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ur society will face a notable demographic shift in the near future. According to a 

United Nations report, the ratio of the elderly population (aged 60 years or older) to 

the overall population increased from 9.2% in 1990 to 11.7% in 2013 and is expect-

ed to reach 21.1% by 2050 [1]. According to the same report, 40% of older people live 

independently in their own homes. This ratio is about 75% in the 

developed countries. These facts will result in many societal 

challenges as well as changes in the health-care system, 

such as an increase in diseases and health-care costs, a 

shortage of caregivers, and a rise in the number of 

individuals unable to live independently [2]. 

Thus, it is imperative to develop ambient intel-

ligence-based assisted living (AL) tools that 

help elderly people live independently in 

their homes. The recent developments in 

sensor technology and decreasing sensor 

costs have made the deployment of vari-

ous sensors in various combinations via-

ble, including static setups as well as 

wearable sensors. This article presents a 

survey that concentrates on the signal 

processing methods employed with dif-

ferent types of sensors. The types of sen-

sors covered are pyro-electric infrared 

(PIR) and vibration sensors, accelerome-

ters, cameras, depth sensors, and micro-

phones.

Introduction
AL systems basically aim to provide more safety and 

autonomy and improve wellness and health conditions of 

older people while allowing them to live independently, as 

well as relieving the workload of caregivers and health providers. 

A fundamental component of the AL systems is the use of different types of 

sensors to monitor the activities of the residents. These sensors can be broadly catego-

rized into two groups: 1) static sensors at fixed locations, e.g., PIR sensors, vibration 

sensors, pressure sensors, cameras, and microphones, and 2) mobile and wearable sen-

sors, e.g., accelerometers, thermal sensors, and pulse oximeters. There are several 

choices of specific sensors or sensor combinations—currently there are many AL 
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 systems implementing various tasks, such as fall detection 

[3]–[5], mobile emergency response [6], video surveillance 

[7], automation [8], monitoring activities of daily living [9], 

and respiratory monitoring [10]. Falls among the elderly are a 

major concern for both families and medical professionals. 

Falls are considered to be the eighth leading cause of death in 

the United States [11] and fall injuries can result in serious 

complications [12], [13]. Autonomous fall detection systems 

for AL can reduce the severity of falls by informing other 

people to deliver help and reduce the amount of time people 

remain on the floor. These systems can increase safety and 

independence of the elderly.

To truly assist elderly people, an AL system should satisfy 

some basic requirements [14]:

 ■ Low-cost: Almost 90% of the older adults prefer to stay in the 

comfort of their own homes. Therefore, an AL system should 

be affordable by the average elderly person or  couple.

 ■ High accuracy: Since the aim is to enhance the wellness 

and the life quality of elderly people, a 

tolerable error rate should be achieved.

 ■ User acceptance: The AL systems 

should be compatible with the ordinary 

activities of people so that they can inter-

act with the system easily, i.e., by speak-

ing naturally, using simple gestures, etc. 

Also, users do not find wearable systems 

or those that need to be carried practical. 

Thus, contact-free and remotely control-

lable systems are desired. 

 ■ Privacy: The AL systems should be non-

visual and share minimal private data 

with the monitoring call center regarding the daily living 

activities of individuals.

Despite the presence of surveys [2], [15], [16] and prolif-

eration of different types of sensors in the AL field, a com-

prehensive study concentrating on the utilized sensor signal 

processing methods is not available. This article aims to 

provide an overview of most recent research trends in the 

AL field by focusing on PIR sensors, vibration sensors, 

accelerometers, cameras, depth sensors, and microphones 

and the related signal processing methods, which together 

meet most of the aforementioned requirements. Ambient 

information monitoring sensors are used in home safety 

[17]–[19], home automation [8], [20]–[23], activity monitor-

ing [14], [24]–[27], fall detection [28]–[34], localization and 

tracking [35]–[37], and monitoring the health status indica-

tors of elderly and chronically diseased people outside hos-

pitals [38]–[44].

Human activity recognition  
using various sensor modalities
The most important signal processing problem in AL systems 

is the recognition of human activity from signals generated by 

various sensors including vibration sensors, PIR sensors, and 

wearable accelerometers. Obviously, each sensor generates dif-

ferent kinds of time-series data. Therefore, signal-processing 

and machine-learning algorithms tailored for each specific 

sensor need to be developed. 

PIR sensor signal processing
PIR sensors are low-cost devices designed to detect the pres-

ence of moving bodies from stationary objects. They are easy 

to use and can even work in the dark, unlike ordinary vision-

based systems, because they image infrared light. A PIR sen-

sor functions by measuring the difference in infrared 

radiation between the two pyro-electric elements inside of it. 

This difference occurs due to the motion of bodies in the 

viewing range of the sensor. When the two pyro-electric ele-

ments are subject to the same infrared radiation level, they 

generate a zero-output signal by canceling each other out. 

Therefore, the analog circuitry of a PIR sensor can reject false 

detections very accurately. 

PIR sensors are widely used in the context of AL. In 

[38], eight PIR sensors are installed in the ceiling of hospi-

tal rooms  to assess the daily activities of 

elderly patients. The activities are classi-

fied in 24 different categories by check-

ing the number of sensors activated and 

recording the time interval for which they 

remain activated. Barger et al. [24] intro-

duce a system of distributed PIR sensors 

to monitor a person’s in-home activity. 

The activity level of the person is defined 

as the number of sensor firings in a room 

per time spent in the room. Mixture mod-

els are applied to the sensor data in the 

training set to develop a probabilistic 

model of event types. These models are then used to identi-

fy the type of event associated with each observation in the 

test set. In [27], a PIR sensor installed in a corner of a liv-

ing room is employed to detect the abnormalities in daily 

activities of an elderly person. The PIR sensor sends the 

value “1” to the controller if there are activities from the 

person and the value “0” otherwise. Hidden Markov mod-

els (MMs), forward algorithms, and Viterbi algorithms are 

used to analyze the obtained data sequence. If a certain 

deviation from the constituted models is detected, the care-

giver receives an alert. In [26] a wireless sensor network 

including PIR, chair, bed, toilet, and couch sensors is sug-

gested to determine the wellness of the elderly. Time-

stamped sensor activities are recorded and fed to 

predefined wellness functions. 

In [25], PIR and contact sensors are used to assess neuro-

logic function in cognitively impaired elders. The contact sen-

sor is responsible for tracking the presence or the absence of 

the resident and recording the time spent in the home and out 

of the home. PIR sensors are utilized for the estimation of 

walking speed and daily activity. The walking speed of the 

resident is estimated from the time of PIR sensor firings that 

are placed sequentially along a hall. The amount of daily 

activity is decided based on the number of sensor firings per 

minute when the subject is in the home. 

The most important signal 

processing problem in AL 

systems is the recognition 

of human activity from 

signals generated by 

various sensors including 

vibration sensors, PIR 

sensors, and wearable 

accelerometers. 
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In [35], a system to actively assist in the resident’s life such 

as housework, rest, sleep, etc. is described. The system is 

formed by an array of PIR sensors and locates a resident with 

a reasonable accuracy by combining the overlapping detection 

areas of adjacent sensors. In [17], an intruder detection system 

based on PIR sensors is developed. Mrazovac et al. [8] use a 

microphone array and a three-dimensional (3-D) camera in 

addition to PIR sensors for home automation, i.e., to detect the 

presence of and localize the users for smart audio/video play-

back control.  

The aforementioned studies all use the 

binary outputs produced by the analog 

PIR motion detector circuits. However, it 

is possible to capture a continuous-time 

analog signal corresponding to the ampli-

tude of the voltage signal of the PIR sen-

sor that represents the transient behavior 

of the sensor circuit. By processing these 

analog signals, more complicated tasks, as 

opposed to just the on/off type operations, 

can be accomplished. The block diagram 

of an intelligent PIR sensor signal pro-

cessing system is shown in Figure 1. The 

original output of the sensor signal ( )x t  is 

first digitized using an analog-to-digital 

converter. Feature vectors vn  are then 

extracted from the digitized signal [ ] .x n  

It is possible to extract a feature vector for 

each signal sample. However, it is compu-

tationally more efficient to extract a fea-

ture vector for a frame of data, as in 

speech processing systems. Finally, these 

feature vectors are fed to a classifier to 

detect the events of interest such as walk-

ing, falls, uncontrolled fires etc. The clas-

sifier is usually trained using past and/or 

simulated data. 

A PIR sensor-based system for human 

activity detection is described in [19], [33], 

and [45]. The system is capable of detect-

ing accidental falls and the flames of a 

fire. Instead of the binary signal produced 

by the comparator structure in the PIR 

sensor circuit, an analog output signal is 

captured and transferred to a digital signal 

processor for further processing. As 

shown in Figure 2(a), a walking event is 

almost periodic when the person walks 

across the viewing range of the sensor. On 

the other hand, a person falling produces 

a clearly distinct signature as shown in 

Figure 3, and uncontrolled flames lead to 

a signal with high-frequency content. 

Since flames of an uncontrolled fire flick-

er up to a frequency of 13 Hz, a sampling 

frequency of 50 Hz, which is well above 

the Nyquist rate, is chosen. The goal is to recognize falls, uncon-

trolled fire events, and a person’s daily activities. In practice, 

PIR signals are not as clearly distinguishable as the ones shown 

in Figures 2 and 3. For example, the person may walk toward 

the sensor and the periodic behavior is no longer clearly visible.

Wavelet transform is used for feature extraction from the 

PIR sensor signal. In the training stage, wavelet coefficients 

corresponding to each event class signals are computed and 

concatenated. Three, three-state MMs are designed to 

 recognize the three classes. The characteristics of the 
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FIGURE 1. A block diagram of an intelligent PIR sensor signal processing system.

FIGURE 2. A PIR sensor raw output signal recorded at a distance of 5 m (a) for a person walking and 

(b) for a flame of an uncontrolled fire.
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FIGURE 3. A time-domain PIR sensor signal record due to a person falling.
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 transitions between the three states of the MMs are different for 

each event class. The wavelet coefficient sequence correspond-

ing to the current time window of two seconds is fed to the 

three MMs, and the MM  producing the highest frequency 

determines the activity within the window. Uncontrolled flames 

are very accurately detected, since the sensor signal for a flick-

ering flame exhibit high frequency activity that no person can 

produce by moving his or her body as shown in Figure 2(b). 

It is not possible to distinguish a fall from sitting on the 

floor or a couch using only a single PIR sensor. In [33] and 

[45], multisensor systems are developed for fall detection. 

Sound, PIR, and vibration sensors are placed in a home. 

MMs are used as classifiers in these multisensor systems. 

They are trained for regular activities and falls of an elderly 

person using PIR, sound, and vibration sensor signals. Vibra-

tion and sound sensor data processing will be described in 

the next two sections. Decision results of MMs are fused by 

using a logical “and” operator to reach a final decision.  

In [21], a remote control system is developed based on a 

PIR sensor array and a camera for home automation. The sys-

tem recognizes hand gestures. The camera is responsible to 

detect the hands of the user. Once a hand is 

detected, simple hand gestures such as left-

to-right, right-to-left, and clockwise and 

counterclockwise hand movements are rec-

ognized by the PIR sensor signal analysis 

to remotely interact with an electrical 

device. The system includes three PIR sen-

sors, each of which is located at a corner of 

a triangle. Signals received from each PIR 

sensor are transformed into wavelet 

domain and then concatenated according to 

a predefined order. In this case, the distinc-

tive property of the resulting wavelet features for different 

hand gestures is not the oscillation characteristics, but the 

order of the appearances of the peaks in the wavelet sequence. 

Therefore, the winner-take-all (WTA) hashing, which is an 

ordinal measure, is used for further feature extraction and 

classification instead of MMs. Wavelet sequences are convert-

ed to binary codes using the  WTA hash method, and Jaccard 

distances are calculated between the trained and test binary 

codes. The model yielding the smallest distance is determined 

as the class of the current test signal. The system described in 

[21] produces higher recognition results than the system in 

[22], which uses only the binary outputs of the analog PIR 

sensor circuitry for the same task. 

In [41], a method for the detection of breathing movement 

using PIR sensors is proposed. PIR sensors are placed near a 

person’s bed. Sensor signals, corresponding to body  movements 

due to breathing activity, are recorded. Short-time Fourier anal-

ysis of the PIR sensors’ signals is carried out. The recorded sig-

nals are divided into windows, and the existence of sleep apnea 

within each window is detected by analyzing the spectrum. If 

there are no peaks in a window, that is an indicator of a sleep 

apnea. It may also be possible to measure the respiratory rate of 

a person who is sleeping using PIR sensor signals. 

Vibration and acoustic sensor signal processing
Accelerometers designed to measure vibration are either 

based on the piezoelectric effect or electromechanical energy 

conversion. They are transducers for measuring the dynamic 

acceleration of a physical device. All of the commercially 

available wearable fall detection systems are based on accel-

erometers. They convert vibrations into electrical signals 

depending on the intensity of the vibration waves in the axis 

of the vibration sensor. Vibration sensors can be categorized 

into two groups based on the number of their axes: one-axis 

and three-axes sensor types.

As mentioned previously, vibration sensors can be wear-

able or they can be installed on intelligent homes with the aim 

of sensing the vibrations on the floor. In this section, we first 

review the stationary systems. 

Regular daily activities, such as walking, running, sitting 

on a chair, or objects falling on the floor cause measurable 

vibrations on the floor. Human falls also cause vibrations, 

which are transmitted through the floor. Therefore, a vibra-

tion sensor installed in each room of a house or an apartment 

can pick up the vibrations on the floor, and it may be possible 

to detect a human’s fall by continuously 

analyzing the sensor signal. In Figure 4, a 

ten-second-long vibration sensor signal 

generated by a person walking is shown. It 

is clearly different from the human fall sig-

nal shown in Figure 5. This signal was 

recorded on a concrete floor and the fall 

took place 3 m away from the sensor. 

Human falls usually take about two sec-

onds and create strong vibration signals 

because a typical human is more than 100 

lb heavier than most of the objects that can 

fall on the floor in a house. Machine-learning techniques can 

be used to classify the vibration signals. 

In [33], a multisensor AL system consisting of PIR sensors 

and vibration sensors is developed. Vibration sensor signals 

are sampled with a rate of 500 Hz. As shown in Figure 5, there 

is very little signal energy above 125 Hz on a concrete floor. 

Since vibrations and acoustic and sound waves are related to 

each other, it is natural to use the feature extraction techniques 

utilized in speech processing to analyze the vibration signals. 

Various wavelet and frequency domain feature extraction 

schemes are employed every two seconds to extract feature 

vectors from the signals. Wavelet and different frequency anal-

ysis methods are studied and compared to each other. Discrete 

Fourier transform (DFT) subband energy values, MFCCs, dis-

crete wavelet transform (DWT), and dual-tree complex wave-

let transform (DT-CWT)-based feature extraction methods are 

studied for feature extraction [33]. These feature vectors are 

classified using a support vector machine (SVM) for fall 

detection. They can also be used to estimate a person’s daily 

activity and can provide feedback to him or her. 

In [33], the data set contains 2,048-sample-long signals cor-

responding to 100 falls, 1,419 walking/running incidents, 30 sit-

ting cases on the floor, 30 slammed door cases, and 65 cases of 

Even though several  

user-activated commercial 

devices are available for 

fall detection, they have 

limited benefits, especially 

in situations where the 

user loses consciousness. 
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fallen items. Eight MFCCs, eight DFT coefficients, eight wave-

let coefficients, and eight CWT coefficients are extracted for 

each record. About 40% of falling and walking/running records 

are used for training the SVM classifier. 

About one-third of sitting, slammed door, 

and fallen object records are also used for 

training. Remaining records are used as the 

test data set. The data set is available to the 

public. Best recognition results are obtained 

when complex wavelet transform based fea-

tures and modified mel-frequency cepstrum 

coefficients are used. When combined with 

PIR sensors the multisensor AL system 

becomes very reliable. The AL system has 

the capability to place a phone call to a call 

center whenever a fall is detected. 

In [46], acoustic sensors are used instead of vibration sen-

sors for fall detection. The acoustic sensor is placed like a 

stethoscope on the floor. In a practical system, it is desirable to 

have a single vibration sensor unit installed on each floor of a 

house; however, there are some challenges. This unit has to be 

robust against variations on the type of the floor and the weight 

of the person as well as the distance 

between the sensor and the fall. The dis-

tance problem can be solved by installing 

two or more sensors, but this increases the 

cost. To cover all possibilities, extensive 

studies have to be implemented. In addition, 

the overall multisensor system described in 

[62] turns out to be a little bit too costly for 

a typical house and the network infrastruc-

ture. We hope that the Internet of Things 

(IoT) will be widespread in the near future, 

which will make the entire system feasible.

Wearable accelerometer sensor signal processing
Even though several user-activated commercial devices are 

available for fall detection, they have limited benefits, especially 

AL systems may provide 

safety and autonomy 

for elderly people while 

allowing them to live 

independently, as well  

as relieve the workload  

of caregivers and  

health providers.

FIGURE 4. A ten-second-long vibration sensor signal generated by a person walking.
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FIGURE 5. (a) A two-second-long human fall record. (b) The Fourier transform magnitude.  

The Fourier transform domain is divided into eight nonuniform bands, and subband energy values 

are used as a feature set representing the time-domain vibration signal together with wavelet coef-

ficients and Mel-frequency cepstral coefficiencts (MFCCs).



41IEEE SIGNAL PROCESSING MAGAZINE   |   March 2016   |

in situations where the user loses consciousness. As previously 

mentioned, all commercially available autonomous fall detec-

tion systems are based on wearable accelerometers. Such sys-

tems can also provide information about an individual’s 

functional ability and lifestyle. Wearable devices also use tilt 

sensors to automatically detect a fall event. One drawback is that 

the individual has to wear the device continuously day and 

night. On the other hand, monitoring is not limited to confined 

areas, where the static sensors are installed, and can be extended 

wherever the subject may travel. 

Dai et al. [47] developed a fall detection system using the 

accelerometers of a mobile phone. The app is capable of detect-

ing falls when the phone is placed in a shirt pocket, on a belt, or 

in a pants pocket. When the average magnitude of the 3-D 

acceleration vector and the average value of the vertical acceler-

ation in a short-time window exceed predefined thresholds a fall 

is reported. In [48] and [49], adaptive thresholds are developed. 

In [48], the threshold is determined using the body mass index 

of the user. Currently, mobile phone apps are not widely used by 

elderly people. In addition, methods based on using thresholds 

cannot be as reliable as systems that use machine-learning tech-

niques, since threshold-based methods are more prone to pro-

ducing frequent false alarms.

In [50], artificial neural networks (ANNs) are used for 

human-activity recognition. A single triaxial accelerometer is 

attached to the subject’s chest. Acceleration signals are modeled 

using autoregressive (AR) modeling. AR model coefficients 

along with the signal-magnitude area and the tilt angle form an 

augmented feature vector. The resulting feature vector is further 

processed by the linear-discriminant analysis and ANNs to rec-

ognize various human activities. 

Camera sensor-based methods 
In recent years, one of the key aspects of elderly care has been 

intensive activity monitoring, and it is very important that any 

such activity monitoring be also autonomous. An ideal autono-

mous activity monitoring system should be able to classify 

activities into critical events, such as falling, and noncritical 

events, such as sitting and lying down. While fast and precise 

detection of falls is critical in providing immediate medical 

attention, other noncritical activities like walking, sitting, and 

lying down can provide valuable information in the study of 

chronic diseases and functional ability monitoring [51], [52] and 

for early diagnosis of potential health problems. Furthermore, 

the system should be able to smartly expend its resources for 

providing quick and accurate real-time response to critical 

events versus performing computationally intensive opera-

tions for noncritical events.

There has been a lot of work on activity monitoring by 

vision-based sensors [28], [53]–[61]. However, in all of these 

methods, cameras are static at fixed locations watching the 

subjects, thus introducing the issue of confining the monitor-

ing environment to the region where the cameras are 

installed. The images acquired from the cameras are usually 

offloaded to a dedicated central processor. Also, 3-D model-

based techniques require initializations and are not always 

robust. Another major practical issue is that the subjects who 

are being monitored often raise privacy concerns [54], as they 

feel they are being watched all the time.

In contrast to static camera-based methods, Ozcan et al. [5] 

take a different approach, introducing an autonomous fall 

detection and activity classification system by using wearable 

embedded smart cameras. Since the camera is worn by the sub-

ject, the monitoring is not limited to confined areas and extends 

to wherever the subject may travel, as opposed to static sensors 

installed in certain rooms. In addition, since the images cap-

tured will not be of the subject, as opposed to static cameras 

watching the subject, privacy issues for the subjects is alleviat-

ed. Moreover, captured images are processed locally on the 

device, and they are not saved or transmitted anywhere. Only 

when a fall occurs can an appropriate message be wirelessly 

sent to emergency response personnel, optionally including an 

image from the subject’s camera. This image of the surround-

ings can be helpful in locating the subject. Also, the captured 

images carry an abundance of information about the surround-

ings that other types of sensors cannot provide. A recent study 

about privacy behaviors of lifeloggers using wearable cameras 

discusses privacy of bystanders and ways to mitigate concerns 

[62]. It is also expected that wearable cameras will be employed 

more to understand lifestyle behaviors for health purposes [63].

The proposed approach [5] is based on the oriented image 

gradients. Different from the original histograms of oriented 

gradients (HOG), separate histograms for gradient strength 

and gradient orientations are constructed, and the correlation 

between them is found. The gradient orientation range is 

between 0–180°, and it is equally divided into nine bins. The 

(a) (b) (c) (d)

FIGURE 6. Example frames captured during a fall from a standing position.
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gradient strength histogram contains 18 bins. Moreover, instead 

of using a constant number of cells in a 

block, the cells that do not contain signifi-

cant edge information are adaptively and 

autonomously determined and excluded 

from the descriptor in this proposed modi-

fied HOG algorithm. In [5], it is shown that 

the proposed method is more robust com-

pared to using fixed number of cells in 

detecting falls. In addition to detecting falls, 

the proposed algorithm provides the ability 

to classify events of sitting and lying down using optical flow. 

The method is composed of two stages. The first stage involves 

detection of an event. An event can be one of the following: fall-

ing, sitting, or lying down. Once an event is detected, the next 

stage is the classification of this event. An example set of cap-

tured frames for falling from standing up position is presented 

in Figure 6.

As reported in [5], the fall detection part of the algorithm 

was implemented on the CITRIC embedded camera platform 

[64], which is a small, stand-alone, battery-operated unit. It fea-

tures a 624-MHz fixed-point microprocessor, 64 MB synchro-

nous dynamic random access memory, and 16 MB NOR 

FLASH memory. The wireless transmission of data is per-

formed by a Crossbow TelosB mote. The images are processed 

locally onboard, and then dropped, thus, they are not trans-

ferred anywhere. For the falls starting from a standing position, 

an average detection rate of 87.84% has been achieved with 

prerecorded videos. With the embedded camera implementa-

tion, the fall detection rate is 86.66%. Moreover, the correct 

classification rates for the events of sitting and lying down are 

86.8% and 82.7%, respectively.

More recently, we have implemented the fall detection 

part of this algorithm on a Samsung Galaxy S4 phone with 

Android OS and performed experiments with ten subjects 

carrying this phone. The experimental setup can be seen in 

Figure 7. We have also implemented a method to fuse two 

sensor modalities: the accelerometer and camera data. The 

average sensitivity rates for fall detection are 65.66%, 

74.33%, and 91%, when we use only accelerometer data, 

only camera data, and camera data together with accelerom-

eter data, respectively.

Zhan et al. [65] propose an activity recognition method that 

uses a front-facing camera embedded in a user’s eyeglasses. 

Optical flow is used as the feature extraction method. Three 

classification approaches—k-nearest neighbor, logitBoost, and 

SVM—are employed. Further smoothing with hidden MMs 

provide an accuracy of 68.5–82.1% for a four-class classification 

problem, including drinking, walking, going upstairs, and going 

downstairs, on recorded videos.

Moghimi et al. [66] use an RGB-D camera mounted on a 

helmet to detect the users’ activities. They use compact and 

global image descriptors, including GIST, and a skin seg-

mentation-based histogram descriptor. For activity classifica-

tion, learning-based methods such as bag of scale invariant 

feature transform words, convolutional neural networks, and 

SVMs were explored.

Ishimaru et al. [67] propose an activity 

recognition method using eye blink fre-

quency and head motion patterns acquired 

from Google glass. An infrared proximity 

sensor is used for blink detection. The 

average variance of a 3-D-accelerometer is 

calculated to construct the head motion 

model. In the classification framework, 

four features (variance value of accelerom-

eter, mean value of blink frequency, and 

the x-center and y-center of mass value of the blink frequency 

histogram) have been used to classify five different activities 

(watching, reading, solving, sawing, and talking) on 

eight  participants with overall accuracy of 82%.

Conclusions
AL systems may provide safety and autonomy for elderly peo-

ple while allowing them to live independently as well as relieve 

the workload of caregivers and health providers. However, to 

find widespread use, these systems should be robust and reli-

able. Current commercially available autonomous systems, 

which are not user activated, employ simple threshold-based 

algorithms for sensor data processing. As a result, they are 

prone to producing too many false alarms. Advanced signal 

processing techniques have to be developed to take full advan-

tage of the recent developments in sensor technologies and pro-

vide robustness against variations in real-life conditions and 

the environment. Moreover, fusing multiple sensor modalities 

provides promising results with higher accuracy. Computation-

al problems can be solved with the help of the IoT, which refers 

to wireless systems connecting industrial, medical, automotive, 

and consumer devices to the Internet. The IoT will allow 

objects and people to be sensed over existing Internet infra-

structure. Vibration and PIR sensors, acoustic sensors and 

microphones, and cameras can be connected to form a network 

for an intelligent home designed for elderly people. The data 

and decision results that the sensors produce can be processed 

and fused over a cloud or a fog. We expect that the IoT will 

lead to remote health monitoring and emergency notification 

AL systems that will operate autonomously, without requiring 

user intervention. 

Vibration sensors can 

be categorized into two 

groups based on the 

number of their axes:  

one-axis and three-axes 

sensor types.

FIGURE 7. An Android smartphone attached to the waist.
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