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Smart device industry allows developers and designers to embed different sensors, processors, and memories in small-size
electronic devices. Sensors are added to enhance the usability of these devices and improve the quality of experience through
data collection and analysis. However, with the era of big data and machine learning, sensors’ data may be processed by
different techniques to infer various hidden information. The extracted information may be beneficial to device users,
developers, and designers to enhance the management, operation, and development of these devices. However, the extracted
information may be used to compromise the security and the privacy of humans in the era of Internet of Everything (IoE). In
this work, we attempt to review the process of inferring meaningful data from smart devices’ sensors, especially, smartphones.
In addition, different useful machine learning applications based on smartphones’ sensors data are shown. Moreover, different
side channel attacks utilizing the same sensors and the same machine learning algorithms are overviewed.

1. Introduction

Internet of Everything (IoE) is an information technological
term that combines sensing, computation, information
extraction, and communication functionalities together in a
device. IoE allows different electronic devices with different
capabilities to sense the environment and to communicate
for data exchange [1]. IoE is the general form of wireless sen-
sor networks [2]. IoE nodes may have different classes, types,
and capabilities. For example, smartphones, tablets, laptops,
home appliances, and even cars are examples of nodes in
IoE. These nodes can sense the environment utilizing their
different sensors and process data, retrieve useful informa-
tion, communicate over the Internet, and control their
behavior adaptively. IoE nodes’ smartness and intelligence
are not in their computational capacity, but in their ability
to communicate and exchange information. Communication
links allow these devices to learn from their sensed data. It
trains these devices to leverage its information to perform
new useful tasks [3]. For example, a fridge with an embedded
processor is not smart until it has the ability to communicate

with people, other fridges, and supermarkets to order missing
items. Moreover, it should select from different supermarkets
to buy the items with price offers. This smartness came out
from data communication over the Internet.

IoE is a complex approach with massive applications,
dreams, and myths. It has uncountable applications in health,
engineering, computer science, marketing, and even social
sciences [4, 5]. However, it has many issues that require more
investigation. Security and privacy dominated in the IoE
research field [6]. How to secure your data and applications
is a hot research topic in IoE. However, people security as a
drawback in the IoE paradigm should be studied. Many ques-
tions emerged in this field. What to sense from the environ-
ment and what to upload to the Internet? How to enhance
privacy if sensors are everywhere in people’s lives? How to
teach people to deal with IoE in a responsible way? Can IoE
be harmful?

Smart devices play a main role in IoE [7]. They are
equipped with multicommunication interfaces, such as
Wi-Fi, Bluetooth, near-field communication (NFC), and
cellular communication. In addition, they are equipped with
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a massive number of sensors. Moreover, they have
embedded operating systems (OSs) that are referred to
as IoT OSs [3]. When smartphones are mentioned in this
survey, we are referring to smartphones, tablets, and
smartwatches since they have the same characteristics
with few industrial differences. According to the statistics
reported by Statista (https://www.statista.com/statistics/
330695/number-of-smartphone-usersworldwide), the num-
ber of smartphones worldwide exceeded 2.8 billion with
an estimation of 5 billion in 2019. Smartphones have been
employed heavily in controlling and monitoring the process
of hundreds of smart home products. For example, WeMo
(Belkin Wemo: home automation, http://www.belkin.com/
us/Products/home-automation/c/wemo-home-automation/)
product allows the users to control multiple features in their
houses, such as power usage of different appliances. This
product is controlled by smartphones. Another example is
Apple HomeKit (https://developer.apple.com/homekit/) for
security and surveillance systems. A third example is Reemo
(http://www.getreemo.com/) that converts houses into
smart homes. Smartphones play a monitoring and control-
ling role in these applications. However, smartphone capa-
bilities and sensors allow them to play a greater role in
health, identification, localization, and tracking.

Sensors are used to enhance the smartphones’ usability.
However, researchers and developers attempted to leverage
these sensors in much more complex applications, such as
user identification, subscriber tracking, and even personality
traits. These applications require mining of hidden informa-
tion of the smartphones’ sensor data. In other words, sensor
data are leveraged in new indirect ways to predict and esti-
mate new features not directly designed to be assessed by
these sensors. This new usage paradigm of smartphone sen-
sors reveals privacy and security issues since smartphone
users are willing to upload their harvested data without any
awareness of the information that can be mined from them
[8]. This issue was referred to as big data accident [9]. The
author in [10] proposed a system based on normal accident
theory to show drawbacks of big data accident. He has shown
that big data may be converted to “evil” in mining free
uploaded information. In [8], the author has shown that
users have limited control over the uploaded data which is
one of the main privacy concerns in IoE. In [9], the authors
proposed ten rules to guide the privacy and security issues
in big data and the ethics that should be emerged. The main
motivation in this work is to gain more insights into the
privacy issues of smartphones as devices in IoE.

In this work, some of the interesting applications that
have been proposed and designed for exploiting smart
devices’ sensor data are shown as the big opportunities in
the new era of IoE. Nevertheless, the accuracy of these appli-
cations is shown as one of the substantial issues that requires
answers. On the other hand, security and privacy issues are
introduced as the doubts of these devices. In this work, we
seek to show that security, privacy, and big data accuracy of
smart devices in the era of IoE are data content stored not
only in the device but also in Internet servers. However, even
the raw data extracted from smart device sensors can intro-
duce more threats than the stored contents.

Our contribution in this work is summarized as follows:

(i) Surveying the applications of smart devices’ sensor
hidden data that have been conducted over the
period of 2004–2018

(ii) Dividing the threats of smart devices’ sensor hidden
data into three main categories and proposing differ-
ent scenarios of these threats

(iii) Discussing several proposed solutions for the hidden
data threats

(iv) Proposing a simple approach to start inferring
hidden information from smart devices’ sensor data
without deep programming skills

The rest of this paper is organized as follows: Section 2
overviews smart device architecture and their internal com-
ponents. Section 3 shows how data mining and IoE collide
in the area of smart devices. Section 4 shows the useful appli-
cations of hidden data extraction. Section 5 shows the disad-
vantages of extracting sensor hidden data and the methods to
start digging the smart device hidden data. Finally, we con-
clude this work in Section 6.

2. Smart Device Architecture

Smart devices in this work are defined as the hand-held
devices. These include smartphones, tablets, and smart-
watches. These devices have approximately the same internal
architecture with differences in the speed, size, number of
sensors, and storage capacity. In addition, they adopt the
same operating systems and software stacks. The apps
designed for a smartphone work and operate in tablets.
Figure 1 shows the block diagram of the internal architecture
of a smart device. As shown in the figure, smart devices
have two main parts: processors and sensors. There are also
other interfacing parts that connect the sensors to the pro-
cessors, such as analog-to-digital convertors (ADC), digital-
to-analog converters (DAC), voice codecs, and the main
memories to handle smart devices’ app instructions. The
following sections overview the main part of the figure with
emphasis on sensors.

2.1. Smartphone Processors. Modern smartphone architec-
ture contains two or more processing units. These include
application and baseband processors. In the following, these
processors are introduced.

2.1.1. Application Processor. This processor is similar to a
central processing unit (CPU) in personal computers (PCs)
or laptops. Nevertheless, it has three main design features.
First, it has a power saving mechanism. Second, it is respon-
sible for managing all sensors, SD card, and communication
modules of the smartphone. The embedded sensors in the
smartphone are analog sensors. These sensors require
analog-to-digital converters (ADC). To fit all of these
components in slim smartphones, system on chip (SoC)
technology is utilized as in microcontrollers. Moreover,
microelectromechanical system (MEMS) technology is
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utilized to design the small sensors. Third, it utilizes the
trusted execution environment, which is responsible for stor-
ing the data in a trusted, secure, and protected area [11]. In
addition to these components, another coprocessor may be
embedded, such as Huawei Kirin 970, Apple M7, and Motor-
ola X8. This coprocessor is a low-power electronic compo-
nent that has its own framework and is capable of natural
language processing (NLP) and contextual computing pro-
cessing (CCP). CCP processes accelerometer, gyroscope,
and magnetometer sensor data in real time. The coprocessor
is always on and processes sensor data in real time even if the
application processor is in a low-power mode and the
touchscreen is turned off. The Google audio search “Google
Go” in Android smartphones is a good example of NLP capa-
bilities. New coprocessors have neural network capabilities,
such as Huawei Kirin 970, which can be found in Huawei
Mate 10.

2.1.2. Baseband Processor. This processor is a hardware iso-
lated component that has connections with subscriber iden-
tity module (SIM) cards, microphone, and speakers. It is
responsible for the cellular communication, SMS, and data
over the cellular network. It is equipped with real-time oper-
ating systems (RTOS). This processor is isolated to allow
voice calls to continue in a normal way even if the other com-
ponents and applications of the smartphone are overloaded.
Finally, this processor is responsible for the handoff process
between cellular network cells. It is worth mentioning that
all of these processors may be designed in the SoC method
to allow shared memory access.

2.2. Sensors. Smart device sensors have been embedded in
these devices to enhance their usability, controllability, and
management. For example, the proximity sensor has been
added to enhance the power management of the device; i.e.,
if the device is near the user’s ear, the screen will automati-
cally turn off. Another example is an accelerometer that
senses screen positioning and rotates its content according
to users’ positions. And the final example is the battery sensor

that controls the charging process and the temperature of
the battery.

Hidden data research has shown that the data sensed
from these sensors can be utilized and interpreted to show
other information as in the following sections. Moreover,
Section 3 shows how the communication and networking
parts equipped in smart devices can be leveraged as hidden
data-harvesting sensors. This leads to the categorization of
smart device sensors according to their functionalities into
active and passive sensors. Any sensor may act as an active
or a passive sensor according to its usage. In other words, if
the data harvested from a sensor is leveraged in the same
way as the smart device designers or developers designed it,
it is called an active functionality. However, if the collected
data has been interpreted in new ways, these sensors are
functioning in a passive way. If the sensors are leveraged in
this way, hidden information problem occurs. In the follow-
ing sections, different smart device sensors are introduced.

2.2.1. Touchscreen. Touchscreen is an electronic component
that is responsible for the basic input and output operations.
It is used for tapping and character typing. Three main inter-
action procedures are defined for touchscreen. First, touch-
ing or tapping is defined as the process of clicking on the
screen in any location to open, to close, or to type a character.
It is the main activity of the touchscreen. Second, multitouch
is defined as the process of tapping the screen by more than
one finger simultaneously. This function is heavily used in
gaming applications [12]. Third, gesture is defined as the
process of drawing a certain pattern on the touchscreen.
Gestures may be implemented with one finger as drag and
drop or multifingers as in the process of resizing photos
and changing camera zoom. Many research and develop-
ment works have been conducted to exploit the data of these
three activities in different methods to obtain some hidden
data. One of the visualization methods of touchscreen data
is heat maps.

(1) Heat Maps. One of the new data visualization methods of
multitouching or gesture on a smartphone screen is known as
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heat maps [13]. Developers have developed multiple
methods to generate these maps [14]. Figure 2 shows an
example of these maps.

These maps as mentioned earlier are used for data visual-
ization purposes. Many smartphone applications have been
written to utilize these maps to debug written applications
and study user behaviors when debugging application issues,
such as Appsee [15]. Moreover, many works have been con-
ducted to study touch gesture utilizing touch maps for health
diagnoses, such as Down syndrome [16], perceived difficulty
[17], and issues in fine motor skills and eyes [18].

(2) Touchscreen as A Passive Sensor. All the examples that we
will show utilize the touchscreen in an active way: touching
speed, delay, typing time, and gestures. However, researchers
found another method to obtain useful data from the
touchscreen that can be utilized with other smartphone sen-
sors to study sleeping behaviors of the users by counting how
many times the touchscreen opens and closes [19]. More-
over, it can be utilized with the alarm application to study
how fast users respond to wake-up alarms [20].

2.2.2. Motion Sensors. Three main sensors are embedded in
modern smart devices for motion detection: accelerometer,
gyroscope, and magnetometer. The accelerometer detects
changes in the device displacement, orientation, and tilt
around three axes by measuring acceleration forces. Its oper-
ational theory depends on the value changes of capacitance
while a movable mass freely moves between the fixed plates
in the MEMS. The total voltage changes from all plates can
be recorded and utilized. Figure 3 shows the simple 2D struc-
ture of the accelerometer.

On the other hand, the gyroscope measures how fast the
device rotates along the three axes [21]. Its internal structure
is similar to the structure of the accelerometer. However, the
rotational power moves the mass to change the capacitance
values of the internal fixed plates. Figure 4 shows the simple
2D structure of the gyroscope. In fact, gyroscopes and accel-
erometers are often used together in applications as shown in
Section 4.1.

A magnetometer is a sensor that measures the strength of
the magnetic field around the phone from which the phone is
able to obtain its absolute direction related to the earth’s geo-
magnetic field [22]. Most magnetometers depend on the
amount of voltage that is detected across a metallic element
when a magnetic field is present. Therefore, magnetometers
are mainly used in electronic compass applications [23, 24].

Motion sensors are analog sensors. The output of these
sensors is a varied level of voltage. The voltage variation is
converted using ADC into a digital number that can be read
and shown in the digital world. Motion sensors have differ-
ent frequencies, which define how many new measurements
are taken every second. To extract useful information of
motion sensor data, features are extracted. To extract these
features, the frequency of reading is set. Moreover, multi-
reading values are grouped together to form a window.
The size of these windows varied in the conducted research
from 10 to 120 readings. Finally, different features are

calculated from these windows. These features are catego-
rized in three main classes: time, frequency, and wavelets.
Table 1 shows the most popular time-domain features, and
Table 2 shows the frequency-domain features that are dom-
inant in hidden information extraction from these sensors.
The definitions of these features and their equations can be
found in [25].

Figure 2: Heat maps (https://uxcam.com/features/touch-heatmap).
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2.2.3. Multimedia Sensors. Two main multimedia sensors are
embedded in smart devices: camera and fingerprint and
microphone. In the following sections, the camera image
acquisition process and fingerprint sensors are introduced.

(1) Camera. Shooting a photo with a smart device camera
passes five different complex stages. The process starts by
collecting the light through the camera lens and focusing
the light on the internal filter. Subsequently, the output
RGB colors are passed to the main camera sensor, the
CCD/CMOS sensor. In this stage, each color is manipulated
as separated components. To view the last image, color
interpolation and image postprocessing step are required.
Each one of these stages leaves a fingerprint on the obtained
image. This glitch may be utilized to track any photo back to
the camera that took it as shown in the following sections.
Figure 5 shows the image harvesting pipelining procedure
of a smartphone camera.

(2) Fingerprint. Fingerprint is a type of biometric recogni-
tion systems. Biometric recognition can be defined as the
process where the identity of the user is established
through identification or verification [26]. It gains popu-
larity since its process depends on the users as who they
are and not something they carry or remember like other
traditional security systems. The biometric recognition fea-
ture heavily depends on the physical, chemical, and behav-
ioral characteristics of the users’ body like the fingerprint,
iris, face, voice, or even body odor or body heat [27].
Delac and Grgic conducted a nice survey of biometric rec-
ognition methods covering most of them [28]. Among
those defining characteristics, the fingerprint is the most
commonly used in user identification systems since users
have distinctive fingerprint patterns for each finger [29].
Hence, fingerprint systems are basically pattern recogni-
tion systems for the fingers [30] where the sensor mea-
sures the distances and detects the patterns between the
bumps and grooves that shape the fingerprint [31]. After

that, the system either compares the result with the bio-
metric data that were previously acquired from the
user—verification process—or compares it with a database
of fingerprint biometrics from different users—identifica-
tion process [26].

There are two main types of fingerprint sensors that are
still popular and widely used in different biometric recogni-
tion systems [32, 33]: optical sensors, where the light that
reflected off the fingerprints’ ridges and valleys is captured
and a fingerprint image is created [34, 35] as shown in
Figure 6, and capacitive sensors, where the same procedure
is done utilizing the capacitance differences in the fingerprint
to create the same image as illustrated in Figure 7. The focus
here will mainly be on the capacitive sensors since almost all
smart mobile phones that offer the biometric recognition are
equipped with capacitive fingerprint sensors. This user iden-
tification method is becoming more and more popular
among mobile phone users. In fact, studies have shown that
around 35% of people use the fingerprint recognition as a
user verification method on their phones [36]. It has been
estimated that more than half of the mobile phones that will
be sold in 2019 will be equipped with fingerprint sensors [29,
37]. And even though the fingerprint can be considered a
secure way of locking and unlocking a mobile phone, there
are some techniques and methods that may be used to create
fingerprint spoofs to hack or unlock a mobile phone. Cao and
Jain showed that a smartphone can be hacked or unlocked
successfully using a 2D printed fingerprint from the original
user [29]. Other studies went even further by constructing a
fingerprint image from minutiae. The results showed that
there is a very high resemblance between the original and
the reconstructed fingerprint [38]. Ben-Asher et al. suggested
a two-step authentication method where the fingerprint,
combined with the touchscreen, is used to verify or identify
the user [39].

2.2.4. Barometer. A barometer is one of the sensors that are
recently added to smartphones. It measures changes in the
atmospheric pressure in the surroundings of the phone. It
is very sensitive since it can measure changes in atmo-
spheric pressure inside the same building or structure. It
can be utilized to predict weather. Moreover, it can mea-
sure the altitude of the device [40]. Wu et al. have shown
that smartphone barometers can be used to detect the
buildings’ door opening/closing events anywhere inside
the building based on sudden changes in atmospheric pres-
sure readings [41].

2.2.5. Ambient Light Sensor. An ambient light sensor is a
photodetector sensor that detects the surrounding or ambi-
ent light of the smart device and reconfigures the brightness
of the smart device screen. It is also utilized to dim the
screen to reduce power consumption of the battery. In
[42], it has been utilized to study the mental health of smart-
watch users. Moreover, it will be shown in Section 4 that this
sensor has been widely leveraged to extract users’ screen
locking patterns.
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2.2.6. Other Sensors. There are other sensors embedded in
smart devices, such as proximity and battery temperature
sensor. However, few applications associated with these sen-
sors are found in the literature. The battery temperature sen-
sor has been used in health applications to tackle death
situations when the body temperature drops rapidly [43].
For the proximity sensors, to the best of our knowledge, no
applications or research has been conducted to infer different
information from its harvested data.

3. Smartphones, Data Mining, and IoE

Data mining is the science of digging useful information
from big data records and repositories. These repositories
are created from user contents and machine sensors. The
issue is not how to harvest these data. The issue is how to
mine it. Smartphones are equipped with tens of sensors and

electronic components that generate data in real time [44].
These electronic components and sensors have been embed-
ded in smartphones to enhance usability of these devices.
However, researchers have found massive methods to lever-
age these components and sensors to obtain different infor-
mation. Many open-access datasets have been collected
over the years. They can be downloaded freely from the
Internet. One of these datasets is the LiveLab dataset [45],
which consists of mobile logs of 100 volunteers over the 14-
month period. The dataset consists of fifteen different SQL
tables. It has been studied in more than 278 scientific papers
according to Google Scholar. Different hidden information
has been extracted from it. Another online available dataset
is in [46] which has been cited in 342 papers. 30 volunteers
participated to collect it. It focused on the accelerometer sen-
sor. It has been extended in [47] and obtained another 130
citations. They extended it by more instances. However, they
did not add more sensors. Another example of a dataset that
has been collected is in [48]. This dataset focused on the Wi-
Fi module in the smartphone, accelerometer, and gyroscope.
Moreover, smartwatch data has been also recorded. A final
example is the massive dataset [49, 50], which consists of
life-logged data of 35 users over two months. It recorded all
smartphone activities of the users. This dataset obtained
approximately 100 citations. A common feature of all of these
datasets is that they did not record any of the users’ content
or any private data. In other words, the data collected are
treated as normal data from smartphone users. With more
than a thousand paper published with different extracted
information from these datasets of nonprivate contents
and data, it is obvious how this nonprivate data led to the
extraction of massive information that can track and iden-
tify users’ activities.

As mentioned, the problem is not in harvesting the data
itself. The real problem is how to connect the data from dif-
ferent sensors to focus on another hidden meaning. The

Table 1: Time-domain features.

Feature Citation Definition

Mean [18, 74, 75, 92, 95, 180–184] The summation of data points divided by their number

Std deviation [18, 58, 74, 75, 180, 183, 184] It is the square root of variance

Average deviation [18, 58, 74, 180, 183] The average separation of data points from their mean or average value

Skewness [18, 180, 183]
Measures the asymmetry from the mean value. It utilizes the

mean and the variance

Kurtosis [18, 180, 183]
Estimates the frequency of extreme values. It utilizes the mean

value in its formula

RMS amplitude [18, 180, 183, 184]
It is leveraged to calculate the power of a signal. It utilizes the maximum

value of a set

Lowest value [18, 180, 182–184] The maximum data point

Highest value [18, 180, 182–184] The minimum data point

ZCR [18, 183]
Zero crossing rate is a counter of how many times the data points

cross the zero value

Nonnegative count [18, 183] Total number of positive data points in a set

Average absolute difference [75, 185] The average of the total differences between all data points in a set

Time between peaks [75, 184, 185] The number of points between two high peaks or low peaks

Binned distribution [75] The processes of grouping data points into smaller number of points or “bins”

Table 2: Frequency-domain features.

Feature Citation

Spectral centroid [18, 180, 181, 183]

Spectral Std deviation [180, 183]

Spectral kurtosis [18, 180, 183]

Spectral skewness [18, 180, 183]

Spectral crest [18, 180, 183]

Irregularity-J [18, 180, 183]

Smoothness [18, 180, 183]

Flatness [18, 180, 183]

Roll off [18, 180, 183]

Entropy [18, 183]

Brightness [18, 183]

Roughness [18, 183]
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mining process is not also an issue; machine learning algo-
rithms are useful in finding models for the required focused
information [44]. This process is like hacking a system. Infor-
mation is harvested from active and passive probing, such as
the sensor data. Subsequently, mining is leveraged to find
errors, breaches, and bugs in the system. Finally, algorithms
are written to exploit the system. The hard step in the data
mining for the big data system is to connect the inputs. In
other words, extract useful features from the data and to find
information of the harvested data.

Machine learning algorithms (MLAs), supervised and
unsupervised, are used heavily in different well-known appli-
cations, such as spam filtering, expert systems, and friend sug-
gestions in a social network. Many programming libraries in
all programming languages have been written to allow the
implementation of MLA in few lines. This allows researchers
to focus on the developed application and the interpretation
of the data. Figure 8 shows the most popular MLA utilized
in the conducted smart device sensor hidden data extraction
works. As shown in the figure, the number of these algorithms
is massive and they cannot be introduced in one paper. How-
ever, threemain algorithms will be introduced in the next sec-
tions: random forest, support vector machine (SVM), and
artificial neural network (ANN). These algorithms have been
selected since they have been leveraged in more than 70% of
the conducted research surveyed in this paper.

3.1. Random Forest. Random forest is a supervised MLA that
has two main applications, regression and classification. Ran-
dom forest is an enhanced version of decision trees that have
been introduced in the 80s. In random forest, multidecision
trees are constructed from the same training data. Subse-
quently, these trees are averaged to obtain the required out-
put. Random forest has been proposed to tackle two main
issues in the classical decision trees, overfilling and high vari-
ance [51]. As in decision trees, random forest utilizes the “bag-
ging” training method to reach stable and accurate output.
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Figure 5: Camera image harvesting pipeline.
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3.2. Support Vector Machine (SVM). Like random forest,
SVM is a supervised MLA that can be used for regression
and classification. However, SVM classification has domi-
nated. In SVM, data points are plotted virtually in the
feature dimensional domain and a seeking process of a
hyperplane that separates these points into multiclasses is
initiated. This process is initiated by selecting a number of
support vectors from the harvested data. SVM is an
enhanced version of logistic regression MLA, where multi-
classes can be obtained.

3.3. Artificial Neural Network (ANN). Like random forest and
SVM, ANN is a supervised MLA that can be used for regres-
sion and classification. ANN has many types and classes. The
easiest and the commonest type is multilayer feedforward
networks. In this type, different numbers of nodes are utilized
in three main layers, input, output, and hidden layers. This
type is an enhancement of logistic regression. SVM and
ANN are similar in many technical areas. However, ANN
has a fixed number of hidden nodes in the hidden layers
and a fixed number of nodes in the first layer equal to the
number of features plus a bias. On the other hand, SVM
selects a number of data from the training data to be the sup-
port vector. This means that the number of nodes in SVM is
not fixed. Moreover, ANN support multioutput unlike SVM
that supports single output.

4. Hidden Information Inferring Applications

In the following, an overview of five main applications of
smartphones’ sensor inferred data is investigated. The accu-
racy of the extracted information is inspected in Section 4.2.

4.1. Applications of Smartphone Sensors. Some of following
applications have been surveyed in [22]. Each one of these
applications will be shown with some examples of the con-
ducted works in the field.

4.1.1. Keystroke Authentication. Keystroke authentication
(KA) is a set of methods and tools that authenticate a user
of a computer or a smartphone through the user’s behav-
ior. Thousands of research papers have been written to
show how different features of touching patterns can dis-
tinguish users. One of the first attempts to study KA using
keyboards is [52]. The authors attempted to study KA sta-
tistically. 15 different users have been requested to type a
sentence of 43 characters 11 times. Five different features
have been harvested and compared: key pressing duration,
relative keystroke speeds, relative key pressing order, Shift
key, and its classes. Key pressing duration was the first to
be studied. They observed that the behavior of the same
users in typing the same sentence for 11 times did not
change; however, it varies across different users. However,
the most effective feature in defining the users is the key
pressing speed.

These attempts have been carried out in a smartphone. In
[53], an Android-based smartphone has been used to collect
the touching pattern of 20 users. Three main data columns
have been collected: actions (pressing down and pressing
up) and screen location. 21 different features have been
extracted from these collected columns. Two machine learn-
ing classifiers have been evaluated: ANN and the proposed
optimized PSO-RBFN. It has been observed from the results
that the normal ANN achieved more than 93% accuracy. In
[54], seven ML algorithms have been compared for KA. A
string consisting of 664 characters has been used. Three dif-
ferent data columns have been recorded: character, key hold
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Figure 8: MLA in the smart device data extraction process.
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duration, and system time. Subsequently, features have been
constructed from these data using theN-grams technique. 4-,
3-, and 2-grams features have been constructed. The results
show that higher N-grams obtain better results and fewer
errors. Finally, in [55], the authors proposed a KA for smart-
phones based on four different features: hold time, intertime,
distance (between two different pressed characters (in
pixels)), and speed. Moreover, they selected these features
after studying and categorizing KA features into three main
classes. The first category is the way users type a message in
the touchscreen where data has been harvested to extract fea-
tures. Different works have been conducted using this style
[55–57]. Different ML algorithms have been compared. The
extracted results are promising. The second category utilizes
motion sensors with the touchscreen as in [58]. The final cat-
egory is gesture-based as in [59, 60]. It is worth mentioning
that for the popularity of KA in smartphones, many surveys
have been written [61–63]. Moreover, in [61], the popularity
of KA research and paper publishing has been shown.

In addition to smartphones, smartwatch KA got intensive
popularity in the past years. In [64], the authors utilized the
motion sensors of a smartwatch with time-domain features
to authenticate users. The KNN algorithm has been applied
on 20 users. An accuracy exceeding 80% has been reported.
In [65], a continuous real-time user authentication system
has been proposed utilizing the smartwatch and neural net-
work algorithm. In [66], a system has been proposed to use
KA to unlock a smartwatch based on hand waving patterns.
Other examples have been surveyed in [64]. Another acceler-
ometer work has been conducted in [67] for device-to-device
authentication when connecting headsets and smartwatches
to smartphones.

KA methods can be summarized in three steps. First,
multiple features are harvested from user inputs, such as typ-
ing speed, delay time between different characters during
tapping, and multitouch usage [68, 69]. Subsequently, these
features are normalized and converted into a matrix of input
features and output results. Finally, these data are fed into a
machine learning algorithm, such as artificial neural network
(ANN), support vector machine (SVM), or logistic regression
(LR), for training. The output model can be used for the
authentication process [55, 70]. All of the conducted
methods followed the same procedure with different features
or different algorithms.

These systems have shown a high accuracy in authenti-
cating users. However, since the accuracy is not 100%, it
may not authenticate the real user of the smartphone. To
overcome this issue, these systems are used as a second
authentication system and reauthentication [57] or continu-
ous authentication systems [71, 72]. In this method, user-
name and password are still utilized for authentication;
however, for continuous authentication of the user during
sessions, the phone keeps track of the user’s touching and
tapping behavior.

4.1.2. Personal Traits. Predicting personal traits from smart-
phone usage has been covered over the past decade. The con-
ducted works started with surveys and questionnaires filled
by the smartphone owners to obtain more insights into their

psychological traits. In [73], five different traits, named, the
big five, have been studied. These characteristics are agree-
ableness, conscientiousness, extraversion, neuroticism, and
openness. Logistic regression and linear regression have been
leveraged to analyze the questionnaire results. Phone calls,
texting, browsing, and gaming have been studied with age,
sex, and genders. The authors claim a positive relation of
agreeableness and phone calls but a negative relation with
short messages. This relation has also been reported in [74]
which means “less agreeableness more phone usage.” In addi-
tion, they reported that more gaming means less agreeable-
ness [75].

Other personal traits have been conducted to assess the
interaction between elderly people and smartphones [76].
Questionnaires and smartphone using patterns have been
recorded for three smartphone apps. They attempted to
study the relation between age and screen touching patterns.
The results may be utilized for app designing enhancement
or predicting users’ ages. In [77], more than 13 ML classifiers
have been compared to distinguish children from adults
leveraging their keyboard touching. With more than 92%
accuracy, the system has future potentials.

Another interesting example characterizing smartphone
users’ conditions through the touchscreen is the decline in
the fine motor skills of smartphone users in cold weathers
when their finger temperatures drop [78, 79]. This condition
can be employed to study users’ locations, health conditions,
or other issues. In [80], the authors obtained an accuracy that
exceeds 90% in gender classification. However, in [81], they
reported an accuracy of only 61%. Even though the number
of sensors used in [81] exceeds the number in [80], the
selected ML algorithm and features have been optimized.

Another example in this category is the work conducted
in [82] in which the touchscreen users’ gaming behaviors
have been collected and leveraged to predict the users who
are playing. This method has recorded an accuracy of 80%.
Moreover, the proposed Falcon app utilizes users’ behaviors
to reduce apps’ start-up time [83].

Another interesting work was conducted in [84], where
the authors attempted to detect the mood of the smartphone
users by leveraging the data harvested from the sensors. The
users’mood is not counted as personal traits; however, in the
future, people may be personalized through their moods.

Other personal traits that have been harvested from
smartphones are physical traits, such as sex, weight, height,
age, race, and even shoe size. These traits have been esti-
mated utilizing different smartphone sensors. Predicting
these traits from smartphone sensors is called soft biomet-
rics. In [85], a survey of a massive number of soft biomet-
rics and their applications. Moreover, in [86], the
challenges and the opportunities in this field were shown.
It is worth mentioning that accelerometer sensor features
have dominated in this area. Nevertheless, a fingerprint sen-
sor utilized in a smartphone has also been utilized for gen-
der and age classification [87–89]. Table 3 summarizes
some of the interesting and early works conducted in this
field. One thing to be mentioned is that personal traits esti-
mated from smartphone sensors are affected by clothes and
shoes [90, 91].
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4.1.3. Device Fingerprint.Device fingerprinting is defined as a
method to detect and distinguish different smart devices even
if they were manufactured by the same company in the same
day at the same location. Researchers found that the elec-
tronic sensors designed and implemented in smart devices
have certain noisy outputs that can be leveraged as finger-
prints of these devices. Table 4 summarizes some of the
works that have been conducted to distinguish smart devices
according to their fingerprints.

4.1.4. Users’ Status. Users’ status is divided into two catego-
ries: activity and indoor localization. An overview of these
two categories is presented below.

(1) Users’ Activity. This is a massive umbrella that covers
multiactions. Nevertheless, these actions can be divided into
three main classes: simple, complex, and healthy. Simple
activities can be defined with one action, such as walking,
going upstairs, going downstairs, laying down, and sleeping.
Complex activities combine different actions that happen at
the same time, such as driving a car, riding a bicycle, or
changing clothes. Finally, healthy activities are complex
activities that combine multiactions that impact the health
of the users, such as exercising and falling. Motion sensors
have dominated in these applications. They have a higher
accuracy than other sensors. However, what is the motivation
of detecting users’ status? To answer this question, few exam-
ples of activity detections will be shown.

In [92], the authors claimed that extracting users’ activi-
ties from accelerometer and gyroscope data predicts the
behavior of a car driver. They classified drivers into aggres-
sive and normal drivers. The DTW algorithm has been
implemented with time-domain features. The authors
reported that the gyroscope data enhances the accuracy of
the accelerometer data in predicting drivers’ behaviors. In
[93], the authors utilized an accelerometer and a gyroscope
in detecting drunk drivers also. The authors proposed and
designed an app that detects if the driver is drunk, alerts
the driver, and calls the police. A statistical algorithm has
been deployed in real time.

In [94], the authors attempted to classify the transporta-
tion methods (walking, biking, car, bus, and rail) exploiting
GPS and accelerometer data in real time. They attempted to
reduce the feature vector as much as possible to reduce the
computational power. KNN and random forest have been
compared for the classification purpose. Principal compo-
nent analysis (PCA) and recursive feature elimination
(RFE) have been used for the feature reduction process. An
accuracy of more than 96% has been reported based on the
random forest classifier. The reported data in this work can
be leveraged to write a statistical report of transportation
methods in cities. However, the conducted work requires
GPS data. This sensor requires users’ permissions to operate
and harvest data. Physical activity detection is another appli-
cation of users’ status prediction. In this class, smartphones
are used to classify the physical activities, such as walking,
riding a bicycle, or sleeping. In [95], the authors utilized
accelerometer and gyroscope readings with the SVM

algorithm to classify physical activities. Six different activities
have been classified. 17 different time-domain and
frequency-domain features have been extracted from these
sensors. The authors reported an accuracy of more than
95% for walking, 79% for going downstairs, 72% for going
upstairs, 92% for standing, 94% for sitting, and 100% for lay-
ing down. In [96], the authors compared deep-learning ANN
with multiple algorithms based on the same motion sensors.
They reported that deep-learning ANN exceeded a 95% accu-
racy compared with other algorithms. Nevertheless, they
reported that SVM has a higher accuracy for stationary activ-
ities. In [97], the authors attempted to measure the perfor-
mance of 6 different positions of smartphones with the
users. SVM, KNN, and random forest algorithms with time,
frequency, and wavelet features are used to compare the per-
formance of the accuracy of different users’ activities accord-
ing to smartphone positions. In [98, 99], physical activity
detection has been employed based on a magnetometer sen-
sor to reduce the noise of the accelerometer sensor specially
when locating the smartphone in different body areas. In
[97], more than 27k data samples have been harvested from
ten different subjects. Wavelet, frequency, and time-domain
features have been extracted frommultimotion sensors. Mul-
tialgorithms have been utilized, such as random forest, SVM,
and KNN. The extracted results show a high accuracy in daily
activity prediction. In [100], Actitracker has been proposed
to exploit the harvested data from motion sensors to detect
users’ physical activities as a health monitoring application.
Time- and frequency-domain features have been collected
and fed to a random forest classifier. The Actitracker applica-
tion allows the users to define a threshold for their daily
activities to measure them. In [101], Happito, an activity
tracker smartphone app, has been assessed. The study shows
that the users access the app for 5 seconds on average to
check their status only and they have no interest in their his-
torical logs. This shows that these data should be deleted in
daily bases for security purposes.

In the health monitoring field, different diseases have
been detected using motion sensors, such as Parkinson’s dis-
ease, epilepsy, and strokes [102, 103]. Fall detection applica-
tions dominated in this area. In [104], the authors utilized
four different classification algorithms: naive Bayes, J48 deci-
sion tree, random forest decision tree, and SVM, to detect a
fall. Four types of falling have been recorded: forward using
hands, forward using knees, sideward, and backward. The
authors claim that the accuracy exceeds 99% for all time
and frequency features. Other works utilized other machine
learning algorithms for fall detection with time, frequency,
and wavelet features [105, 106]. Finally, an application has
been written utilizing motion sensor data for fall detection
and alarm [107].

A smartwatch has been leveraged in this field. In [108],
the authors utilized a smartwatch to recognize six different
activities utilizing five different MLAs. An accuracy of over
90% has been recorded for detecting drunk people. In
[109], six different activities with three different algorithms
using time-domain features have been proposed. A 90%
accuracy has been reported for the J48 algorithm. An inter-
esting physical action detection is the step count application.
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In this application, the classifier first detects the footsteps;
subsequently, it attempts to count these steps [110]. This
application can be used as a first step in an indoor localiza-
tion process.

(2) Indoor Localization. GPS has dominated in the outdoor
localization system. A GPS receiver is embedded in all new
smart devices. However, an indoor environment is a GPS-
free domain. This made it a hot research topic in the last
few years especially in the localization process in subways,

skyscrapers, and malls. Indoor localization is divided mainly
into two classes, Wi-Fi localization and pedestrian dead reck-
oning (PDR). The first class has a high accuracy. However, it
requires installation of network infrastructure and access
points. In [111], smartphone sensors and Wi-Fi signal have
been utilized to construct an accurate indoor localization sys-
tem with an error rate of approximately 1.1m. The KNN
algorithm has been adopted for its simplicity. To eliminate
access point installation and the infrastructure, PDR is pro-
posed. In [112], gyroscope and accelerometer data have been

Table 4: Device fingerprint classification.

Work Devices Sensors Scenario Features Algorithms Results

[18] 20 Androids

Gyroscope,
accelerometer,
magnetometer,
microphone,
and vibrator

4 scenarios: (a)
smartphone on a table

with and without
vibration and (a)

smartphone held in the
hand with and without

vibration

Time-domain
and frequency-
domain features

Random forest and naive
Bayes

Accelerometer accuracy
higher than both
sensors. With the
combination of all

sensors, the
identification accuracy

exceeds 90%

[191]
17 Androids
and 17 IOS

Microphone,
speakers, and
accelerometer

Three scenarios (wooden
desk, metal cabinet, and

windowsill)

Frequency
response and
FFT value

Maximum likelihood
estimation (MLE), simple
Euclidean distance-based
classification, and K-NN

classification

95% accuracy with a
microphone and speaker
and more than 98% for

both

[180] 10 Androids

Accelerometer,
gyroscope,

magnetometer,
microphone,
camera, and
vibrator

Flat wooden surface and
hand-held

Photo response
nonuniformity
(PRNU), time-
domain and
frequency-

domain features

Bagged decision tree

High accuracy for
gyroscope and

accelerometer, 100% for
the combination of both

[192]

4 IOS, 1
Blackberry,

and 8
Androids

Camera —

Wavelet
features, photo

response
nonuniformity

(PRNU)

SVM
Accuracy of

approximately 94%

[193] 8000 IOS
All sensors and
context features

—
29 different
features

SVM and random
classifier

Accuracy of
approximately 97%

[194]
6 cameras
and 3

smartphones
Camera —

Color, quality,
and frequency-
domain features

SVM
Accuracy between 66%

and 97%

[195]
12

smartphones
and camera

Camera —

Color, quality,
frequency

domain, and
wavelet feature

+PRUN

SVM

For all features, accuracy
increases. Some features
obtain better results in

specific scenarios

[196]
Arduino and
accelerometer

Accelerometer On a flat table
Time-domain

features
Statistical

Each accelerometer chip
has its own fingerprint

[25]

3
smartphones
from three
vendors

Accelerometer
and gyroscope

On a flat table
Time-domain

features
SVM

Accuracy more than
90%

[181]
30 between
IOS and
Android

Accelerometer
and gyroscope

On a table
Time- and
frequency-

domain features

SVM, naive Bayes,
multiclass decision tree, K
-nearest neighbor (KNN),
quadratic discriminant

Analysis (QDA) classifier
and Bagged Decision

Trees

Bagged decision trees
have the highest

accuracy
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recorded for indoor localization. In [113], authors proposed
an accurate indoor localization and tracking app based on a
magnetometer and camera. A neural network model has
been written for image comparison. Three different facts
have been claimed in this study. First, the magnetic reading
of the sensors differs according to its location in the building.
Second, the reading does not depend on time. Finally, the
magnetic reading is semi-immune to background noise.
Other studies have shown that magnetometers, along with
accelerometers, can be used to build tracking systems with
very high accuracies that can work indoors effectively and
have low power consumption unlike GPS [114] in PDR apps.
Other researchers have shown a method to create indoor
maps for buildings using magnetometers and accelerometers
[115]. Another type of indoor localization is altitude localiza-
tion. In this field, a barometer sensor dominated. A barome-
ter can build models of detecting the location of the phone,
and hence the phone user, inside buildings with 100% accu-
racy [116]. Phone barometers were also utilized to detect
the floor level of the user with high accuracy [40]. Other stud-
ies have shown that a user’s location can be estimated and
tracked with decent accuracy by only using the phone
barometer [117]. Although accelerometers can also be used
in indoor localization techniques, barometers were proven
to be more accurate especially when the phone is distracted
with other activities like gaming or a phone call [116].
Another study demonstrated accurate readings of the phone
altitude primarily by using the phone gyroscope along with
the accelerometer [118].

4.1.5. Health Applications. Smart devices in health applica-
tions have proliferated in the past decade. These applications
are classified into three main domains: real-time health mon-
itoring, health activity tracking, and health issue and disease
detections. In health monitoring applications, smart devices
can be leveraged to monitor different aspects and parts of the
human body in active or passive modes. In the active mode,
the user is responsible for performing a certain operation uti-
lizing the smart device to read the internal organic signals.
For examples, in the Cardiio app [119, 120], the smartphone
camera has been adopted to measure the heartbeat through
detecting the changes in the skin colorwhile the blood is circu-
lating through the body. In contactless health monitoring
applications, acoustic signals have dominated. Microphones
and speakers have been heavily adopted. In [121], a smart-
phone app has been proposed to utilize the microphone and
the speaker to monitor the heartbeat. In [19], acoustic signal-
based sleep qualitymonitoring applicationhas been proposed.
Another health monitoring application is the rehabilitation
processmonitoring after injury. In [122], gyroscope and accel-
erometer data havebeen recordedat home to track the rehabil-
itation progress of total knee arthroplasty.

In health activity tracking, smart devices and their
sensor-based apps are proliferated in the literature. In
[123], a stroke tracking and preventing smartphone app has
been designed.

In disease detection, smart devices have shown a massive
potential. Different smart device sensors have been leveraged
in different applications. In [124], a smartphone camera has

been used for blood hemoglobin testing for anemia. Accura-
cies between 76% and 85% have been recorded. Another
example of contact or active camera testing applications has
been proposed in [125] to test the skin lesion for different
bacterial diseases, such as Buruli ulcer. In [126], all smart-
phones’ sensor data have been recorded to monitor mental
health and detect depression, stress, and loneliness. Another
example of disease detection as a smartphone app is the
detection of the impact of skin diseases on the fingerprint
identification process. It has been found that some skin dis-
ease symptoms may affect the skin color or the structure of
the papillary ridges which may affect the fingerprint scanners
[127, 128]. Moreover, studies have shown that there is a cor-
relation between the fingerprint patterns and diabetes. Kahn
et al. found that diabetes was associated with the mean der-
matoglyphic ridge count difference between the thumb and
the little finger given the adjustments of gender and age
[129]. Others also showed that the fingerprint whorls, loops,
and arches in diabetic patients significantly differ from non-
diabetics [130, 131]. Although fingerprint patterns are only
associated with the diagnosis of genetic-based diseases
[132], this still raises the question of whether mobile phones,
equipped with fingerprint scanners, will be able to perform
such tasks like predicting the development of diabetes or
detecting certain types of skin disease in users.

4.2. Accuracy of the Extracted Information. As mentioned in
the previous section, many useful applications have been
proposed and developed based on the training process of dif-
ferent datasets. The training process and testing and valida-
tion of these applications have been conducted in a
controlled environment. Moreover, the harvested data is fil-
tered before being utilized in MLA. These issues raised ques-
tions about the accuracy of the developed applications in real
life and outside the controlled environment [133].

Another revealed problem is the number of features that
have been extracted and utilized in different applications. As
mentioned in the previous section, the same features have
been utilized over and over again to extract different conclu-
sions. The same features have been utilized for personal traits
and for personal activities. If the same features reveal all of
the information, how will the personal traits not impact the
extracted activities? For example, in [134], the authors show
how noisy data in big data smartphone health applications
may lead to misleading conclusion. The authors studied the
accuracy of a step count app in Apple and Android smart-
phones. They revealed a large error range in these apps in
both platforms. In [135], a study of the quality of experience
of smartphone health apps has been conducted. The obtained
results revealed different questions from the users on the
validity, the accuracy, and the privacy of the information.
This shows that accuracy is one of users’ concerns. In [136],
the authors compared the classification of smartphone apps
of personal daily activities of two different groups, the first
group of 20 young people and the second group of 37 old
people. They trained the classifier from the data harvested
from the first group and tested the module on the second
group. The same experiment has been repeated with another
module trained from the second group data and tested on the
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first group. They reported a massive impact on the accuracy
in both scenarios. This means that personal traits should be
added as features in these studies or a massive dataset
should be harvested from different countries with all ages.
In [137], the authors conducted a gait recognition experi-
ment utilizing a smartwatch gyroscope and accelerometer
using data from the same day and different days for the test-
ing and the validation process. They reported an increase in
the reported errors for the gait recognition when data on
different days are utilized.

A third problem is the size of the dataset. If these
apps will be used in different countries and from people
with different ages, how should the dataset be harvested
and how big should it be? In [138], the authors con-
ducted an experiment with the data harvested from more
than 700k people from 111 countries to study countries’
obesity situations. Other studies utilized 10-50 participants
only [134, 135].

The accuracy question of smart device apps utilizing
MLA requires different procedures of testing and validation
in real life.

5. Hidden Information Inferring Issues

As mentioned above, many useful applications have been
proposed through utilizing sensor open-access hidden infor-
mation. However, many issues are revealed exploiting these
data. In the following sections, security attacks and privacy
issues are introduced. Moreover, other real physical security
issues will be revealed.

5.1. Side-Channel Attacks. Side-channel attacks are defined as
any kind of computer attacks that can be implemented
exploiting harvested data from a system in legal ways rather
than bugs in the deployed algorithms [139]. These attacks
are divided into nine main categories. Four of these catego-
ries have been implemented in smartphones as shown in
Table 5.

The idea of a side-channel attack started long time ago.
Many methods and algorithms have emerged in this area.
One of the oldest methods is electromagnetic emanation
that has been proposed in the 1980s. In this method,
researchers discovered that electronic components emit
electromagnetic waves while switching between different
states. This method has been exploited in different attacks.
In [140, 141], the authors attempted to infer computer pass-
words through keystrokes’ electromagnetic waves. The
authors claimed that pressing a key will emit electromag-
netic waves that can infer the pressed key. Different scenar-
ios have been assessed, such as falling edge and rising edge.
In [142], the authors attempted to study the unique audio
feedback when pressing keys to infer the pressed keys.
Moreover, the authors attempted to study the distance from
the keyboard to recognize these feedback sounds. They
found that this method can be exploited with brute force
attack without triggering any alerts.

The side-channel attacks have moved to smartphones by
exploiting their sensors. Some sensor data is harder to obtain
compared with others. For example, GPS data requires

smartphone users’ permissions to start the harvesting pro-
cess. However, other sensors do not require permissions.
For example, W3C published DeviceOrientation Event Spec-
ification which allows JavaScript in websites to access acceler-
ometer and gyroscope data in Android and IOS without the
user’s permissions [143]. One of the first works that have
been conducted to reveal sensor data attack threats and
defend sensor attacks is found in [144]. Many works have
been conducted to show that all types of side-channel attacks
are viable in smartphones. For example, power usage as a
side-channel attack has been exploited in [145]. Two open-
access files are present in Android smartphones that track
power usage (/sys/class/power supply/battery/voltage now
and /sys/class/power supply/battery/current now). Any pro-
cess or app can access these files without permission. The
authors utilized these files for smartphone tracking and route
distinguishability. Two scenarios have been shown for distin-
guishing routes, real-time tracking, and inferring new routes.
Two machine learning algorithms have been leveraged. The
authors showed how power usage of a smartphone is the
same for the same route even if two different smartphones
are used. The proposed method does not require cell IDs
nor access points SSID such as in [146–148]. All of these
methods trace smartphones and infer routes based on power
side-channel attacks. Another example of power usage as a
side attack has been shown in [149]. This work utilized the
same two power monitoring files. Four different attacks have
been shown: app identification, UI inferring, password length
inferring, and geolocation. They have shown how a statistical
method is used to obtain accurate results in all of these situ-
ations. In [150], the authors have shown how the power
traces can be used to distinguish between different crypto-
graphically algorithms in Android smartphones.

Another example of side-channel attacks is motion
attacks. In [151], the authors proposed PinMe, an algorithm
that can track users around the world. Time zone, IP address,
and accelerometer, gyroscope, and barometer sensors have
been leveraged. PinMe can trace users while performing dif-
ferent actions, such as walking, driving, and being on a train
and even on a plane. In [152], the authors proposed a method
that leverages the accelerometer and gyroscope to find routes
in a city that a user drives in. A search algorithm based on a
map as a graph has been proposed. The method has been
tested on 30 cities with an accuracy of more than 50% to find
a list of ten possible routes.

Another example of side-channel attacks is timing
attacks. In [153], the authors showed another open-access
files in an Android platform, called (/proc/interrupts). This
file keeps track of all hardware interrupt requests in the sys-
tem. Utilizing this file, the authors successfully inferred the
lock patterns, distinguished UIs, and identified apps.

In [154], the authors showed how public open-access
zero permission controlling andmonitoring files are exploited
for different attacks. For example, the file (/proc/uid-stat/),
which shows statistics of the application network usages,
can be shown to infer the installed applications and most
popular apps the users use. A case has been shown to infer
the health condition of the user by inferring diseases 'articles'
pagesthat users read in the WebMD app. In addition, the
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authors have shown how the file (/proc/net/arp) may be uti-
lized to infer users’ locations.

In [155], a light side-channel attack has been proposed
based on the data harvested from an ambient light sensor.
The author has shown that light intensity recorded by this
sensor changes with finger tapping position on the touchsc-
reen. This process has been exploited to predict the PIN code
entered using tapping on the smartphone touchscreen. The
author has shown a high accuracy in detecting PIN codes.
However, other techniques should be included to enhance
the accuracy.

Another interesting side-channel attack is proposed in
[156]. The authors claimed that the number of people in alo-
cation can be counted utilizing a microphone and unsuper-
vised MLA. An error of 1.5 has been recorded with
different levels of noise in the background.

Finally, an interesting new acoustic side-channel attack
has been shown in [157]. In this method, the authors claimed
that any recorded voice or video files around the world have a
location fingerprint. This fingerprint comes from electrical
network frequency (ENF) signals that can be detected in
the recorded files. By downloading hundreds of videos from
YouTube from different countries and cities and then extract-
ing ENF information of these videos, the new recorded sound
or video files can be compared with the downloaded files to
find similar ENF. The authors claimed an accuracy of over
70% for audio files longer than 5 minutes. Another acoustic
side attack has been shown in [158].

Table 5 shows a summary of side-channel attacks imple-
mented in smartphones.

5.2. Privacy. Privacy is defined as the state of having no public
attention. In other words, anyone keeps his/her life private
without letting others know the details of his/her life. Nowa-
days, Internet and social networks allowed subscribers to
contribute and share their photos, comments, locations,
and their statuses. However, privacy has been considered in
a new method that people or subscribers have control over
what they share and whom to share with. This tuned the pri-
vacy definition to control of the content and people attention.
With the big data era, MLAs allowed developers to interpret
massive data in different ways from smart devices [159, 160].
This adds burden in the designing of algorithms and the type
of harvested data. In [8], the author showed that one of the
biggest privacy issues in IoE is that the users have limited
control over what data to share and distribute. It has been
mentioned in the human rights that humans have the rights
to keep private things secret [161]. However, as mentioned
earlier, big data may interfere with this right through digging
secret information from freely available meaningless data.

The main problem in privacy in sensed data mining is
that it is implicit. Users do not know what information can
be detected from their own sensors. In the questionnaires
that have been conducted in [162], the authors attempted
to measure the confidentiality of smart device users. The
study compared the confidentiality level of computer users
and smartphone users. Nine different categorized questions
have been written in the questionnaire. The authors’ study

showed that 68% of smartphone subscribers would not enter
their PIN code in smartphones for privacy and security con-
cerns. Moreover, for the health reports, 38% of the people are
willing not to open such reports utilizing their smartphones.
Nine people have said “The more health problems you have,
the more potentially private they become, and the more pri-
vate they become, the less likely I am to do it on a cell phone.”
Finally, for the location services, most of the people who are
afraid of leveraging such a service comment that they are
afraid of robbery. This survey shows that smart device sub-
scribers have concerns for their privacy. However, what can
they do to keep their privacy from data mining?

In [163], the authors have shown that smart device pri-
vacy is complicated since it consists of different layers of
hardware, operating system, and apps. Another layer of the
sensor data mining process is added over this layered stack.
This shows how the privacy of smart devices in the era of
IoE requires a new arrangement to enhance it without any
impact on the usability of the devices.

5.3. Security Threat Scenarios. In this section, some of the
real-life attacks of smart devices will be shown. These attacks
sometimes can be categorized as part of side-channel attacks.
However, these attacks exploit some physical phenomena
utilizing smart devices. For example, in [158], the authors
exploits the microphone frequency sensitivity levels to mod-
ulate a command that is inaudible for humans. The com-
mand can be collected from a smartphone microphone and
interpreted and start a sequence of actions utilizing the voice
assistant service, such as Siri. A command is recorded andmod-
ulated with a signal of frequency higher than 20kHz. The
authors claimed a success with a very high accuracy. In [164],
the authors utilized the accelerometer and gyroscope in a smart-
watch to detect the mechanical lock combinations. In other
words, whenever the smartwatch users open a safe, the code
can be detected by any app harvesting the data of the acceler-
ometer and gyroscope. This attack may be introduced as a
side-channel attack; however, the harvested data has been
utilized to hack real-world equipment. This is why we think it
belongs to this category. Many other security threats can be
exploited. Another example has been proposed in [165] to infer
information of the manufacturing plane and machines exploit-
ing the magnetometer and microphone. The authors succeeded
in distinguishing CNC machines, 3D printer, and their types
and kinds. In the following, we show three different potential
scenarios that can be implemented in the future.

The first scenario is house burglary. In this scenario, the
burglar requires three pieces of information to successfully
rob a house: owners’ activity, location, and number of people
in the house. In [19, 20], the authors have shown how the
sleeping pattern of smartphone users can be recorded utiliz-
ing touchscreen light, battery charging status, and cable
plugged to the charger or not. These features can be mined
to study the house owner’s activity combined with the accel-
erometer and gyroscope [160]. The second piece of informa-
tion is the location in the house. In Indoor Localization, we
found that it is possible to locate a user in a closed area utiliz-
ing only the accelerometer and gyroscope. To count the peo-
ple in the house, microphone data can be used as in [156].
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The second scenario is the location tracking as in [166]. If
users’ touchscreen behaviors have been harvested and
recorded from different smartphone apps over a long time
period. This data can be indirectly exploited to track and find
a user. Even if the user changed the smartphone device and
create new mail accounts and new names and passwords,
apps and companies can track users to show the similarity
between any new users with the existing users. In other
words, no one will start from scratch again in this digital
world. Moreover, if your touching behaviors are harvested
for a long time, heat maps can be generated to visualize this
data before analysis. Subsequently, these data can be utilized
to predict users’ credentials, such as usernames and pass-
words for different applications. In other words, a new era
of key logger software can be written.

The third scenario is personal trait-driven attacks.
Assume a virus that only hacks the smart devices of women
or children. Such viruses can be distributed over different
devices; however, it works only according to the users’ behav-
iors. Moreover, an app is triggered to start/shutdown accord-
ing to the users’ mood.

This will open the door of new behavior/personal
trait attacks.

These are few examples of thousands of security threats
and scenarios that can be implemented and proposed. These
scenarios are an open field for innovation.

5.4. How and Where to Start Digging Hidden Information.
With the proliferating phenomenon of smartphones, tablets,
smart TVs, and smartwatches, there has been a rapid devel-
opment in the tools and methods of developing apps for
them. Many methods and tools have been proposed,
designed, and commercialized [167]. Nevertheless, these
tools are fitted into one of three classes: programmable tools,
zero-line coding tools, and hybrid tools. The programming
tools are defined as the integrated development environ-
ments (IDEs) that require skills in at least one programming
language to program a decent app. Android studio [168],
which requires deep skills in XML and Java programming,
is the official IDE for Android app development. DroidEdit
[169] is another example of this category that also requires
skills in Java programming language. A third example is Cor-
dova, which requires skills in web front end programming
languages, such as CSS, HTML, and JavaScript. This category
of tools, as mentioned, requires deep knowledge in computer
science and programming languages to develop apps. In this
case, it will be easier to track and trace the code back to its
designers [170]. Moreover, it is hard for amateur hackers or
crackers to write apps to harvest users’ sensor data, update
them to a server, and keep the application usage as low as
possible. However, this programming style may reduce the
usability of smart devices. In [171], the authors attempted
to utilize Android studio to write an app to harvest users’ sen-
sor data and upload them to a server. The authors attempted
to show legal and ethics of utilizing such data.

Another group of tools has been proposed: zero-line cod-
ing tools [172]. In this category, an application is utilized to
convert web applications and web pages into smart device
apps. Any online web application or site can be converted

into an app without writing any single line of code. This tool
is dangerous since some smart device sensors can be
accessed from JavaScript without any permissions [143] as
mentioned in Section 5.1. However, the app designers
should first have a web application to be converted. This also
requires deep skills.

The third and the most sophisticated smart device app
development tool is the hybrid one [173]. In this tool, the
simple logical flow of the app is required to design a complex
code. No programming skills are required. However, algo-
rithm writing is required. One of the most popular examples
of this tool is MIT App Inventor (MAI) [174], which is
defined as an event-driven programming style. MAI allows
programmers to obtain all the functionalities of any complex
IDE without any programming skills. Any sensor can be har-
vested. Data can be exchanged in an easy way utilizing Wi-Fi,
mobile network, Bluetooth, and NFC [175]. A Google free
account is the only requirement to start writing any complex
app. This environment has been utilized in a smart home
monitoring app [176], a fitness app [177], a health monitor-
ing app [178], and smart lamp design utilizing smartphone
sensors [179].

The hybrid tool category shows that side-channel attacks
are easy to implement. To start implementing apps, Figure 9
shows the required steps. Firstly, data dumps from smart
devices are required. These dumps as shown are available
over the web. Any of these dumps can be downloaded. Sec-
ondly, a feature extraction process should be implemented.
As mentioned, time-, frequency-, and wavelet-domain and
row data features can be extracted from the data. Finally, a
machine learning engine, such as R, Python, or MATLAB,
is required to compare different MLAs to adopt the accurate
and simple one. Sometimes adopting the easiest one in
implementation dominated over the accurate one. Finally,
the mathematical model is ready for deployment.

To deploy the trained algorithm in the real world, a smart
device app is required. MAI simplifies this task. The algo-
rithm should be embedded in any type of apps. The deploy-
ment steps are shown in Figure 10. The deployment process
consists of two main parts: client side and server side. The cli-
ent side is the smart device app. This app should at least con-
tain four different modules. The first module is the timer
module which will record sensor reading over preconfigured
periods. Moreover, the time stamp of sensor data harvesting
has been utilized as a feature in different algorithms as was
shown. The second module is sensor modules. What type
of sensor data has been utilized in the training process should
be harvested in this step. All sensors, except for the finger-
print sensor, are implemented in MAI. The third module is
the data saving module. This module is required to reduce
network usage, and any data processing modules required
in the smart device app. MAI allows the programmer to save
the app data in an internal unique database. The final step is
data transmission over the Internet module. The HTTP pro-
tocol can be adopted for this step.

In the server side, a web application should be written
and hosted over the web. The application should extract
any received data from the data transmission process. The
Internet protocol (IP) address of the sender should be
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recorded to distinguish app users. Moreover, it should
record time stamps. The second step in this application
is feature extraction from the received data. Finally, the
trained mathematical module is employed in the harvested
features to obtain the hidden information. Other choices
can be made.

Another method may be utilized to reduce network
usage. All the steps are moved to the smart device app. In
this method, the network usage will be reduced to the min-
imum since the device will only send the hidden informa-
tion. However, the computational load will increase. To
reduce the computational load of the app, the timer module

can be configured to employ the feature extraction and the
MLA mathematical module in very long periods. These two
implementation scenarios show how easy it is to breach the
security of smart device users in the IoE era.

6. Conclusion and Discussion

Smart devices are everywhere. The IoE era has arrived. The
advantages, applications, and usability of this paradigm have
been introduced in many research papers. The privacy and
the security of smart devices in IoE have attracted researchers
over the years to construct secure systems. Nevertheless,
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machine learning and big data complicated the story. In this
paper, we show how machine learning, big data, and smart
devices’ sensor data are exploited to find many useful hidden
information. It has been shown how smart device sensors,
which are utilized to enhance the usability of the devices,
may be leveraged in useful applications on the one hand
and in hacking and attacking issues on the other hand.
Moreover, it has been shown how these threats and attacks
can be implemented and deployed in a simple method uti-
lizing event-driven programming without deep program-
ming skills.

Unfortunately, there is no hidden data protection manual
that can be downloaded and followed to solve the accuracy,
privacy, and security issues. However, many techniques can
be utilized from app designers and users to reduce these
issues as much as possible.

User awareness is the most important step to prevent
hidden data issues. Users should be aware of what to upload
to the Internet. App permissions should be read carefully
before installing new apps. Users should not install apps from
unknown sources or developers. Users should not grant any
permission required from any app until they think why such
an app requires such permissions. For example, different
games on the Android market require access to the smart-
phone media and files, why? Users should be smarter than
their smart devices.

Smart device operating system developers should increase
and enhance the permissions on smart device sensor access.
More control should be granted to the users. More warning
messages should be shown all the time. Do not show this
again message should not be used. More research and
development in this field are required. For the accuracy
enhancement, more data should be harvested from different
ages, genders, and countries to reduce the impact of differ-
ent variables on the concluded output. The developed
applications should be tested in real life through different
users for a period of time before announcing the validity
of its conclusions. Social networks are a fertilized environ-
ment for this step.

Finally, we believe that the static design of smart devices
is one of the main issues in the area of hidden data threats.
For example, many of the smart device users do not know
what sensors they have and how to use them. Moreover,
many sensors are useless for these users. If smart device users
have the ability to design and configure their devices with
only the necessary sensors and parts, a part of this issue will
be solved.
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