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Abstract: The aim of this paper is to study the regional observer concept through the

consideration of sensors. For a class of distributed diffusion systems, we propose an

approach derived from the Luenberger observer type as introduced by Gressang and Lamont

[1]. Furthermore, we show that the structures of sensors allow the existence of regional

observer and we give a sufficient condition for each regional observer. We also show that,

there exists a dynamical system for diffusion systems is not observer in the usual sense, but

it may be regional observer.
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Introduction

The observability problems in distributed systems have been the subject of a good deal of research

[2-7]. These systems are the general representation of several physical systems described by partial

differential equations or differential equations [8-9]. In this paper, we are concerned with some

methods of construction of an asymptotic regional state for infinite dimensional systems described, in

terms of linear semi-group. The notion of asymptotic regional construction has been introduced by Al-

Saphory and El Jai [10] and is based on the concept of regional detectability [11]. In this work, we

develop this approach and the mathematical tools which allow to construct various types of ω-

observers in a given subregion ω of the domain Ω, in connection with sensors structures. The results

are considered in a particular case of parabolic systems. The principal reason behind introducing this
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concept is that it provides a means to deal with some physical problems concern the determination of

laminar flux conditions, developed in steady state by vertical uniformly heated plate (Fig. 1).

Figure 1. Profile of the active plate.

This approach can be extended to find the unknown boundary convective condition on the front face

of the active plate, as in [9]. The reconstruction is based on knowledge of the dynamical system (ω-

observer) and the measurement given by internal pointwise sensors (that means by the thermocouples).

The paper is organized as follows. Section 2 is devoted to the presentation of the system under

consideration and preliminaries. We recall that the definitions of ω-stability and ω-detectability and we

also give the definitions of different types of ω-observers (case general, identity and reduced-order).

Section 3, we characterize each ω-observers in terms of sensors structures and we give a counter-

example of the case ω-observer is not observer in the whole domaine Ω. The useful applications of

these results are considered.

2. Asymptotic ωω-observer

2.1 Description systems and preliminaries

Suppose ( )( )
0A t

S t
≥

an exponentially stable, strongly semi-group of operators on the space X, with

generator A : D(A) X → may be linear differential elliptic defined by

( ) ( ), ,Ax t x tξ ξ= ∆

We denote )=Ω×(0, ∞), Θ=∂Ω×(0, ∞) and we consider

and measurements are given by the output function
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where  the following hypothesis are considered.

• The operators ∆∆ is self-adjoint with compact resolvent.
• Ω is an open regular bounded set of *n (n =1, 2, 3) with smooth boundary ∂Ω.

• ω is a nonempty given subregion of Ω.
• X, U, ' are separable Hilbert spaces where X is the state space, U the control space and ' the

observation space and with X = L2 (Ω), U = L2 (0, ∞; *q) and ' = L2 (0, ∞ ; *p).

• The operators B : U → X and C : X → ' are bounded linear and depend on the structure of

actuators and sensors [7]. Under the above assumption, the system (2.1) has a unique solution given

by

The problem consists to construct a regional observer which gives an estimated state of x(ξ, t) in ω
by using only the measurements (2.2). We recall that:� A sensor may be defined by any couple (D, g) where :

1. D denotes a closed subset of 
−
Ω , which is spatial support of sensors,

2. g ∈ L 2 (D) defines the spatial distribution of measurements on D.

According to the choice of the parameters D and g, we have various types of sensors. A sensors may

be of zone types when D ⊂ Ω. The output function (2.2) can be written in the form

A sensor may also be a pointwise when D = {b) and g = δ(. – b) where δ is the Dirac mass

concentrated in b. Then the output function (2.2) may be given by the form

In the case of boundary zone sensor, we consider D = Γ with Γ ⊂ ∂Ω and g ∈ L2 (Γ). The output

function (2.2) can then be written in the form

The operator C is unbounded and some precautions must be taken in [7].

• The function χω is defined by

where x |ω (ξ, t) is the restriction of the state x(ξ, t) to  ω. Define now the operator
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then z(t)=K(t)x0(.). We denote by K* : O → X  the adjoint of K given by

� The autonomous system associated to (2.1)-(2.2) is exactly (respectively weakly) ω-observable if :

� The suit of sensors (Di,gi)1 ≤ i ≤ q is ω-strategic if the system (2.1)-(2.2) is weakly ω-observable [12].

The concept of ω-strategic has been extended to the regional boundary case as in [13-15].

2.2 ω-observer

The theory of observer was introduced by Luenberger [16] and has been generalized to systems

described by semi-group operators [1]. Recently, these results have been extended to the regional case

by Al-Saphory and El Jai [11]. This extension is based on the concept of regional detectability. In this

section, we define the asymptotic ω-observer in a given subregion ω.

Definition 2.1. The system (2.1) is said to be ω-stable, if the operator A generates a semi-group

which is stable on L2(ω). It is easy to see that the system (2.1) ω-stable, if and only if, for some positive

constants M and α, we have

If (SA(t))t≥0 is stable semi-group on L2(ω), then for all x0 ∈ L2 (Ω), the solution of the associated

autonomous system satisfies

Definition 2.2. The system (2.1) together with the output function (2.2) is said to be ω-detectable if
there exists an operator Hω : ' → L2 (ω) such that (A – HωC) generates a strongly continuous semi-

group (SHω(t))t≥0 which is stable on L2 (ω).

Definition 2.3. Suppose that there exists a dynamical system with state y(ξ, t) ∈ Y (a Hilbert space)

given by

where Fω generates a strongly continuous semi-group (SFω (t))t≥0 which is stable on the Hilbert space
Y, Gω ∈ $ (U, Y ) and Hω ∈ $�( ' ,Y). The system (2.11) defines an ω-estimator for χωTx(ξ, t) if:
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1. ( ) ( )lim , , 0,   
t

y t Tx tωξ χ ξ ξ ω
→∞

− = ∈  
2. χωTx maps D(∆) into D(Fω) where x(ξ, t) and y(ξ, t) are the solutions of (2.1) and (2.11).

Definition 2.4. The system (2.11) is ω-observer for the system (2.1)-(2.2) if it satisfies the following

conditions:
1. There exists R ∈ $ (' ,L2 (ω)) and S∈$ (L2 (ω)) such that RC + SχωT = Iω

2. χωT∆ - FωχωT = HωC and Gω = χωTB.

3. The system (2.11) determines ω-estimator for χωTx(ξ, t).

The purpose of ω-observer is to provide an approximation to the state of the original system. This

approximation is given by

( ) ( ) ( )
^

, ,x t Rz t Sy tξ ξ= +

It is clear that:� The system (2.11) is said to be an identity ω-observer for the system (2.1)-(2.2) if χωT=Iω and X=Y.� The system (2.11) is said to be a reduced-order ω-observer for the system (2.1)-(2.2) if X=' ⊕ Y.

3. Sensors and ωω-observer reconstruction

In this section, we give an approach which allows to construct an ω-estimator of Tx(ξ,t). This

method avoids the calculation of the inverse operators [14] and the consideration of the initial state

[12], it enables to observe the current state in ω without needing the effect of the initial state of the

original system. Let us consider the set (ϕnj) of eigenfunctions of L2(Ω) orthonormal in L2(ω)

associated with the eigenvalues λn of multiplicity rn and suppose that the system (2.1) has unstable

modes.

3.1 General case

The problem of asymptotic ω-observability may be studied through the observation operator C. That

means, we can characterize the ω-observer by a good choice of the sensors. For that objective, suppose

that information is retrieved from the system by p sensors (Di, gi)1≤ i≤ p. In the asymptotic regional state

reconstruction various types of sensors can be considered (Fig. 2).

Figure 2. The estimated state in ω and various sensor locations.
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3.1.1 Case of pointwise sensors

Consider again the system

In this case the output function (2.2) is given by

where bi∈Ω is the sensor locations. Let ω  be a given subdomain of Ω and assume that for T∈$
(L2(Ω)), and χωT there exists a system with state y(ξ, t) such that

where χω is defined in (2.7) and we denote Tω =χω T. The equations (3.2)-(3.3) give

If we assume that there exist two linear bounded operators R and S where R : '�→ L2(ω) and S :

L2(ω) → L2(ω), such that RC+STω = I, then by deriving y(ξ,t) in (3.3) we have

Consider now the system (which is destined to be the ω-observer)

where Fω generates aa strongly continuous semi-group (SFω(t))t≥ 0 which is assumed to be stable on

L2(ω), i.e.

and Gω ∈ $�(U, L2(ω)) and Hω ∈ $�(', L2(ω)). The solution of (3.5) is given by
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The problem is that, how to observe asymptotically the current state in ω, i.e. to show that under

convenient hypothesis, the state of the system (3.5) is an estimator of Tω x(ξ, t).

Theorem 3.1. Suppose that the operator Fω generates a strongly continuous semi-group which is

stable on L2(ω), then the system (3.5) is ω-observer for (3.1)-(3.2), that is,

( ) ( )
^

lim , , 0,   
t

T x t y tω ξ ξ ξ ω
→∞

 − = ∈  

if the following conditions hold:
1. There exist R ∈ $�(', L2(ω)) and S ∈ $�(L2(ω)) such that

2.            

Proof: For y(ξ, t) = Tω x(ξ, t) and ( )
^

,y tξ solution of (3.5), denote ( ) ( ) ( )
^

, , ,e t y t y tξ ξ ξ= − .

We have

Thus ( ) ( ) ( ), 0,Fe t S t e t
ω

ξ = where ( ) ( ) ( )
^

0 00,e t T x yω ξ ξ= − . Now the stability of the operator

Fω leads to

therefore ( )lim , 0
t

e tξ
→∞

= . Let ( ) ( ) ( )
^ ^

, , ,ix t Rx b t S y tξ ξ= + , then we have

.

Finally we have ( ) ( )
^

lim , ,
t

x t x tξ ξ
→∞

= . �
From this theorem, we can deduce the following statements:

1. This conditions (3.6) and (3.7) in theorem 3.1 guarantee that the dynamical system (3.5) is ω-

observer for the system (3.1)-(3.1).

2. A system which is an observer is ω-observer.
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3. If a system is ω-observer, then it is ω1-observer in every subset ω1 of ω, but the coverse is not

true. This may be proven in the following example:

Example 3.2. Consider the system

augmented with the output function

where γ1 > 0, γ2 > 0, a > 0, Ω = ]0,a[ and b ∈ Ω is the location of the sensor (b, δb). The operator
2

1 22
A γ γ

ξ
 ∂= + ∂ 

generates a strongly continuous semi-group  (SA (t))t≥0 on the Hilbert space L2(Ω).

Consider the dynamical system

where H ∈ $�(', Y), Y is a Hilbert space and C : Y → ' is a linear operator. If b/a ∈ � [0, a], then the

sensor (b, δb) is not strategic for the unstable subsystem of (3.8) and therefore the system (3.8)-(3.9) is

not detectable in Ω. Then, the dynamical system (3.46) is not observer for the system (3.8)-(3.9) [7].

We consider the region ω = [α,β] ⊂ [0,a] (Fig. 3) and the dynamical system.

Figure 3. The domain Ω, the subregion ω and the sensor location b.
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where Hω ∈ $ (L2(', ∞, *Q), L (ω)). If b/a ∉ IQ ∩ ]0,a[, then the sensor (b, δb) is ω-strategic for the

unstable subsystem of (3.8) [12] and therefore the system (3.8)-(3.9) is ω-detectable [11], i.e.

( ) ( )
^

lim , ,
t

x t y tξ ξ
→∞

= . Finally the dynamical system (3.11) is ω-observer for the system (3.8)-(3.9).

3.1.2 Case of zone sensors

In this case, we consider the system (3.1) with the output function (2.4) and we assume that there

exists an operator Tω is such that

( ) ( ), ,y t T x tωξ ξ=

So, regional observer may be described by

with solution is represented by  the equation

Thus, we obtain the following proposition:

Proposition 3.3. If following conditions hold :

1. The operator Fω generates a strongly continuous semi-group which is stable on the space L2(ω).
2. There exist * ∈ $ (', L2 (ω)) and S ∈ $ (L2 (ω)) such that

RC + STω = I

3.

Then, the dynamical system (3.12) is ω-observer for (3.1)-(2.4).

3.1.3 Case of boundary sensors

Here, we consider the system (3.1) augmented with output function (2.6). The related dynamical

system may be expressed by the form
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The solution of (3.13) is given by

Therefore we have the following result:

Proposition 3.4. Under the following conditions :

1. The operator Fω generates a strongly continuous semi-group which is stable on the space L2 (ω).
2. There exist * ∈ $ (', L2 (ω)) and S ∈ $ (L2 (ω)) such that

RC + STω = I

3.

the dynamical system (3.13) is ω-observer for (3.1)-(2.6).

3.2 Identity ω-observer

In this case, we consider Tω = I and Z = X, and so the operator equation Tω∆ - FωTω = HωC of the

regional observer reduces to Fω =∆ - HωC where A and C are known. Thus, the operator Hω must be

determined such that the operator Fω is stable. In the case where the sensors are zone types, we

consider the system (3.1)-(2.4), together with the dynamical system

Thus the sufficient condition of an identity ω-observer (Fig. 4), is formulated in the following

proposition :

Proposition 3.5. If there exists a suite of p zones sensors (Di, gi)1≤ i≤ p which is ω-strategic for

unstable subsystem of the system (3.1)-(2.4), then the dynamical system (3.14) is an identity ω-

observer for (3.1)-(2.4).

Proof: Let us denote ( ) ( ) ( )
^

, , ,e t y t y tξ ξ ξ
−

= − . Then by deriving ( ),e tξ
−

, we get
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Since the sensors (Di, gi)1≤ i≤ p are regionally strategic for unstable subsystem of (3.1)-(2.4), the

subsystem is weakly ω-observable, and since it is finite dimensional, then it is exactly ω-observable.
Therefore it is ω-detectable [10], there exists an operator Hω ∈ $ (L2 (0, ∞, *Q), L2(ω)), such that

(∆-HωC) generates a strongly continuous, stable semi-group (SHω(t))t≥ 0 on the space L2(ω) which is

satisfied the following:

Finally, we have

and therefore ( ), 0e tξ
−

→ when t → ∞ . In this case, the operators R = 0 and S = I with

( ) ( )
^ ^

, ,x t y tξ ξ= , then we have

This lead to ( ) ( )
^

lim , ,
t

x t x tξ ξ
→∞

= . Then, the system (3.14) is an identity ω-observer for (3.1)-(2.4).

In the case where the sensors are pointwises, we consider the system (3.1)-(2.5) with the

corresponding dynamical system

may be considered as an identity ω-observer. So, we have the following result:

Proposition 3.6. If there exists a suite of p pointwise sensors (bi, δbi)1≤ i≤ p which is ω-strategic for

unstable subsystem of the system (3.1)-(2.5), then the dynamical system (3.15) is an identity ω-

observer for (3.1)-(2.5).

In the case where the sensors are boundary zones, we also consider the system (3.1) together with

output function (2.6). Then the system

may be consider as ω-observer for (3.1)-(2.6). Then we have the following result:
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Figure 4. Identity ω-observer.

Proposition 3.7. If there exists a suite of p boundary zones sensors (Γi, gi)1 ≤ i ≤ p which is ω-strategic for

unstable subsystem of the system (3.1)-(2.6), then the dynamical system (3.16) is an identity ω-

observer for (3.1)-(2.6).

3.3 Application to an identity ω-observer in diffusion system

Consider the case of two dimensional system defined in Ω =]0, 1[ × ]0, 1[ by the parabolic equation

and suppose there is only one boundary zone sensor (Γ, g) located on Γ = [ηO1 - l1, 1] × {0} ∪ {1} ×
[0, ηO2 + l2] ⊂ sΩ. The sensor (Γ, g) may be sufficient for the measurement part of the desired state

[17]. In this case the output function is given by

and the considered subregion ω =]α1, β1[ × ] α2, β2 [⊂ Ω =]0, 1[ × ]0, 1[, (see Fig. 5).

The eigenfunctions related to the operator 
2 2

2 2
1 2

1
ξ ξ

 ∂ ∂+ + ∂ ∂ 
are given by
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associated with eigenvalues

Figure 5. The domain Ω, the subregion ω and the sensor location Γ.

By applying the proposition 3.7, the system

is an identity ω-observer for the system (3.17)-(3.18) if

This leads to (ηO1 – α1) / ( β1 – α1) and (ηO2 – α2) / ( β2 – α2) ∈ & for every n, m =1, ... ,J, and hence

the boundary sensor (Γ, g) is ω-strategic.

3.4 Reduced-order ω-observer

In the case where the output function (2.2) gives information about a part of the state vector
( ),x tξ , it is necessary to define an asymptotic observer enables to construct the unknown part of the

state. Consider now X = X1 ⊕ X2 where X1 and X2 are subspaces of X. Under the hypothesis of section

2, the system (2.1) can be decomposed by:
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where x1 ∈ X1, x2 ∈ X2, B1 ∈ $ (Z1, U) and B2 ∈ $ (X2, U). Using the decomposition of (3.20), the

system (3.1) can be written by the form

and

Now we discuss this problem with various sensors. Thus in the case of pointwise sensors the system

(3.21)-(3.22) augmented with output function.

In this section, the problem consists in constructing ω-observer which enables to estimate the
unknown part ( )2 ,x tξ . Equivalently, the problem is reduced to define an identity ω-observer for the

system (3.22). The equations (3.22)-(3.23) allow the following system.

with the output function

From the proposition 3.6, we have an identity ω-observer for the system (3.24)-(3.25) given by
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If the sensors (Di, gi)1 ≤ i ≤ p are ω-strategic for the subsystem (3.21)-(3.23) and this result gives the

following relation:

where sup rn = r < ∞ and j =1,..., rn. Thus we have the following theorem:

Theorem 3.8. If the sensors (Di, gi)1 ≤ i ≤ p are ω-strategic for the unstable subsystem (3.21)-(3.23),

then

( ) ( ) ( )2lim , , , 0,    i
t

t H x b t x tωψ ξ ξ ξ ω
→∞

+ − = ∀ ∈  

where x(bi, t) is the output of the initial system and w is the solution of equation

Proof: The solution of the identity ω-observer (3.26) is given by

From the equations (3.21) and (3.25), we have

Inserting (3.30) into (3.29), we obtain

and we can get

Using Bochner integrability properties and closeness of (A22 - Hω∆12), the equation (3.32) becomes
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Substituting (3.33) into (3.31), we have

Setting ( ) ( ) ( )
^

, , ,t y t H x b tωψ ξ ξ= + , with ( ) ( )
1

^

0 0 0y H xωψ ξ ξ= + , where ( ) ( )
10 0z xξ ξ= .

Now, assume that ( )22 12 11 21H H H Hω ω ω ω∆ − ∆ − ∆ + ∆ and ( )2 1B H Bω− are strongly continuous,

the equation (3.34) can be differentiated to yield the following system

and therefore

From the relation (3.27) and (3.28), we can deduce that the system (3.24)-(3.25) is ω-detectable
[11], there exists an operator Hω ∈ $�(', L2(ω)), such that ( )22 12A H Aω− generates a stable semi-

group ( )( )
0H t

S t
ω ≥

on the space L2 (ω):

Thus we obtain
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In this case, ( ) ( )
^

2, ,x t y tξ ξ= , then we have

and hence  ( ) ( )
^

2 2lim , ,
t

x t x tξ ξ
→∞

= .�
Then, from this result, we have:

1. The state vector ( )
^

2 ,y tξ can be represented by

^
^

1

^

2

y x
y

H x
y ωψ

    = =    +  

which estimates asymptotically the state vector

1

2

x
x

x

 
=  

 
.

2. The component ( )
^

2 ,y tξ is an asymptotically estimator of ( )2 ,x tξ .

3. The system (3.26) is a reduced-order ω-observer for the system (3.24)-(3.25) (Fig. 6).
4. If we consider X1 = L2 (0, ∞; *p) and X2 = Y where Y is the state space for the ω-observer. So,

from the theorem 3.8, the reduced-order ω-observer can reconstruct the unknown state

components (xp+1,xp+2, ...), thus the condition (3.7) of the theorem 3.1 is satisfied, if we define

the following operators as below.

1

1 1

1

[0  ],    [   ],        
0

z

z z
z

H I
S I R I H T and C

I
ω

ω ω

   
= = = =   

  

and we obtain the relation 
1z

RC ST Iω+ = .

In the case of zone sensors, we consider the system (3.21)- (3.22) augmented with output function

The equations (3.22)-(3.36) lead to the following system
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with the output function

Figure 6. Reduced-order ω-observer.

Using the proposition 3.5, we have an identity regional observer for the system (3.37)-(3.38) given

by

If the sensors (Di, gi)1 ≤ i ≤ p are ω-strategic for the subsystem (3.37)-(3.38), then we have the relation

where sup rn = r < ∞ and j =1,...,rn. We have the result.
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Proposition 3.9. The dynamical system (3.39) is a reduced-order ω-observer, if there existe a suite

of p zone sensors (Di, gi)1 ≤ i ≤ p, which is ω-strategic for unstable subsystem of the original system.

The case of boundary pointwise sensors is similar to the case pointwise sensors. In the case of

boundary zone sensors, we consider again the equations (3.21) and (3.22) with the output function

The equation (3.22)-(3.40) leads to

with the output function

From proposition 3.7 can be characterized an identity ω-observer for the system (3.41)-(3.42) given

by

If the sensors (Di, gi)1 ≤ i ≤ p are ω-strategic for the subsystem (3.21)-(3.42) and this result gives the

following relation

where sup rn = r < ∞ and j =1,..., rn.

Proposition 3.10. The dynamical system (3.43) is a reduced-order ω-observer, if there exist a suite

of boundary zone sensors (Γi, gi)1≤ i ≤ p which is ω-strategic for unstable subsystem of the original

system.

These results can be extended to the case of Neumann boundary conditions.

3.5 Application to a reduced-order ω-observer in diffusion systems

Consider the case of one dimensional system described by the parabolic equation
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Suppose that information retrieved by p pointwise sensors. The output function is given

where Ω =]0, 1[ and (bi)1 ≤ i ≤ p ∈ Ω are the pointwise sensors locations (Fig. 7).

Figure 7. The domain Ω, the subregion ω and the location bi of the pointwise sensor.

The output function (3.45) gives the first p components of the state vector ( ),tξΨ . Thus the

residue components

may be constructed asymptotically the second part of the state vector. For this purpose, consider the

subregion ω =]0,β[ ⊂ ]0, 1[ and the eigenfunctions of the operator ∆ related to ω are defined by

In this case, the operator B = 0, ∆12 =∆21 = 0 and

The system (3.44)-(3.45) is equivalent to the system (2.1)-(2.2). The associated eigenvalues
2

n

nπλ
β

 =  
 

with 1 2 1... 0 ... J Jλ λ λ λ +> > > > > > . The theorem 3.8 allow to estimate the unknown
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components Ψ asymptotically where p+1 p+2= , ,.... . 
−

Ψ Ψ Ψ . If the sensors areω-strategic for the

unstable par of the subsystem with ∆11. That means, the following the relation holds:

then, we obtain ( ) ( ) ( )lim , , , 0,     i
t

t H b t tωψ ξ ξ ξ ω
−

→∞

  + Ψ − Ψ = ∀ ∈    
with

and so, for p ≤ J the components of the unstable modes of the output function are required to be non-

zero, and for p > J, the sensors are also strategic for the subsystem with ∆11. Finally the dynamical

system

is a reduced ω-observer for the system (3.44)-(3.45).

4. Conclusion

In this paper we have studied the concept of ω-observer, of a distributed diffusion system whose

behavior is expressed in the terms of infinite-dimensional system. More precisely, we have given an

extension of asymptotic regional state reconstruction in the considered subregion ω, based on the

structures of sensors. Thus, we have characterized the existence of such ω-observer (general case,

identity, reduced-order). The case where the state to be asymptotically estimated on a part of boundary

of the domain Ω is under consideration.
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