
Sensornet Checkpointing: Enabling

Repeatability in Testbeds and Realism in

Simulations

Fredrik Österlind, Adam Dunkels, Thiemo Voigt,
Nicolas Tsiftes, Joakim Eriksson, Niclas Finne

{fros,adam,thiemo,nvt,joakime,nfi}@sics.se

Swedish Institute of Computer Science

Abstract. When developing sensor network applications, the shift from
simulation to testbed causes application failures, resulting in additional
time-consuming iterations between simulation and testbed. We propose
transferring sensor network checkpoints between simulation and testbed
to reduce the gap between simulation and testbed. Sensornet check-
pointing combines the best of both simulation and testbeds: the non-
intrusiveness and repeatability of simulation, and the realism of testbeds.

1 Introduction

Simulation has proven invaluable during development and testing of wireless sen-
sor network applications. Simulation provides in-depth execution details, a rapid
prototyping environment, nonintrusive debugging, and repeatability. Before de-
ploying an application, however, testing in simulation is not enough. The reason
for this, as argued by numerous researchers, is over-simplified simulation models,
such as the simulated radio environment. To increase realism, testbeds are em-
ployed as an inter-mediate step between simulation and deployment. Testbeds
allow applications to be run on real sensor node hardware, and in realistic sur-
roundings. Migrating an application from simulation to testbed is, however, ex-
pensive [8, 21, 26]. The application often behaves differently when in testbed
than in simulation. This causes additional time-consuming iterations between
simulation and testbed.

To decrease the gap between simulation and testbed, hybrid simulation has
been proposed [12, 15, 23, 24]. Hybrid simulation contains both simulated and
testbed sensor nodes. Although hybrid simulation is feasible for scaling up net-
works – to see how real nodes behave and interact in large networks – it does
not benefit from many of the advantages of traditional simulation. Testbed nodes
do not offer nonintrusive execution details. Tests are not repeatable due to the
uncontrollable testbed environment: the realism, one of the main advantages of
hybrid simulation. Finally, test execution speed is fixed to real-time; it is not
possible to increase the test execution speed as when with only simulated nodes.

We propose a drastically different approach for simplifying migration from
simulation to testbed. In our approach every node exists both in testbed and

2 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

simulation. We checkpoint and transfer network state between the two domains.
The entire network is at any given time, however, executing only in either sim-
ulation or testbed.

Our approach benefits from advantages of both simulation and testbeds: non-
intrusive execution details, repeatability, and realism. By transferring network
state to simulation, we can benefit from the inherent properties of simulation
to non-intrusively extract network details. We can deterministically repeat exe-
cution in simulation, or repeatedly roll back a single network state to testbed.
Finally, we benefit from the realism of real hardware when the network is exe-
cuted in testbed.

To highlight benefits of moving network state between simulation and testbed,
consider the following example. A batch-and-send data collection application is
executing in a testbed, and is periodically checkpointed by the testbed software.
One of the network checkpoints is imported into simulation, and so the simula-
tor obtains a realistic network state. While in simulation, network details can be
non-intrusively extracted and altered. Extracting details this way is comparable
to having a hardware debugging interface, such as JTAG, to every node in the
testbed: the full state is available without explicit software support on the nodes.
In contrast to with hardware debugging interfaces, however, network execution
may be continued in simulation.

Simulation provides good debugging and visualization tools, but may not ac-
curately measure environment-sensitive parameters such as multi-hop through-
put. Hence, when a collector node is about to send its batched data, the net-
work state is moved back to testbed for accurately measuring the bulk transfer
throughput on real hardware. Note that this checkpoint can be imported into
testbed multiple times, repeating the same scenario, resulting in several through-
put measurements.

The rest of this paper is structured as follows. After introducing our check-
pointing approach and its application areas in Section 2, we implement it in
Section 3. The approach is evaluated in Section 4. Finally, we review related
work in Section 5, and conclude the paper in Section 6.

2 Sensornet Checkpointing

Sensornet checkpointing is mechanism for extracting network state from both
real and simulated networks. A network checkpoint consists of the set of all
sensor node states. Extracted node states can be stored local to each node for
offline processing, such as in external flash. When network execution is finished,
node states are extracted from external flash to be analyzed. Node state can
also be transferred online to outside the network via radio or serial port. A
network rollback, the opposite of checkpointing, restores a previously extracted
state to the network. Both checkpointing and rolling back network state can
be performed at any time, and is synchronous: states from all network nodes
are extracted and restored at the same time. During checkpoint and rollback

Sensornet Checkpointing 3

0

rollback

t

checkpoint

network execution stopped

unfreeze networkfreeze network
t t0

Fig. 1. Checkpointing freezes all nodes in the network at a given point in time. The
state of all network nodes can be either stored on the individual nodes for offline
processing, or directly downloaded to an external server.

operations, the network is frozen, so the operations are nonintrusive to regular
network execution. Figure 1 demonstrates network checkpointing.

Although sensornet checkpointing is a general mechanism, in this paper we
focus only on online checkpointing via wired connections. Freezing and unfreez-
ing networks is implemented by serial port commands that stop respectively
start node execution. Individual node states are transferred only when the en-
tire network is frozen. Checkpoints could be transferred over radio links for use
in deployed networks without wired connections. In this paper we only consider
transferring network state between testbeds and simulation.

Node state can be analyzed to extract detailed execution details, such as
internal log messages, past radio events, or energy consumption estimates. A
node state can also be altered before rolling back the network state. By altering
a node state, the node can be reconfigured or injected with faults.

Checkpointing is performed on both simulated and real networks, and a net-
work checkpoint can be rolled back to either simulation or testbed. Hence, by
checkpointing in one domain and rolling back to another, we transfer the net-
work state between the domains, for example from testbed to simulation. Since
checkpointing is performed non-intrusively (all nodes are frozen), we benefit from
advantages associated with both simulation and testbed. For example, we can
use powerful visualization and debugging tools available only in simulation on a
network state extracted from testbed.

Network checkpointing can be integrated into testbed software. The software
periodically checkpoints the network, and stores the state to a database. The
checkpointing period is application specific, and may range from seconds to
hours. By rolling back the same network state several times, testbed runs can be
repeated. This is useful for rapidly evaluating interesting phases during a network
lifetime. For example, this approach can be used to measure how many radio
packets are required to re-establish all network routes after a node malfunction,
or the time to transfer bulk data through a network.

4 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

When migrating an application from simulation to testbed, checkpointing
can be used to study and compare results of the different application phases.
In a data collection network, the first application phase is to setup sink routes
on all collector nodes. Later application phases include collectors sending sink-
oriented data, and repairing broken links. By executing only the setup phase in
both simulation and testbed, and compare the two resulting network states, a
developer can make sure that this phase works as expected in testbed. We see
several sensor network applications that benefit from sensornet checkpointing:
visualization, repeating testbed experiments, protocol tuning, fault injection,
simulation model validation, and debugging.

Testbed visualization Checkpoints contain application execution details of all
nodes in the network. By rolling back a testbed checkpoint to simulation, infor-
mation such as node-specific routing tables, memory usage, and radio connec-
tions can be visualized using regular simulation tools. The traditional approach
for testbed visualization is to instrument sensor network applications to out-
put relevant execution details, for example by printing the current node energy
consumption on the serial port. This may have a significant impact on the ap-
plication, for example by affecting event ordering. The application impact of
visualization via sensornet checkpointing is lower since the network is frozen
when the execution details are extracted.

Repeated testbed experiments Testbed software can be customized to checkpoint
the network when it is about to enter a pre-determined interesting phase. By
rolling back the network state, interesting phases can be repeated in testbed,
enabling targeted evaluations. Advantages of using checkpointing for evaluations
are less test output variance, and faster test iterations. We get less variance in
test results since the same network setup is used repeatedly. The test iterations
are shorter because the network repeats only the evaluated execution phase.

Automated protocol tuning Repeated testbed experiments can be extended by
modifying parameters between each test run. In simulation, parameters can be
modified using regular simulation tools. Techniques for automatically tuning pa-
rameters, such as reinforcement learning, are often used in simulation only due
to the many iterations needed. With checkpointing, we enable use of reinforce-
ment learning in testbeds: initial learning is performed in simulation, and the
system is further trained in testbed.

Fault injection in testbed Fault injection is a powerful technique for robustness
evaluations. To inject errors in a testbed, a testbed checkpoint is rolled back to
simulation. Errors are injected in simulation, for example processor clock skews,
dropped radio packets, or rebooted sensor nodes. The network state is then
again checkpointed and moved back to testbed. Fault injection helps us answer
questions starting with “what would happen if. . . ”.

Simulation model validation Step-by-step comparisons of testbed and simulation
execution help us validate and tune simulation models.

Sensornet Checkpointing 5

dB

testbed nodes

hierarchical testbed software

checkpointing

ethernet

checkpointing SW

subservers

serial/USB

Fig. 2. The checkpointing software is hierarchical and connects the main server to all
testbed nodes.

Debugging testbeds Debugging is a challenging task in wireless sensor networks [17,
27]. Debugging nodes is difficult due to the distributed nature of sensor networks
in combination with the limited memory and communication bandwidth of each
sensor node. Moreover, debugging approaches that depend on radio communica-
tion may be too intrusive, or may not even work in a faulty network. In contrast,
simulation is well suited for debugging sensor networks. In simulation, a devel-
oper has full control of the entire network, can stop and restart the simulation,
and can perform node-specific source-level debugging. Sensornet checkpointing
can be used for debugging in simulation, whereas regular network execution is
on real hardware. When an error is discovered in testbed, the network is check-
pointed and rolled back to simulation. Simulation tools may help expose the
error cause. In addition, if the testbed is periodically checkpointed, an earlier
checkpoint rolled back to simulation may re-trigger the testbed error in simula-
tion.

3 Implementation

We implement checkpointing support on Contiki [3] and the Tmote Sky sen-
sor nodes [16]. The Tmote Sky is equipped with a MSP430F1611 processor
with 10Kb RAM, 1Mb external flash, and an IEEE 802.15.4 Chipcon CC2420
packet radio [2]. The sensor nodes communicate using the serial port. The node
checkpointing implementation consists of a single process that handles received
commands, and forwards state requests to device drivers. The process is exe-
cuted in a thread separate from the surrounding Contiki. The thread has a 128
byte stack, which is not included in the node state. We use Contiki’s cooper-
ative multi-threading library, however, the checkpointing process does not rely
on Contiki-specific functionality. Hence, the node checkpointing implementation
should be easily ported to other sensor network operating systems.

Devices support checkpointing by implementing two functions: one for ex-
tracting device state and one for restoring device state. We implement state

6 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

support in four different devices: the LEDs, the radio, the microcontroller hard-
ware timers, and the memory device handling RAM.

See Figure 2 for an overview of the testbed checkpointing software. We im-
plement the subserver on the ASUS WL-500G Premium wireless router [6]. The
Tmote Sky sensor nodes are connected to the routers’ USB ports, and each router
is connected via ethernet to the local network. The routers run OpenWRT[13], a
Linux distribution for embedded devices. For accessing sensor node serial ports,
we use the Serial to Network Proxy (ser2net) application [19]. ser2net is an open
source application for forwarding data between sockets and serial ports.

For checkpointing simulated networks, we use the Contiki network simula-
tor COOJA [14]. COOJA is equipped with the MSP430 emulator MSPSim [5].
MSPSim supports emulating Tmote Sky sensors. Note that checkpointing is per-
formed via serial ports both in real and simulated networks.

3.1 Network State

We define network state as the set of all node states. Node state consists of:

Firmware The firmware programmed on each node, i.e. the compiled program
code. Unless the program is altered during run-time, the firmware does not need
to be included in the node state.

External flash The 1mb external flash. Unless the external flash is altered during
run-time, it does not to be included in the node state.

Memory The 10kb RAM memory. Memory state captures stack and variables.

Timer system Hardware timers, both configuration and current timer values.
Note that software timers are included in the memory state.

LEDs The node’s light-emitting diodes: on or off.

Radio The CC2420 radio state includes whether the radio is in listen mode, or
turned off. We do not include CC2420 chip buffers in the radio state.

Although our definition of node state can be extended with more devices, the
definition is in accordance to the needs we observed during this work. The defi-
nition should be easy to extend to include more components.

3.2 Communication Protocol

The communication protocol between the checkpointing software and the sensor
nodes consists of three asynchronous phases: freeze node, execute commands,
and finally unfreeze node. The three phases are asynchronous for better inter-
node synchronization: all nodes are frozen before the execute command phase is

Sensornet Checkpointing 7

started on any of the nodes. Similarly, the unfreeze node phase is not initiated
on any node until the execute commands has finished on all nodes.

The freeze node phase is initiated by sending a single byte command to a
node. The checkpointing process, executing in the serial port interrupt, imme-
diately performs two tasks: it disables interrupts and stops hardware timers.
The node then enters the execute command phase. The execute command phase
consists of the sensor node handling commands from the checkpointing software.
Two commands are available: SET STATE, and GET STATE. The SET STATE
command prepares the node to receive node state. The GET STATE command
instructs the node to serialize and transmit its current state. When the node has
finished handling commands, the unfreeze phase is initiated. This phase again
starts hardware timers and enables interrupts.

Since the checkpointing process is executed in the serial port interrupt han-
dler, regular node execution is disabled until the node is unfrozen. A limitation
of this implementation is that the serial port interrupt has to wait for other
currently executing interrupt handlers to finish. Hence, a node stuck in another
interrupt handler cannot be checkpointed.

3.3 Checkpointing Thread

Checkpointing runs in its own thread. The checkpointing thread preempts the
operating system to perform a checkpoint. The node state includes the operat-
ing system stack, but not the checkpointing thread stack. When restoring node
memory, we do not overwrite the checkpointing thread stack.

When the checkpointing process exists after rolling back memory state, the
operating system is changed including the program counter (PC) and stack
pointer (SP). Figure 3 shows an overview of how the operating system mem-
ory is restored from the checkpointing thread. Figure 4 contains pseudo code of
the serial port interrupt handler, the checkpointing process, and device driver
checkpointing support.

3.4 Node State in Simulation

Simulated nodes extract and restore state using the same checkpointing process
as real nodes. Since simulated nodes emulate the same sensor node firmware as
real nodes, the same checkpointing software can be used to interact with both
real and simulated nodes.

3.5 Hierarchical Network Freezing

The main server is able to directly communicate with all individual testbed
sensor nodes via ser2net. To improve checkpointing synchronization – avoiding
parts of the network still executing after other nodes have frozen – we modify
the ser2net application to allow sending freeze and unfreeze commands to all
nodes connected to a single router. For this purpose, we use ser2net’s control

8 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

thread memory
GET_STATE

sw()

t

OS exec OS exec cont.

serial data handler

sw()

node frozen

Checkpointing

OS memory OS memory

sw()

t

OS exec

serial data handler

sw()

"new" OS exec

SET_STATE

node frozen

thread memory
Checkpointing

Fig. 3. The checkpointing process is run in a separate thread to enable checkpoints of
the operating system stack memory. Left: after checkpointing node memory, control is
returned to the OS. Right: after rolling back node memory, the operating system has
changed.

port, used for allowing remote control to active ser2net connections. We add
support for two new commands: freeze all and unfreeze all. Both commands act
on all connected sensor nodes.

3.6 Lost Serial Data

Serial data bytes are sometimes lost when copying state to and from multiple
nodes simultaneously. To avoid this problem, we copy state to at maximum one
node per subserver. This increases the overall time to transfer network state.
It does not, however, affect the inter-node synchronization since all nodes are
frozen during the execute command phase. In our current implementation, no
CRC check is used to ensure that checkpointed state was transferred correctly.
Apart from lost data byte, we have not observed transmission errors in our
experiments.

3.7 Hardware Timer Bug

We encountered what appears to be an undocumented MSP430 hardware bug
in the timer system during the implementation. In Contiki, the 16-bit hardware
Timer A is configured for continuous compare mode. A compare register is con-
figured and continuously incremented to generate a periodic clock pulse which
drives the software time. According to the MSP430 User’s Guide, the interrupt
flag is set high when the timer value counts to the compare register.

While stress testing our system with incoming serial data, we observed that
occasionally the timer interrupt was set high before the timer value incremented
to equal the compare register, i.e. the timer interrupt handler could start exe-

cuting before the configured time. A workaround to the problem is modifying the
Timer A interrupt handler to blocking wait until the timer value reaches the
compare register if, and only if, the timer value is equal to the compare register

Sensornet Checkpointing 9

/* INTERRUPT HANDLER: Serial data */
handle_serial_data(char c)

freeze_system(); /* Disable timers, interrupts */

sw(checkpointing_process); /* Switch to checkpointing thread (BLOCKS) */
unfreeze_system(); /* Enable timers, interrupts */

/* Checkpointing process blocking reads serial data */

checkpointing_process()
cmd = READ_COMMAND(serial_stream);
if (cmd CHECKPOINT)

foreach DEVICE
DEVICE_get(serial_stream);

if (cmd ROLLBACK)

foreach DEVICE
DEVICE_set(serial_stream);

if (cmd not UNFREEZE)
repeat;

/* Devices drivers handle their own state */
mem_set(serial_stream)

mem[] = read(serial_stream, mem_size);

radio_get(serial_stream)
write(serial_stream, radio_state[], radio_size);

Fig. 4. Checkpointing pseudo code

minus 1. Although we have not observed it, we expect similar behavior from
Timer B.

4 Evaluation

We evaluate the sensornet checkpointing intrusiveness by checkpointing a data
collection network. Furthermore, we evaluate testbed repeatability by rolling
back a single network state and comparing multiple test runs. Finally, we re-
port on the synchronization error of our implementation when checkpointing a
network.

In this work, there are several artifacts of our experimental setup that in-
fluence results. We checkpoint all nodes sequentially, which can be a time-
consuming operation in large networks. Furthermore, we transfer the state un-
compressed: checkpointing requires copying more than 10kb per node. Using rel-
atively simple techniques, we could reduce the checkpoint state transfer times.
Since the memory is the major part of node state, and since most of the memory
is often unchanged between checkpoints, diff-based techniques may significantly
reduce node state size. A similar approach is using run-time compression al-
gorithms on the nodes. To evaluate the impact of compression, we run-length
encode a number of checkpointed node states. Run-length encoding eliminates
long runs of zero-initialized memory. The average size of run-length encoded
node states was 7559 bytes, a 26% reduction in size. Note that in this evaluation
we only run-length encode node state offline – to use compression or diff-based

10 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

techniques on real nodes, the node checkpointing process needs additional func-
tionality.

4.1 Intrusiveness: Checkpointing a Data Collection Network

To evaluate the impact of checkpointing a testbed, we implement a simple data
collection network. The single-hop network consists of 5 collector nodes and
a sink. We perform checkpointing on the collector nodes only. Each collector
node samples sensor data, and transmits it via radio to the sink. The sampling
intervals, however, differ between the collector nodes. The different send rates
for the 5 nodes are: 5, 4, 3, 2, and 1 times per second.

The sink node counts the received radio packets from each collector node.
Each radio packet has a sequence number reset at every test run. When the sink
receives a radio packet from collector node 1 with a sequence number equal to
or above 150, it decides the test run completed, and logs the test run results.
Note that the sink may not have received all 150 radio packets from node 1 to
end the test; some radio packets may have been lost in transmission.

We checkpoint the network at different rates during each test run. Check-
pointing consists of freezing the network, downloading network state, and finally
unfreezing the network. Each test run takes approximately 30 seconds network
execution, i.e. without the overhead of checkpointing.

We vary the checkpointing interval on the data collection network. With our
test setup, checkpointing less than once every 5 seconds had no impact on the
transmitted radio packets. When checkpointing more often, we see an increase in
lost radio packets. We believe this is due to the high checkpointing rate combined
with not storing radio chip buffers: checkpointing when the sensor node radio
chip is communicating may cause a radio packet to be dropped. Figure 5 shows
the checkpointing impact on the data collection network. Note that Node 1
transmits a packet every second, and Node 5 transmits a packet every 5 seconds.

We believe the observed checkpointing impact on radio communication can
be lessened by including radio chip buffers in the radio state. The current im-
plementation clears the CC2420 radio chip buffers, but includes the radio driver
state. If the node is checkpointed when the radio driver has copied only the
first half of a radio packet, the radio chip buffers will be empty when rolled
back, whereas the radio driver will keep copying the second half of the radio
packet. The CC2420 radio chip buffers can be accessed via the radio driver.
By including these in the radio state, a radio driver can be checkpointed while
communicating with the CC2420 without destroying packet data. However, note
also that checkpointing as often as every second is not neccessary in any of the
applications discussed in Section 2.

4.2 Repeatability: Restoring State of a Pseudo-random Network

For evaluating testbed repeatability, we implement a pseudo-random testbed
network with 10 sensor nodes. Each node broadcasts radio packets at pseudo-

Sensornet Checkpointing 11

 0

 50

 100

 150

 200

Node 1

Node 2

Node 3

Node 4

Node 5

S
en

so
r

da
ta

 r
ec

ei
ve

d
by

 s
in

k

No checkpointing
Checkpointing every 2 seconds

Checkpointing every second

Fig. 5. Checkpointing has little impact on the data collection network, even when
checkpointing every second.

random intervals, on the order of seconds. A radio sniffer outside the testbed
records any received packets from the 10 nodes.

During the testbed execution we checkpoint the network once. The network
state is then repeatedly rolled back to the network 10 times. The radio sniffer
records and timestamps any received packets during a test run. The timestamp
resolution is milliseconds. We compare the radio sniffer logs of each test run
to evalute testbed repeatability. We perform two experiments using the testbed
setup: with and without radio Clear-Channel Assessement (CCA).

By analyzing the sniffer logs, we see that the network execution was repeated
when the network state was rolled back, i.e. the ordering of radio packets received
by the sniffer node was the same for all test runs. With CCA enabled, we observe
that not all packets were transmitted in every test run. This is due to the CCA
check failing, an event occasionally occurring in a real testbed. Using the unique
sequence number of each received packet, we can calculate the average arrival
time of each packet. Figure 6 shows the average number of packets received in a
test run, and each packet arrival time deviation from mean as measured by the
sniffer node. The arrival times are recorded at a laptop connected to the sniffer
node. The deviation hence includes scatter from both the sniffer node and the
laptop.

4.3 Case Study: Testbed Synchronization

Sensornet checkpointing captures the state of all nodes in a network. For syn-
chronous checkpointing, all nodes must be checkpointed at the same network

12 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

 0

 20

 40

 60

 80

 100

Without CCA With CCA

R
ec

ei
ve

d
pa

ck
et

s
(%

)

 90

 95

 100

Without CCA With CCA

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

-100 -50 0 50 100

R
ec

ei
ve

d
pa

ck
et

s
(%

)

Deviation from mean (ms)

Fig. 6. Left: during the experiment without Clear-Channel Assessment (CCA), each
node repeatedly transmitted the same radio packets to the sink. During the experiment
with CCA, however, some packets were not retransmitted: the network behavior dif-
fered due to the radio surroundings. Right: the packet reception times, as measured by
the sink, differs on the order of milliseconds showing that the pseudo-random network
is repeated.

time. We freeze the entire network execution during time-consuming checkpoint-
ing operations. Hence, checkpointing synchronization error depends on when the
freeze (and unfreeze) commands are received and handled by the different nodes.

In our implementation, checkpointing is performed via node serial ports.
We reduce the network freeze synchronization error in two ways. First, node
freeze commands are one-byte messages. Since freeze commands are sent out
sequentially to each node, shorter commands results in better synchronization.
Second, freeze commands originate close to the testbed nodes: at the subservers,
minimizing message delivery time scatter.

We evaluate how network size affects checkpointing synchronization error.
To measure synchronization error we use sensor node hardware timers. Each
node dedicates a 32768Hz timer to the evaluation. The checkpointing software,
connected to the testbed, continually freezes and unfreezes the testbed. Each
time the network is frozen, the current hardware timer value of each node is
extracted. Two consecutive node timer values are used to calculate the last test
run duration: the network execution time as observed by the node itself.

We define the synchronization error of a test run as the maximum difference
between all collected node durations. Hence, with perfect synchronization all
nodes would report the same times during a test run, and the synchronization
error would be zero. To avoid serialization effects, the order of which nodes
are frozen and unfrozen each test run is random, as is the delay between each
freeze and unfreeze command. We measure synchronization error on a testbed
consisting of up to 30 nodes. The nodes are distributed on 4 subservers (10 + 9 +
8 + 3). See Figure 7 for the synchronization errors. In the distributed approach,
the checkpointing software sends a single freeze command to each subserver, and
the subservers forward the command to all connected nodes. In the centralized
approach, the checkpointing software directly sends a command to each node.

Sensornet Checkpointing 13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
yn

ch
ro

ni
za

tio
n

er
ro

r
(m

s)

Network size (nodes)

centralized
distributed

Fig. 7. Freezing and unfreezing nodes directly from subservers (distributed), as opposed
to from the main server (centralized), significantly improves the synchronization: With
30 nodes distributed on 4 subservers, the synchronization error is less than 0.5 ms.

The distributed approach is visibly more scalable and provides a significantly
lower synchronization error than the centralized approach. With 30 testbed
nodes the average synchronization error is 0.44 ms with the distributed approach,
and 2.67 ms with the centralized approach.

5 Related Work

Distributed checkpointing and rollback is a standard technique for failure recov-
ery in distributed systems [1, 4] and is used e.g. in file systems [18], databases [20],
and for playback of user actions [10]. Inspired by the substantial body of work in
checkpointing, we use the technique to improve realism in sensor network simula-
tion and repeatability in sensor network testbeds. To the best of our knowledge,
we are the first to study distributed checkpointing with rollback in the context
of wireless sensor networks.

Sensor network testbeds is a widely used tool for performing controlled ex-
periments with sensor networks, both with stationary and mobile nodes [7, 25].
Our work is orthogonal in that our technique can be applied to existing testbeds
without modification. There is a body of work on sensor network simulators.
TOSSIM [11] simulates the TinyOS sensor network operating system. Avrora [22]
emulates AVR-based sensor node hardware.

A number of sensor network simulators allow a mixture of simulated nodes
and testbed nodes. This technique is often called hybrid simulation [12, 15, 23,
24]. Although hybrid simulation is designed to increase the realism by running

14 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

parts of the network in a testbed, repeatability is affected negatively. Our work is
originally based on the idea of hybrid simulation, but we identify key problems
with hybrid simulation and show that synchronous checkpointing lessens the
effects of these problems.

Several techniques for debugging and increasing visibility have been proposed
for sensor networks. Sensornet checkpointing can be used as an underlying tool
when implementing debugging and visibility, and can be combined with several
of the existing tools.

NodeMD [9] uses checkpoints on individual nodes for detecting thread-level
software faults. The notion of checkpoints is used differently in NodeMD: check-
points are used by threads to signal correct execution. NodeMD furthermore
stores logs in a circular buffer used to debug the node when an error has been
detected. Sensornet checkpointing can be combined with many the features in
NodeMD: a node-level error detected by NodeMD can trigger a network-wide
checkpoint, and the circular buffers can be used as an efficient way to transfer
messages between testbed and simulation.

6 Conclusions

We implement checkpointing for sensor networks. Our approach enables transfer-
ring network state between simulation and testbed. Several applications benefit
from the approach, such as fault injection and testbed debugging. We show that
sensor network checkpointing enables repeatable testbed experiments and non-
intrusive testbed execution details.

Acknowledgments

This work was partly financed by VINNOVA, the Swedish Agency for Innovation
Systems and the SICS Center for Networked Systems, partly funded by VIN-
NOVA, SSF and KKS. This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the European Commis-
sion under FP7 with contract number FP7-2007-2-224053.

References

1. K. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

2. Chipcon AS. CC2420 Datasheet (rev. 1.3), 2005.
3. A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible operating

system for tiny networked sensors. In Workshop on Embedded Networked Sensors,
Tampa, Florida, USA, November 2004.

4. E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys, 34(3):375–408,
2002.

Sensornet Checkpointing 15

5. J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt. Mspsim – an exten-
sible simulator for msp430-equipped sensor boards. In Proceedings of the European
Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft,
The Netherlands, January 2007.

6. ASUSTek Computer Inc. ASUSTek Computer Inc. Web page:
http://www.asus.com/. Visited 2008-09-25.

7. D. Johnson, T. Stack, R. Fish, D. Flickinger, L. Stoller, R. Ricci, and J. Lepreau.
Mobile emulab: A robotic wireless and sensor network testbed. In Proceedings of
IEEE INFOCOM 2006, April 2006.

8. D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental
Evaluation of Wireless Simulation Assumptions. In Proceedings of the ACM/IEEE
International Symposium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM ’04), pages 78–82, October 2004.

9. V. Krunic, E. Trumpler, and R. Han. NodeMD: Diagnosing node-level faults in
remote wireless sensor systems. In MOBISYS ‘07, San Juan, Puerto Rico, June
2007.

10. O. Laadan, R. Baratto, D. Phung, S. Potter, and J. Nieh. Dejaview: a personal vir-
tual computer recorder. In Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, pages 279–292, Stevenson, Washington, USA, 2007.

11. P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: accurate and scalable simulation
of entire tinyos applications. In Proceedings of the first international conference on
Embedded networked sensor systems, pages 126–137, 2003.

12. S. Lo, J. Ding, S. Hung, J. Tang, W. Tsai, and Y. Chung. SEMU: A Framework of
Simulation Environment for Wireless Sensor Networks with Co-simulation Model.
LECTURE NOTES IN COMPUTER SCIENCE, 4459:672, 2007.

13. OpenWRT. OpenWRT Wireless Freedom. Web page: http://openwrt.org/. Visited
2008-09-25.

14. F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level sensor
network simulation with cooja. In Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications (SenseApp
2006), Tampa, Florida, USA, November 2006.

15. S. Park, A. Savvides, and M.B. Srivastava. SensorSim: a simulation framework for
sensor networks. Proceedings of the 3rd ACM international workshop on Modeling,
analysis and simulation of wireless and mobile systems, pages 104–111, 2000.

16. J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power wireless
research. In Proc. IPSN/SPOTS’05, Los Angeles, CA, USA, April 2005.

17. N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sym-
pathy for the sensor network debugger. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pages 255–267,
2005.

18. M. Rosenblum and J. Ousterhout. The design and implementation of a log struc-
tured file system. In SOSP’91: Proceedings of the 13th ACM Symposium on Oper-
ating System Principles, 1991.

19. ser2net application. Serial to Network Proxy (ser2net). Web page:
http://ser2net.sourceforge.net/. Visited 2008-09-25.

20. Sang Hyuk Son and A.K. Agrawala. Distributed checkpointing for globally consis-
tent states of databases. IEEE Transactions on Software Engineering, 15(10):1157–
1167, 1989.

21. M. Takai, J. Martin, and R. Bagrodia. Effects of Wireless Physical Layer Modeling
in Mobile Ad Hoc Networks. In Proceedings of MobiHoc’01, October 2001.

16 Österlind, Dunkels, Voigt, Tsiftes, Eriksson, Finne

22. B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: scalable sensor network simula-
tion with precise timing. In Proceedings of the 4th international symposium on
Information processing in sensor networks (IPSN), April 2005.

23. D. Watson and M. Nesterenko. Mule: Hybrid Simulator for Testing and Debugging
Wireless Sensor Networks. Workshop on Sensor and Actor Network Protocols and
Applications, 2004.

24. Y. Wen and R. Wolski. Simulation-based augmented reality for sensor network de-
velopment. Proceedings of the 5th international conference on Embedded networked
sensor systems, pages 275–288, 2007.

25. G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A wireless sensor net-
work testbed. In Proc. IPSN/SPOTS’05, Los Angeles, CA, USA, April 2005.

26. M. Woehrle, C. Plessl, J. Beutel, and L. Thiele. Increasing the reliability of wireless
sensor networks with a distributed testing framework. In EmNets ’07: Proceedings
of the 4th workshop on Embedded networked sensors, pages 93–97, New York, NY,
USA, 2007. ACM.

27. J. Yang, M.L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a comprehensive
source-level debugger for wireless sensor networks. Proceedings of the 5th interna-
tional conference on Embedded networked sensor systems, pages 189–203, 2007.

