq.2 can be used to
determine the external torques if the inertial mass’s accelerations are
available that requires taking measurement from each lumped mass of
the flexible system. Instead, we propose an algorithm to estimate the
flexible motion of each lumped mass of the flexible system. Then the
estimated system’s dynamics is used in eq.2 to estimate the external
torques.

A. Uniform System’s Parameters Estimation

Since the system’s stiffness and damping are inherent properties
of the system. In other words, they are independent of the external
applied torques. We assume that flexible system is free from external
torques. Therefore, eq.2 can be written as

τ̂ref =

n∑

i=1

Jiθ̈i = B(θ̇m − θ̇1) + k(θm − θ1) (24)

This assumption is just made to determine the system parameters
through an off-line experiment. Then, the estimated parameters along
with the estimated dynamics will be used in order to estimate the
external torque. However, determination of the system’s uniform
parameters k and B from eq.24 requires measuring the first mass’s
position. Surprisingly enough that if the flexible modes of the system

Fig. 2. Reflected torque observer’s structure

are not excited, a single generalized-coordinate is enough to describe
the motion of the flexible system that is no longer flexible instead of
n generalized-coordinate. Therefore, we can write

θ1(t) = θ2(t) = θ3(t) = . . . = θn(t) = θ(t) (25)

this equality is valid if and only if the control input is filtered such
that it contains zero energy at the system’s resonance frequencies.
Or Fourier synthesized to guarantee that its frequency content at the
system’s resonances is zero. Moreover, shaping the input by this way
makes it possible to estimate the rigid motion of the flexible system
by the following equation

θ̂(t) =
1∑n

i=1
Ji

∫ t

o

∫ t

o

τ̂ref dτdτ + c1t + c2 (26)

where θ̂(t) is the rigid motion position estimate. And eq.26 is only
valid through a narrow region of the flexible system’s frequency
range. Therefore, within this frequency range the parameters esti-
mation process has to be performed.

Rewriting eq.24 and using θ̂(t) instead of θ1(t)

τ̂ref = B(θ̇m −
̂̇θ) + k(θm − θ̂) (27)

and defining the velocity and position differences as follows

ξ � (θm − θ̂)

η � (θ̇m −
̂̇θ)

where ξ and η are vectors of data points, Similarly, τ̂ ref is the
estimated reflected torque data point vector, rewriting eq.27 in the
following matrix form

[
ξ η

]
n×2

[
k
B

]

2×1

=
[

τ̂ref

]
n×1

(28)

G �
[

ξ η
]

solving eq.28 for the system parameters vector we obtain
[

k̂

B̂

]
=

[
GT G

]−1

GT
[

τ̂ref

]
(29)
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[
k̂

B̂

]
= G†

[
τ̂ref

]
(30)

Where G† is the pseudo inverse of G, k̂ and B̂ are the estimates
of the system’s uniform stiffness and damping coefficients. The
previous procedure is considered as an off-line parameters estimation
experiment that is performed in a certain system’s frequency range
to estimate flexible system’s uniform stiffness and damping.

B. Flexible Motion Estimation

Equation 26 is valid in narrow region of the system’s frequency
range. In addition, it estimates the motion of the flexible system
when its rigidly behaving. Therefore, eq.26 is not enough to estimate
the flexible system’s motion, where the amplitude ratios between the
masses are no longer unity and masses are no longer in phase.

Recalling eq.2 and replacing the actual parameters with the esti-
mated ones

τ̂ref = B̂(θ̇m − θ̇1) + k̂(θm − θ1) (31)

re-arranging the terms

B̂θ̇1 + k̂θ1 = B̂θ̇o + k̂θo − τ̂ref (32)

solving the first order differential equation for θ1(t) that has to be

denoted as θ̂1(t) since it depends on observed variable τ̂ref and

estimated parameters such as k̂ and B̂.

θ̂1(t) = e
− B̂

k̂

t
∫ t

o

βe
B̂

k̂

τ
dτ + e

− B̂

k̂

t
c1 (33)

where
β �

α

B̂

α � B̂ θ̇o + k̂ θo − τ̂ref

θ̂1(t) is the position estimate of the first mass and eq.33 is valid
through the entire system’s frequency range regardless to the fre-
quency content of the forcing function.

Recalling the first flexible system’s equation of motion and replac-
ing the first mass position with its estimate we obtain

B̂ θ̇2 + k̂ θ2 = J1
̂̈θ1− B̂(θ̇o−

̂̇θ1)− k̂(θo−θ1)+ B̂ ̂̇θ1 + k̂ θ̂1 (34)

solving for θ̂2(t) we obtain

θ̂2(t) = e
− k̂

B̂

t
∫ t

o

ζe
k̂

B̂

τ
dτ + e

− B̂

k̂

t
c2 (35)

where
ζ �

γ

B̂

γ � J1
̂̈θ1 − B̂(θ̇o −

̂̇θ1) − k̂(θo − θ1) + B̂ ̂̇θ1 + k̂ θ̂1

In general, the position estimate of the ith lumped mass is

θ̂i(t) = e
− k̂

B̂

t
∫ t

o

Ω e
k̂

B̂

τ
dτ + e

− B̂

k̂

t
ci (36)

where

Ω �
Ψ

B̂

Ψ � g(Ji−1, θ̂i−1,
̂̇θi−1,

̂̈θi−1, k̂, B̂)

eq.36 can be considered as a set of position observers that are recur-
sively estimating positions of system’s lumped masses. Surprisingly
enough that if a proper differentiation tool is used, the velocity and
the accelerations of each mass can be obtained without taking any
single measurement from the flexible system’s side.

C. External Torque Estimation

Since the flexible system’s dynamics can be observed and the
uniform parameters can be estimated, eq.2 can be used in order
to estimate the external torques or disturbance due to the system’s
interaction with the environment.

τ̂ext =

n∑

i=1

Ji
̂̈θi − τ̂ref (37)

Where τ̂ext is the estimate of the external applied forces on

Fig. 3. External applied torque estimation

the plant. The sensorless torque estimation process is illustrated
in Fig.3. Indeed, the word ’Sensorless’ is not precise, since one
must sense or measure some variable to obtain some information
as a basis of estimating the unknown variables. In this context
the word ’sensorless’ refers to the flexible plant that is kept free
from any measurement and only two measurement are required from
the actuators side as shown in Fig.3. Where actuator’s current and
velocity are measured and used to estimate the total disturbance,
then the reflected torque wave is decoupled out of this disturbance
and used as an input for a chain of flexible motion observers that
provide eq.37 with the necessary entries to estimate the external
torque. The previous procedure requires performing a couple of off-
line experiments based on the same actuators parameters current and
velocity. The first experiment is performed to estimate the parameters
variation disturbance in order to decouple the reflected torque wave,
while the second experiment is performed in order to estimate the
uniform system’s parameters.

IV. EXPERIMENTAL RESULTS

The experimental setup consists of a multidegree-of-freedom iner-
tial flexible system attached to an actuator that is used as a platform
for measurements and estimations. Optical encoders are attached to
each mass of the system in order to verify the performance of the
positions observers. Table.I summarizes the parameters used in the
following experiments
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TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value

J1 5152.9 gcm2 J3 6192.7 gcm2

J2 5152.9 gcm2 f1 1 rad/sec
f2 2 rad/sec f3 3 rad/sec
f4 4 rad/sec kto 40.6 mNm/A

kb 235 rpm/v Jmo 209 gcm2

gdist 100 rad/sec glpf 100 rad/sec

A. Rigid Body Motion Estimation Experiment

This experiment is performed at the system’s low frequency range
that is achieved by filtering the forcing function to avoid exciting the
system’s flexible modes. Fig.4 shows the response of a 3 Dof flexible
system, where all the amplitude ratios are unity and the masses are
in phase. The results shown in Fig.4 indicates the validity of eq.26
in this frequency range. Where the estimated rigid body position is
following the actual position of the rigid system. The frequency of
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Fig. 4. Rigid body motion estimation

the forcing function is increased gradually in order to determine the
frequency region at which eq.26 is valid. It turns out that eq.26 is
valid below 3 rad/sec. Therefore, parameters estimation experiment
has to be performed in this frequency range for this particular system
as its based on eq.26.

B. Parameters Estimation Experiment

Equation 30 is used to estimate the flexible system’s stiffness
and damping. Therefore, estimate of the reflected torque wave is
computed along with the data matrix G, which depends on the
actuator’s and rigid system’s position. Table.II shows the experimental
system’s parameters obtained by Eq.30. In order to obatain more
reliable results the experiment was repeated l times and the obtained

TABLE II
PARAMETERS ESTIMATION RESULTS

Par 1st Exp 2nd 3rd 4th 5th

k̂ KN/m 1.579 1.533 1.645 1.511 1.562

B̂ Nsec/m 0.088 0.087 0.088 0.089 0.089
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Fig. 5. Parameters estimation experiment

average values are

k̂avg =

∑l

i=1
ki

n
=

30.9306

20
= 1.54653 kN/m (38)

B̂avg =

∑l

i=1
Bi

n
=

1.6866

20
= 0.08433 Nsec/m (39)

The difference between these parameters and the actual ones that are
known before hand is less than 5 percent, that can be acceptable for
certain applications. Fig.5 shows both the original reflected wave and
the reconstructed one using the estimated parameters using Eq.27.

C. Flexible Motion Estimation Experiment
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Fig. 6. Flexible Oscillation of a 3DOF Dynamical System

Using the recursive flexible motion observers eq.36, flexible mo-
tion can be estimated regardless to the frequency content of the
forcing function. Fig.6 shows the response of the 3 Dof flexible
system to an arbitrary forcing function that forces the system to
flexibly oscillate. The position estimates of each lumped mass of
the system is shown in Fig.7 and compared with the actual optical
encoder measurement. The results show the validity of the proposed
algorithm to estimate the motion of the multidegree-of-freedom
flexible system.

D. Torque Estimation Experiment

Estimating the external torque applied on the flexible system using
eq.37 requires estimating the flexible system’s dynamics and the esti-
mate of the reflected torque wave1. Experimentally a sinusoidal torque
disturbance is added to the flexible system and simply measured and
compared with the estimated one. The frequency of the externally
applied sinusoidal torque was varied between 1-5 rad/sec. Fig.8-a

1Experimentally reflected torque wave is assumed to be equal to the
disturbance estimated from the actuator, that cannot be generalized since the
parameters variation disturbance can effect the results
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Fig. 7. Flexible body motion estimation experimental results
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Fig. 8. External torque estimation

shows the estimated and actual torque of 2 rad/sec frequency, while
Fig.8-c shows the same result when the external torque’s frequency
is 4 rad/sec.

V. CONCLUSION

This paper introduces an algorithm for estimating the externally
applied disturbance due to flexible system’s interaction with the
environment. The proposed algorithm is treating the disturbances
and system’s flexibility differently. Disturbance is not only used as
a step toward the accomplishment of robust motion control system
but treated as coupled signal that contains information about sys-

tem’s parameters, dynamics and external forces/torques. In addition,
flexibility is treated as an efficient tool by shaping the control input
to obtain certain behavior of the Multidegree-of-freedom system. In
other words, making it possible to minimize number of generalized-
coordinates describing flexible system’s motion, that in turn makes
it possible to determine system parameters easier as too many
unknowns are dropped.

The reflected mechanical waves are decoupled out of the total
disturbance and proved to contain enough information about the
dynamical system. Then, system is rigidly excited with a pre-filtered
control input and rigid motion is estimated. Moreover, rigid system’s
position is used along with reflected torque wave estimate to estimate
the uniform system’s stiffness and damping with less than 5 percent
error when compared with the actual parameters that are known
before hand. Then, the estimated parameters are used along with the
reflected mechanical waves and actuator parameters to design a chain
of flexible motion observers that are recursively estimating flexible
motion of each lumped mass of the system. Proper differentiation
of the position estimates makes all the system’s dynamics available.
Eventually, the estimated dynamics along with the reflected torque
waves are used to estimate the externally applied torque. Experimen-
tal results show the validity of the algorithm that can be used in order
to accomplish a sensorless force control assignments.
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