
Abstract1

The need for robust self–contained and low-latency
vision systems is growing: high speed visual servo-
ing and vision–based human computer interface.
Conventional vision systems can hardly meet this
need because 1) the latency is incurred in a data
transfer and computational bottlenecks, and 2)
there is no top–down feedback to adapt sensor per-
formance for improved robustness. In this paper we
present a tracking computational sensor — a VLSI
implementation of a sensory attention. The track-
ing sensor focuses attention on a salient feature in
its receptive field and maintains this attention in the
world coordinates. Using both low –latency mas-
sive parallel processing and top–down sensory
adaptation, the sensor reliably tracks features of
interest while it suppresses other irrelevant features
that may interfere with the task at hand.

1. Introduction

The computational sensor paradigm [Kanade and
Bajcsy, 1993] has the potential to greatly reduce
latency and provide top–down sensory adaptation
to vision systems. By integrating sensing and pro-
cessing on a VLSI chip, both transfer and computa-
tional bottlenecks can be alleviated; on–chip
routing provides high throughput transfer, while an
on-chip processor could implement massively–par-
allel fine–grain computation, thus providing high
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processing capacity which readily scales up with
the image size. In addition, the tight coupling
between processor and sensor allows for efficient
top–down feedback that can control and adjust sen-
sor for further acquisition based on the preliminary
results of the processing. Our recent work has been
concerned with efficient implementation of global
operations over a large group of image data using
the computational sensor paradigm [Brajovic and
Kanade, 1994]. We have formulated two mecha-
nisms for implementing global operations in com-
putational sensors: (1) intensity–to–time
processing paradigm[Brajovic and Kanade, 1996],
and (2)sensory attention presented in this paper.

2. Approach

The sensory attention is based on the premise that
salient features within the retinal image represent
important global features of the entire image. By
selecting a small region of interest around the
salient feature for subsequent processing, the sen-
sory attention eliminates extraneous information
and allows the processor to handle small amounts
of data at a time. We have implemented sensory
attention by fabricating and testingtracking com-
putational sensor. The tracking computational sen-
sor optically receives a saliency map and
continuously selects and tracks the peaks in it. The
location and intensity of the selected peaks is
reported on few output pins with low latency.
These quantities are also used internally in a top–
down fashion to aid tracking of the attended loca-
tion. The chip is a 28 x 28 array of 60µ x 60µ cells,
and is fabricated on a 2.2mm x 2.2mm die.

The sensory attention follows the model ofvisual
attention in brains. This analogy is attractive for
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two reasons. First, the main argument that has been
used to explain the need for selective visual atten-
tion in brains is that there exist some kind of pro-
cessing and communication limitation in the visual
system. So it does in machines. Attention “fun-
nels” only relevant information and protects the
limited communication and processing resources
from the information overload. Second, it has been
shown that the visual attention improves perfor-
mance, and is needed for maintaining coherent
behavior while interacting with the environment
(i.e., attention–for–action) [Allport, 1989]. Unlike
eye movement (i.e.,overt shifts), the attention
shifts (i.e.,covert shifts) do not require any motor
action, but occur internally on a fixed retinal
image. For this reason, attention shifts are faster
and play an important role in low–latency vision
systems.

It is interesting to note that foveating computa-
tional sensors [Kanade and Bajcsy, 1993] try to
emulate this kind of data compression. For exam-
ple, Van der Spiegel’s log–polar sensor samples
images within fovea with high acuity, while main-
taining sparse representation at the periphery. This
sensor simulates overt shifts, since it requires
motor action for foveating. Kosonocky’s foveating
sensor allows programmable fovea within the reti-
nal image; therefore, it eliminates the need for
mechanical action and simulates covert shifts.
Another related solution is random access to the
image data. For example, Laval’s MAR sensor
attends to, and reads only, a small local portion of
the retinal image, the part that is necessary for the
local convolution performed in the global off–chip
processor. However, these computational sensors
act as special cameras and the mechanism which
guides the location of the attention is missing.

To apply attention selection in machines, several
issues must be solved: (1) the problem of selecting
an “interesting” location, (2) the problem of shift-
ing to another location, and (3) the problem of
transferring local data for further processing. In a
very influential paper [Koch and Ullman, 1987],
Koch and Ullman address these issues. The selec-
tion process utilizes asaliency map that encodes
conspicuousness or the level of interest throughout
the retinal image. The saliency map can be derived
from image features, including: intensity, color,
spatial and temporal derivatives, motion, and orien-
tation. For selecting a location of the attention

within the saliency map,winner–take–all (WTA)
mechanism has been suggested. The WTA is not
responsible for information processing; rather it
determines only which area of the retinal image
should be relayed to the global processor for fur-
ther inspection.

The problem of shifting to another location is
somewhat more challenging. It is observed in
humans that interesting visual stimulation initially
(i.e., during the first 100ms) captures the attention;
later (i.e., after 300ms) it has inhibitory effects
which can last up to 1.5 seconds [Milanese, 1993].
The inhibitory effect prevents the subject from
returning to previously visited locations. The inhi-
bition is “stored” in environmental coordinates
rather than in image coordinates; therefore, reliable
operation is maintained even in the presence of
ocular or object movement. The attention shifts can
be initiated on a voluntary basis by telling the
observer the location of a target, or they can be
automatic caused by the onset of a visual stimulus.
For shifting to another location, Koch and Ull-
man’s model allows the saliency of the currently
attended location to decay, even if the visual stim-
uli creating the saliency remain present. This will
release the WTA mechanism and allow it to con-
verge to another location. Either alocal or central
inhibition mechanism for initiating decay is possi-
ble. The local mechanism causes the saliency to
decay some time after the WTA has converged to a
particular location. In the central mechanism, once
the attended portion of the retinal image is relayed
to the central processor, a signal, which inhibits the
conspicuousness of the currently attended location,
is sent back. The local inhibition mechanism mim-
ics the automatic attention shift, while the central
mechanism can initiate voluntary attention shifts.

Recently, Morris et al. [Morris and DeWeerth,
1996] reported an analog VLSI circuit implemen-
tation of covert attention shifts as suggested by the
Koch and Ullman model. A one–dimensional 19
cell circuit implements: 1)saliency map normaliza-
tion, 2)WTA location selection with preference for
spatial proximity shifts, 3)inhibition of return con-
trol and 4) position detection for producing the
location of attention as the output. Depending on
the biasing condition, the circuit is able to roam
between the peaks in the stationary saliency map.

In the attention–for–action model, Allport sug-



gested that attention goes beyond protecting the
limited processing resources during complex
object recognition:attention is needed to ensure
behavioral coherence[Allport, 1989]. Since visual
perception is the means for allowing a subject to
interact with the environment (e.g., manipulate,
avoid, etc.), it must produce actions consistent with
the subject’s goals. Selective processing is neces-
sary in order to isolate the information that defines
parameters for the appropriate action. For example,
to catch a moving object, among many other mov-
ing and stationary objects, the information specific
only to that object determines the action. Informa-
tion about other objects in the visual field must be
kept from interfering with the goal of catching the
target object, even though other objects may influ-
ence how the target object is caught. In other
words, attention aids the target goal by masking the
irrelevant information’s interference, but allows the
action to be modified or diverted if new, important
events occur.

The attention–for–action model is in close agree-
ment with our goal of producing reliablelow–
latency computational sensors which provideuse-
ful information for thecoherent interaction with
the environment. It is not hard to imagine that if the
attention is allowed to arbitrarily roam from one
location to another, as suggested by Koch and Ull-
man’s model and implemented in [Morris and
DeWeerth, 1996], it may take a long time before
the global processor encounters therelevant infor-
mation for an appropriate action. We need more
control over attention shifts, possibly by employing
the central inhibition mechanism in combination
with the voluntary focus of attention directed
toward desired goals. For robust operation, such
shifts must maintain the location of attention in the
presence of ocular or object motion [Milanese,
1993].

3. Implementation

In the prototype implementation of the sensory
attention proposed by this work, our concern is not
how to compute the saliency map, but rather how
to quickly and reliably locate and maintain an
interesting location in the saliency map. We call
this embodiment of the sensory attentiontracking
computational sensorbecause, when the saliency
map is a natural image — the trivial saliency

map — the features that attract attention are bright
spots in the environment. The tracking computa-
tional sensor selects and tracks those spots while
ignoring the background.

3.1. Location Selection

An image representing a saliency map is focused
onto the array of photo detectors: photodiodes or
photo transistors. The generated photo currents are
fed to the winner–take–all (WTA) circuit which is
responsible for the detection of the maximum
point. The selected location is called afeature. Our
design is based on a WTA circuit originally pro-
posed in [Andreou et al. 1992] and [Lazzaro et al.,
1988] shown is Figure 1. Currents  are the
input photo currents, while currents  are
the outputs of the WTA circuit. The cell receiving
the largest photo current
responds with non–zero output current

, while other cells respond with zero
currents, i.e., . The peak photo
current establishes and holds the common voltage
Vc. For small input currents, like those produced by
light detection, the transistor operates in the sub-
threshold region. In that case, the voltageVc is the
logarithm of the winning input current:

, where Io is the process
parameter and . Therefore, the
intensity of the winner is accessed globally by
monitoring the voltage on the common wire.

Since only the winning cell responds with non–
zero current, the WTA effectively provides 1–of–N
binary encoding of the winner’s position. A digital
on-chip decoder easily converts this code to any
other binary code such as a natural binary or BCD
code. In addition, there are efficient analog means
for winner localization [DeWeerth, 1992]. In one
example, the outputs from each WTA cell are con-
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Figure 1: Schematic diagram of the winner–take–
all circuit. Boxed area indicates one cell.
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nected to nodes of a linear resistive network. The
network behaves as a current divider splitting cur-
rent Ic into two peripheral components, each pro-
portional to the position of the current injection. By
reading these peripheral components, the location
of the winning cell is found. The WTA cells can be
physically laid out in a two–dimensional array.
Using the method of projections [Horn, 1986], the
position of this current in two dimensions is found
by solving two one–dimensional problems. Two
copies of the output current are summed into the
horizontal and vertical bus, respectively. The total
current in these buses represents the desired projec-
tions onto thex andy axes. Then, two linear resis-
tive networks are used at the periphery of the array
to locate the winner in ax andy direction.

3.2. Location Shifts

The two dimensional WTA circuit locates the abso-
lute maximum in the entire saliency map. In practi-
cal applications, there are often several strong
features in the saliency map which are candidates
for attracting the attention. For implementation of
the attention–for–action model, we need to direct
attention toward a feature that is useful for the task
at hand. This corresponds to voluntary attention
shifts, i.e., “telling” the sensor where to “look.”
Once the feature is selected, we need a mechanism
that will track the feature and thus maintain the
location of attention in the environmental coordi-
nates even in the presence of ocular motion. Our
implementation inhibits portions of the saliency
map and restricts the activity of the WTA circuit
within a programmable active region within the
whole array of photo receptors. The active region is
programmed by appropriate row and column
addressing, and corresponds to the central inhibi-
tion control suggested by Koch and Ullman.

There are two modes of operation: (1) select mode,
and (2) track mode. In theselect mode, the active
region is defined by the external addressing
(Figure 2a). The active region can be of arbitrary
size and location. The sensor selects the absolute
maximum within this region. In thetracking mode
the sensor itself dynamically defines a small (e.g.,
3 x 3 in our implementation) active region centered
around the most recent location of the attention
(Figure 2b).

Theselect mode directs the attention towards a fea-
ture that is useful for the task at hand. For example,
a user may want to specify an initial active region,
aiding the sensor to attend to a relevant local peak
in the saliency map. Then, thetracking mode is
enabled for locking onto the selected feature. The
ability of the sensor to define its own active region
is an example of the top–down sensory adaptation
presently missing from conventional vision sys-
tems.

The active region is programmed by inhibiting par-
ticular WTA cells under the external control. A cir-
cuit diagram of the WTA cell with inhibition is
shown in Figure 3. The shunting path for the photo
current is provided through the transistorsT5 and
T6. To maintain the cell active bothcol and row
signals must be asserted (i.e. must be zero).

The control of active region is achieved from the
periphery of the two–dimensional WTA array. The
peripheral logic across three columns is shown in
Figure 4. Similar logic is implemented for row
addressing. In the select mode, the active column
band is programmed by the content of the shift reg-
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Figure 2: Modes of operation for the sensory
attention computational sensor: (a) select
mode, and (b) tracking mode.
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ister. There are no restrictions on the width or loca-
tion of the band, as any bit pattern can be entered
into the shift register.

In the track mode, the active region is programmed
by the WTA array and is dependent on the location
of the feature being tracked. A particular column is
enabled if the winning feature is on that column, or
on one of the two immediate neighbors. In con-
junction with the row inhibition (not shown), the
tracking mode programs a 3 x 3 active region cen-
tered on the most recent feature. If that feature
starts moving, one of the eight active neighbors
will receive the winning feature and automatically
update the position of the 3x3 active region. It is
now clear that the salient feature is not necessarily
the absolute maximum in the field–of–view, but
rather it is a local peak in the retinal image. If for
any reason the tracking mode starts on a location
which is not a local peak, the 3x3 active region will
“slide” along the intensity gradient until it locks
onto a nearby peak.

With moving objects, the feature which is being
tracked may reach the sensor’s edge and fall out of
the field of view. In order to ensure coherent transi-

tion in these situations, the logic shown in Figure 5
is implemented. The user may define the select
mode by asserting signaluser_s/t. However, when
the user enables the tracking mode, the active
region will be of size 3 by 3 as long as the tracked
feature is not on one of the four edges of the array.
When the feature reaches one of the four edges, the
sensor automatically goes to a select mode. For a
moment, the active region specified in the shift reg-
isters is enabled, and the absolute maximum is
selected therein. If the newly selected feature is no
longer on the edge, the sensor automatically goes
back to the tracking mode, shrinks the active region
to a 3 by 3 size, and continues feature tracking.

3.3. Transferring Local Data

Once the relevant conspicuous point has been
localized in the saliency map, the local data from
the attended vicinity must be transferred to the glo-
bal processor for decision making. The local data
originate from any early representation including:
image data, early features used for building the
saliency map, or the saliency map itself. The circuit
for sensory attention described so far only receives
and has access to the saliency map. However, with
the suggested implementation, the local informa-
tion from the saliency map can be easily trans-
ferred to the global processor. In fact, the
magnitude of the localized feature in the saliency
map is continuously reported to the global proces-
sor, as it is inherently measured by the WTA cir-
cuit. If the surrounding points are also needed, the
global processor can program a trivial 1 x 1 active
region at the desired location. The global processor
inhibits all inputs of the saliency map except the
programmed cell, and forces the WTA circuit to
choose that particular point as the winner and
report its magnitude on the global wire. We
scanned the 1 x 1 active region throughout the
array and collected several images (Figure 6).

4. Experimental Evaluation

Two tracking sensors prototypes — 1D and 2D —
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have been built and tested for static and dynamic
performance. The static performance has been
tested on an early 1D prototype with 20 cells fabri-
cated in 2µ CMOS technology. The findings have
been reported earlier in [Brajovic and Kanade,
1994].

The temporal response of the WTA circuit is
important when tracking moving features within
dynamic saliency map. The dynamics of the circuit
is a function of the parasitic capacitance at the
input nodeV1 comprising capacitance of the photo
detector and capacitances of the gates and drains
attached to this node. For a cell to win or lose this
capacitance must be charged and discharged with
the photocurrent. For average room illumination
the photo currents are very small, much less then
1nA. Therefore, the WTA circuit in its original
configuration is slow. To improve the dynamic per-
formance of the WTA circuit, several measures can
be taken: (1) increase the photo current, (2)
decrease parasitic capacitance C, and (3) reduce
the voltage swing on the capacitanceC. A modified
WTA cell that implements all three of these mea-
sures is shown in Figure 7. The photo transistor
amplifies the photo current,T3 isolates capacitance
of the photo detector, andT4 acts as a pull–up and
limits the voltage swing.

The dynamic performance is evaluated for a
28x28–cell two–dimensional tracking computa-
tional sensor. Each cell is 62µ square. The photo
transistor occupies about 30% of the cell’s area. In
the experimental set up, a scanning mirror reflects
a beam of light onto a white cardboard. This pro-
duces a dot which travels along a straight line. The
tracking sensor images the scene and tracks the

moving dot. The rows of the sensor are approxi-
mately aligned with the trajectory of the laser dot,
so that onlyx position needs to be observed. The
mirror is driven from a sinusoidal oscillator whose
frequency is adjustable. The maximum instanta-
neous velocity is attained at the middle of the tra-
jectory. The goal is to observe how quickly the
tracking sensor can shift attention, that is, how
quickly it can update the feature’s location as the
feature travels across the array of cells. From the
geometry of the set up, we can derive feature
velocity from the frequency of the scanning mirror
and then express it in image coordinates.

The effects of the current buffer and the pull–up
can be turned on or off by biasingV3 andV4. With-
out the buffer and the pull–up, the sensor was reli-
ably tracking up to the scanning frequency of 33Hz
or 2,303.6 cells/second. Figure 8a shows two mea-
sured waveforms: (1) the feature’s positionx as
reported by the tracking sensor, and (2) the sinu-
soid driving the mirror. If the frequency of the mir-
ror is further increased, the reported position
begins to distort. This is illustrated in Figure 8b for
the scanning frequency of 83Hz. The tracking
capability of the sensor starts to break down in the
middle of the trajectory, as the velocity of the fea-
ture is the greatest there. Then, the current buffer is
turned on by biasingV3. The dynamic performance
improved: the maximum tracking frequency is
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increased from 33Hz to about 83.3Hz or from
2303.6 to 5793.9 cells/second. This is shown in
Figure 8c; previously distorted waveform for the
feature’s position now better resembles the sinu-
soid. Finally, the pull up transistor is turned on by
biasing V4. The dynamic performance is slightly
improved as shown in Figure 8d — the feature
tracking is improved from 83Hz to about 100Hz, or
to 6980.6 cells/second.

Another set of experiments is performed to evalu-
ate how the intensity of the feature influences the
dynamic performance. Using neutral density filters
placed in front of the sensor’s lens, the light is con-
trollably attenuated. For each filter, the frequency
of the mirror is increased until the waveform of the
feature’s position begins to distort. In this way, the
maximum frequency is estimated for each inten-
sity. Two sets of experiments are performed: (1)
without the buffer and the pull–up, and (2) with the
buffer and the pull–up. The results are graphed in
Figure 9.

5. Conclusion

The proposed implementation for the sensory
attention exhibits several interesting features. It
performs a global operation over the saliency map
and produces few global results: the position and
magnitude of the selected saliency feature. These
global results can be routed off–chip with low
latency via few output pins. Furthermore, in the
tracking mode, the global results are used inter-
nally for programming a 3 x 3 active region. This a
top–down feedback secured robust performance in
tracking the feature of interest while ignoring inter-
ference from other potentially stronger sources.
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Figure 9:  Maximum angular velocity of the
attention shifts as a function of the relative
feature intensity.
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