
LETTER
doi:10.1038/nature12935

Sensory–motor transformations for speech occur
bilaterally
Gregory B. Cogan1, Thomas Thesen2, Chad Carlson2{, Werner Doyle3, Orrin Devinsky2,3 & Bijan Pesaran1

Historically, the study of speech processing has emphasized a strong
link between auditory perceptual input and motor production out-
put1–4. A kind of ‘parity’ is essential, as both perception- and pro-
duction-based representations must form a unified interface to
facilitate access to higher-order language processes such as syntax
and semantics, believed to be computed in the dominant, typically
left hemisphere5,6. Although various theories have been proposed to
unite perception and production2,7, the underlying neural mechan-
isms are unclear. Early models of speech and language processing
proposed that perceptual processing occurred in the left posterior
superior temporal gyrus (Wernicke’s area) and motor production
processes occurred in the left inferior frontal gyrus (Broca’s area)8,9.
Sensory activity was proposed to link to production activity through
connecting fibre tracts, forming the left lateralized speech sensory–
motor system10. Although recent evidence indicates that speech
perception occurs bilaterally11–13, prevailing models maintain that
the speech sensory–motor system is left lateralized11,14–18 and facil-
itates the transformation from sensory-based auditory representa-
tions to motor-based production representations11,15,16. However,
evidence for the lateralized computation of sensory–motor speech
transformations is indirect and primarily comes from stroke
patients that have speech repetition deficits (conduction aphasia)
and studies using covert speech and haemodynamic functional
imaging16,19.Whether the speech sensory–motor system is lateralized,
like higher-order language processes, or bilateral, like speech per-
ception, is controversial. Here we use direct neural recordings in
subjects performing sensory–motor tasks involving overt speech
production to show that sensory–motor transformations occur
bilaterally. We demonstrate that electrodes over bilateral inferior
frontal, inferior parietal, superior temporal, premotor and soma-
tosensory cortices exhibit robust sensory–motor neural responses
during both perception and production in an overt word-repetition
task. Using a non-word transformation task, we show that bilateral
sensory–motor responses can perform transformations between
speech-perception- and speech-production-based representations.
These results establish a bilateral sublexical speech sensory–motor
system.
To investigate the sensory–motor representations that link speech

perception and production, we used electrocorticography (ECoG), in
which electrical recordings of neural activity are made directly from
the cortical surface in a groupofpatientswith pharmacologically intrac-
table epilepsy. ECoG is an important electrophysiological signal record-
ing modality that combines excellent temporal resolution with good
spatial localization. Critically for this study, ECoG data contain lim-
ited artefacts due tomuscle andmovements during speech production
compared with non-invasive methods that suffer artefacts with jaw
movement20. Thus, using ECoG we were able to investigate directly
neural representations for sensory–motor transformations using overt
speech production.
Sixteen patients with subdural electrodes (see Supplementary Figs 1

and 2) implanted in the left hemisphere (6 subjects), right hemisphere

(7 subjects) or both hemispheres (3 subjects) performed variants of an
overt word repetition task designed to elicit sensory–motor activations
(Fig. 1a, Methods and Supplementary Table 1). We observed increases
in neural activity across the high gamma frequency range (60–200 Hz
and above) with maximal activity across subjects between 70–90 Hz.
High gamma activity reflects the spiking activity of populations of
neurons during task performance20,21. Individual electrodes showed
one of three types of task responses: sensory–motor (S-M), production
(PROD), or auditory (AUD) (Fig. 1b, see Methods). We found that
AUDactivity was generally localized to the superior temporal gyrus and
middle temporal gyrus (42 out of 57 electrodes (74%); Fig. 2a, b) and
PROD activity occurred mostly in the motor and premotor corticies,
somatosensory cortex, and the inferior parietal lobule (98 out of 124
electrodes (79%); Fig. 2a, b), consistent with previous models and
results of speech-perception and -production studies11,12,17. Furthermore,
electrical stimulation of PRODelectrode locations resulted in orofacial
movements consistent with a motor function (see Supplementary
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Figure 1 | Behavioural tasks and example neural activations. a, 16 Subjects
were presented with an auditory consonant–vowel–consonant single-syllable
word and instructed to perform one of three tasks on interleaved trials:
listen–speak (listen to the word, visual prompt ‘Listen’, then after a 2-s delay
repeat the word, visual prompt ‘Speak’); listen–mime (listen to the word, visual
prompt ‘Listen’, then after a 2-s delay, mime speaking the word, visual prompt
‘Mime’); listen (passively listen to the word, visual prompt ‘:5 :’). Auditory
and motor timelines are shown. b, Example time–frequency spectrograms of
ECoG activity normalized at each frequency to the baseline power during visual
prompt. AUD, significant activity during each task epochwith auditory stimuli;
PROD, significant activity during both production epochs; S-M, significant
activity during the auditory and production epochs in listen–speak and
listen–mime tasks.
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Fig. 3). Critically, contrary to one of the core dogmas of brain and
language, S-Mactivity occurred bilaterally in the supramarginal gyrus,
middle temporal gyrus, superior temporal gyrus, somatosensory cor-
tex,motor cortex, premotor cortex and inferior frontal gyrus (Fig. 2a, b,
49 electrodes; see Supplementary Table 2 and Supplementary Fig. 4)
and was observed in all subjects (Fig. 2a). Of the 49 S-M sites, 45
sites showed auditory activation during the ‘listen task’ (Fig. 2a, b;
Supplementary Figs 4 and 5; 45 out of 49 electrodes (approximately
92%)), suggesting a role in speechperception.Hemispheric dominance
as determined by Wada testing did not correlate with the hemisphere
of the electrode placement (x2 (3)50.92, P5 0.34). Importantly, in three
subjects with bilateral coverage, S-M activity was present on electrodes
in both hemispheres (Fig. 2a, c) and the likelihoodof an electrodebeing a
S-Msite did not differ betweenhemispheres (Fisher’s exact test,P5 0.31).
These results demonstrate that S-M activity occurs bilaterally.
Given the evidence for bilateral S-M activity, we performed a series

of analyses and experimental manipulations to test the hypothesis that
bilateral S-M activity is in fact sensory–motor and represents sensory–
motor transformations for speech.
One concern is that S-M activity is not due to sensory and motor

processesbut tosensoryactivation inbothauditory(input)andproduction
epochs (sound of your own voice). We observed several convergent

lines of evidence that S-M activity reflects both sensory and motor
processing (see Fig. 2d andMethods). First, S-M sites contain a sensory
response because they responded to auditory stimulation as rapidly as
AUD sites (S-M latency5158 ms, AUD5 164 ms; see Fig. 2d). Second,
S-M responses during production are not due to auditory sensory reaf-
ferent input from hearing one’s own voice because responses were
present during the ‘listen–mime task’ as well as the ‘listen–speak task’.
Third, S-M responses during production are not due to somatosensory
reafference frommoving articulators because S-Mactivity significantly
increasedwithin248msof theproduction ‘go’ cue,whereasvocal responses
occurred substantially later at 1,002 ms (640 ms s.e.m.). Fourth, S-M
production responses contain motor features because they occurred
together with, and even before, PROD electrode responses (S-M5 248
ms, PROD5 302 ms,Q5 0.03; permutation test; see Methods). Finally,
S-M activity was persistently elevated during the delay period (P5 0.01;
see Fig. 2d, Methods), broadly consistent with planning activity, unlike
PROD delay-period activity (P5 0.64) or AUD delay-period activity
(P5 0.53). These results demonstrate that S-M activity cannot be sim-
ply sensory and spans both sensory and motor processes.
A related concern is that sensory–motor transformations are first car-

riedout in the lefthemisphere. If so, S-Mresponses in the righthemisphere
could be due to communication from the left hemisphere. To test this
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Figure 2 | Topography of neural responses and bilateral activation.
a, Significant task-related activations within individual subject brains for left
(subjects S3, S4, S7, S8, S11, S14), right (S1, S2, S5, S6, S9, S12, S15), or both
(S10, S13, S16) hemispheres. Bilateral coverage is indicated by the light blue
box. Electrodes with significant high gamma activity (70–90 Hz) are shown for
AUD (green), PROD (blue) and S-M (red) activations. AUD and S-M
activations (red with green) were often present on the same electrode.
Electrodes without significant activation are shown in grey. Triangles denote
example activations from Fig. 1b, and squares (S16) denote example

spectrograms in Fig. 2c. b, Significant electrodes projected onto population
average left and right hemispheres, colours as in a. Electrode sizes have been
increased for illustrative purposes (for actual sizes see Supplementary Fig. 4).
Neural spectrograms for example S-M electrodes in left and right hemispheres
of S16 during listen–speak, listen–mime and listen tasks. d, Population average
neural response profiles for each class of electrodes. Shaded regions indicate
se.m. values across electrodes. Go cue and average production response onset
are indicated by grey arrows.
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hypothesis, we further examined latencies of S-M responses according
to hemisphere. Response latencies did not differ significantly in each
hemisphere in either the auditory (right hemisphere, 156ms; left hemi-
sphere, 182 ms; Q5 1 3 1024; permutation test) or the production
epoch (right hemisphere, 272 ms; left hemisphere, 268 ms; Q5 1 3

1024; see Methods). Therefore, right hemisphere responses cannot be
due to computations thatwere first carriedout in the left hemisphere and
the data donot support strictly lateralized sensory–motor computations.
Another concern is that S-M activity may not reflect speech proces-

sing and may also be present during simple auditory inputs and oro-
facial motor outputs. To test this, we employed a ‘tone–move task’ in
one of the bilaterally implanted subjects (subject 13 (S13); seeMethods).
We found that S-M electrodes did not have significant sensory–motor
responses during the tone–move task (P5 0.36, permutation test; see
Supplementary Fig. 6). Thus, S-M activity is specific tomapping sounds
to goal-directed vocal motor acts and is likely specific to speech (see
Supplementary Discussion 1.3).
Thus farwe have shown the S-Mactivity is bilateral, sensory–motor,

and likely to be specific to speech. However, an important open ques-
tion is whether S-M responses reflect the transformation that links
speech perception and production and can support a unified perception–
production representational interface. A specific concern is that high
gamma ECoG activity may pool heterogeneous neural responses
beneath the electrode. S-M responses may combine activity from neu-
ronswhich encode perceptual processes active during the auditory cue
and other neurons which encode production processes active during
the utterance. If this is true, none of the activity necessarily reflects a
sensory–motor transformation that links perception and production.
To be able to rule out this alternative and demonstrate that S-M res-
ponses are involved in sensory–motor transformations, we reasoned
that two requirementsmust bemet. S-Mactivitymust encode informa-
tion about the content of the underlying speech processes, and this encod-
ingmust reflect transformative coding between the sensory input and
motor output.
To test whether S-M activity encodes information about speech

content, we decoded the neural activity to predict, on each trial, what
the subjects heard and said.We used seven consonant–vowel–consonant
words (heat, hit, hat, hoot, het, hot and hut) and trained a seven-
way linear classifier to decode the neural responses (see Methods).
Individual electrodes only weakly encoded speech content, but when
we decoded activity pooled across groups of electrodes, we found that
all three electrode groups encoded speech tokens (see Fig. 3). AUDelec-
trodes performed best with an average classification performance of
42.7% (x2 (1)5 56.5,P5 63 10214), followedby S-Melectrodes,which
showed performance of 33.4% (x2 (1)5 25.6, P5 43 1027), and then
PROD electrodes, which showed performance of 27.1% (x2 (1)5
11.5, P5 73 1024). Furthermore, classification performance for S-M
electrodes did not differ between the two hemispheres (left hemisphere,
29%; right hemisphere, 27%; Fisher’s exact test, P5 0.5; Fig. 3c). Thus,
bilateral S-M activity encodes information about the sensory and motor
contents of speech, meeting an important requirement for sensory–
motor transformations.
We next sought to test whether S-M activity can link speech percep-

tion and production by transforming auditory input into production
output.The essential requirement for transformation is that neural encod-
ingof sensory input shoulddependonsubsequentmotoroutput. Previous
workhas characterizedvisual–motor transformationsusing a transforma-
tion task in which the spatial location of a visual cue can instruct a motor
response to the same or different spatial location (the ‘pro–anti task’)22,23.
Sensory–motor neurons in the dorsal visual stream display different
responses to the visual cue depending on themotor contingency, demon-
strating a role for these neurons in the visual–motor transformation22.
Given thesepredictions fromanimal neurophysiology,we tested four

subjects as they performed an auditory–motor transformation task (the
listen–speak transformation task) that employed two non-words (kig,
pob) to examinewhether S-M activity has a role in transformations for

speech (see Fig. 4A, Supplementary Figs 7 and 8 and Methods). This
task enabled us to hold the sensory and motor components constant
while manipulating the transformation process itself in order to mea-
sure how the encoding of this content changed depending on how
perceptual input was mapped onto production output. The use of
non-words instead of words offered other advantages. Non-words
enabled us to examine sublexical transformations for speech and could
be designed to differ maximally in their articulatory dimensions and
their neural representations (see Methods and Supplementary Dis-
cussion 1.1 and 1.2).
At least threemodels describe how neural responses encode the task

variables. If responses follow a strictly sensorymodel, the encodingwill
follow the content of the sensory inputs and confuse trial conditions in
which kig is converted to kig (kigRkig) with trials in which kig is con-
verted to pob (kigRpob), as well as trials in which pob is converted to
pob (pobRpob)with trials inwhichpob is converted to kig (pobRkig)
(see Fig. 4Ba). Conversely, responses that follow a strictlymotormodel
will encode the production outputs, confusing kigRkig with pobRkig
trials andpobRpobwith kigRpob trials (see Fig. 4Bb). If S-Mresponses
pool responses from sensory and motor neurons, the encoding will
follow the sensory model during sensory input and the motor model
duringmotor output. In contrast, S-M responses that reflect the trans-
formation of sensory input into motor output must follow a different
transformation model and encode the sensory information differently
depending on the upcoming motor act (see Fig. 4Bc). Neural activity
displaying this property could compute a representational transforma-
tion (see SupplementaryDiscussion 1.1, 1.2). If so, responses that follow
a transformation model will not confuse trial conditions with either
identical input or identical output.Consequently, eachof the threemodels
predicted very different patterns of neural coding.
We constructed linear classifiers to decode neural responses. As

expected, AUD electrodes in the auditory epoch encoded the auditory
input (Fig. 4Ba, Ca) and PROD electrodes encoded the output during
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Figure 3 | Neural decoding of words. a, Confusionmatrices show proportion
identified for a seven-way linear classifier using neural responses. AUD
electrodes (top), PROD electrodes (middle) and S-M electrodes (bottom) are
shown. The threshold for performance is at chance level, P5 0.14, for the
purposes of displaying the electrodes clearly. b, Classification performance for
increasing numbers of electrodes. Chance performance is indicated by the
dotted line. c, Classification performance for S-Melectrodes in the left and right
hemispheres. Methods present S-M results by response epoch.
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the production epoch (utterance; Fig. 4Bb, Cb). However, S-M elec-
trodes changed their encoding over the course of the trial. During the
auditory epoch, S-M electrodes encoded both sensory and motor con-
ditions concurrently, consistent with the presence of a sensory–motor
transformation (Fig. 4Bc, Cc). Interestingly, during the production epoch,
S-M responses no longer encoded the auditory input and encoded the
production output (Fig. 4Cd), suggesting the transformation has lar-
gely been computed by that time. To quantify the comparison of dif-
ferentmodels, we used theKullback–Leibler divergence (see Fig. 4Da–d,
Methods). The results were consistentwith the response patterns in the
confusion matrices.
We can also rule out that the difference in S-M responses is due to a

third population of neurons that selectively responds to the cue instruc-
ting howperceptual inputwasmapped onto production output (‘match’
or ‘mismatch’).We ran the same linear classifier during cue presentation
and found that the S-M responses did not encode the cue (x2 (1)5 0.08,
P5 0.78; see Methods).
Using direct brain recordings (ECoG) and overt speech, we demon-

strate that a sensory–motor system for transforming sublexical speech
signals exists bilaterally.Our results are in keepingwithmodels of speech
perception that posit bilateral processing but contradict models that
posit lateralized sensory–motor transformations11,16. Our results also
highlight how S-M activity during perceptual input reflects the trans-
formationof speech sensory input intomotoroutput.Wepropose that the
presence of such transformativeactivitydemonstrates aunified sensory–
motor representational interface that links speech-perception- and
speech-production-based representations. Such an interface is import-
ant during speech articulation, acquisition and self-monitoring24–26. As

right hemisphere lesions do not give rise to conduction aphasia19,27–29,
our evidence for bilateral sensory–motor transformations promotes an
interesting distinction between speech and language: although sens-
ory–motor transformations are bilateral, the computational system for
higher-order language is lateralized5,6 (see Supplementary Fig. 9). This
hypothesis invokes a strong interface between sensory-based speech-
perception representations and motor-based speech-production rep-
resentations and suggests that deficits for conduction aphasia aremore
abstract and linguistic innature.Wepropose that bilateral sublexical trans-
formations could support a unification of perception- and production-
based representations into a sensory–motor interface6, drawing a
distinction between the bilateral perception–production functions of
speech and lateralized higher order language processes.

METHODS SUMMARY
Electrocorticographic (ECoG)recordingswereobtained from16patients (10 females)
undergoing treatment for pharmacologically resistant epilepsy. Each patient pro-
vided informed consent in accordance with the Institutional Review Board at New
York University LangoneMedical Center. Grid implantation was in the left hemi-
sphere (6 subjects), right hemisphere (7 subjects) or both hemispheres (3 subjects).
All 16 subjects performed an overt word repetition task (listen–speak task) as well
as two control tasks (listen–mime task30 and listen task). One subject also per-
formeda tone–move task. Four subjects also performed a listen–speak transforma-
tion task involving non-words. ECoG recordings were made using both grid and
strip electrode arrayswith 2.3-mmcontact size and10-mmspacing. Spectral analysis
was performed using 500-ms analysis windows with65-Hz frequency smoothing
and a stepping size of 50ms. Neural responses were defined as high gamma neural
activity between 70 and 90 Hz and significance was assessed using a shuffling
procedure. Classification analyses were carried out using a linear discriminant
analysis with high gamma power spectral features.
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Figure 4 | Listen–speak transformation task. A, In the listen–speak
transformation task, subjects have to transform a non-word they hear into a
non-word they speak according to a simple rule. Subjects were first
presented with a visual cue: ‘Match Listen’ or ‘Mismatch Listen’ that instructed
the rule that determined the non-word to say in response to the non-word
they heard. On ‘match trials’ the rule was to repeat the non-word they heard.
On ‘mismatch trials’, the rule was to say the non-word that they did
not hear. The non-words were ‘kig’ and ‘pob’. Subjects then heard one of the

two non-words, waited for a short delay, then said the appropriate
non-word in response to the ‘Speak’ cue. There were four task conditions:
kigRkig (hear ‘kig’ and say ‘kig’); pobRpob (hear ‘pob’ and say ‘pob’);
kigRpob (hear ‘kig’ and say ‘pob’); and pobRkig (hear ‘pob’ and say ‘kig’).
B, a–c, Confusionmatrices predicted by the sensory,motor and transformation
models with high and low classification scores. C, a–d, Confusion matrices
during the listen–speak transformation task.D, a–d, Model fit quantified using
a Kullback–Leibler (K–L) divergence.
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Online Content Any additional Methods, ExtendedData display items and Source
Data are available in the online version of the paper; references unique to these
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METHODS
Participants. Electrocorticographic (ECoG) recordings were obtained from 16
patients (6 males, 10 females; see Supplementary Table 1) with pharmacologically
resistant epilepsy undergoing clinicallymotivated subdural electrode recordings at
the New York University School of Medicine Comprehensive Epilepsy Center.
InformedConsentwasobtained fromeachpatient in accordancewith the Institutional
Review Board at the New York University Langone Medical Center. Patient selec-
tion for thepresent study followed strict criteria: first, cognitive and language abilities
in the average range or above, including language and reading ability, as indicated
by formal neuropsychological testing (see Supplementary Table 1); and second,
normal language organization as indicated by cortical stimulationmapping, when
available. In addition, only electrode contacts outside the seizure onset zone and
with normal interictal activity were included in the analysis.

Behavioural tasks and recordings. All participants performed three behavioural
tasks: listen–speak, listen–mime and listen (Fig. 1a). Behavioural tasks were per-
formed while participants reclined in a hospital bed. Tasks were controlled by a
computer placed on the service tray on the bed running the Presentation program
(NeuroBehavioural Systems). Behavioural audio recordings were either synchro-
nized with the neural recordings at 10 kHz (see below) or recorded on the com-
puter and referenced to the go cue. For a subset of subjects, a video camera with
built-in microphone (Sony) was positioned to monitor subject orofacial move-
ments and utterances. Video was streamed to disk (Adobe Premier Pro. (video at
29.95 frames per s, and audio at 44.1 kHz)). Audio-visual and neural signals were
synchronized video-frame-by-video-frame using an Analogue-to-Digital Video
Converter (Canopus).

Listen–speak, listen–mime30 and listen tasks were randomly interleaved on a
trial-by-trial basis with at least 4 s between trials. Each trial began with a visual cue
presented, followed by the auditory consonant–vowel–consonant (CVC) token
500 ms later. We used CVC words composed of the same consonants, ‘h’ and ‘t’,
anddifferent vowels (hat, hit, heat, hoot, het, hut, hot). These spoken syllables span
the vowel space and differ in their auditory and articulatory content. Subjects had
to either listen passively (listen), repeat the syllable after a cue (listen–speak) or
mime the syllable after a different cue (listen–mime, produce the appropriate
mouth movements but with no vocal cord vibration30; see Supplementary Fig. 10).
The temporal delay between the auditory cue and the movement cue was 2 s. We
obtained between 49 and 166 trials per condition (within subject) and between 175
and 334 total trials per subject.

For the tone–move task (see Supplementary Fig. 6), after the listen cue was
delivered, a 500-ms, 1,000-Hz sinusoidal tone (with 100-ms on and off ramps)was
presented. After a short, 2-s delay another visual cue was presented (move)
instructing the subject to move their articulators (tongue, lips and jaw). For one
subject, these trials were randomly interleaved within blocks of the listen–speak,
listen–mime and listen tasks (see above).

For the listen–speak transformation task, four subjects (see Supplementary
Figs 7 and 8) were first presented with one of two visual cues: ‘Match Listen’ or
‘Mismatch Listen’. After a delay, subjects heard one of two non-words: ‘kig’ (/kIg/)
or ‘pob’ (/pab/). These non-words were chosen to differmaximally on their articu-
lator dimensions: ‘kig’ contains a velar (back) voiceless stop consonant, followed
by a high front vowel and finally a velar voiced stop consonant, and ‘pob’ contains
a bilabial (front) voiceless stop consonant followed by a back low vowel and then a
bilabial front voiced stop consonant. The tonguemovement therefore goes back to
front to back for ‘kig’ and front to back to front for ‘pob’. The reason for choosing
maximally different articulations was that larger articulator differences might lead
to larger neural activity differences. After a short delay (randomized between 1.5
and 2 s), another visual cue was presented (‘Speak’) to which subjects were to
respond by saying the match non-word they had heard if they had seen the initial
match cue, or say themismatch non-word if they had seen themismatch cue. Each
non-word within each condition was presented between 63 and 78 times per
subject, with total trials ranging from 255 to 309 per subject. This control was
carried out in separate blocks trials that alternated with blocks of the main listen–
speak, listen–mime and listen tasks.

Surface reconstruction and electrode localization. To localize electrode record-
ing sites, pre-surgical and post-surgical T1-weighted magnetic resonance imaging
(MRI) scans were obtained for each patient and co-registered with each other31.
The co-registered images were then normalized to an MNI-152 template and
electrode locations were then extracted in MNI (Montreal Neurological Institute)
space (projected to the surface) using the co-registered image, followed by skull
stripping32. A three-dimensional reconstruction of each patient’s brain was com-
puted using FreeSurfer (Fig. 2; S2, S3, S4, S5, S6, S7, S8 and S10 (ref. 33). For
Supplementary Table 2, Talairach coordinates were converted from MNI space
using the EEG/MRI toolbox in Matlab (http://sourceforge.net/projects/eeg/, GNU
General Public License).

Neural recordings and preprocessing. EEG data were recorded from intracra-
nially implanted subdural electrodes (AdTech Medical Instrument Corp.) in
patients undergoing electivemonitoring of pharmacologically intractable seizures.
Electrode placement was based entirely on clinical grounds for identification of
seizure foci and eloquent cortex during stimulation mapping, and included grid
(8 3 8 contacts), depth (1 3 8 contacts) and strip (1 3 4 to 1 3 12 contacts)
electrode arrays with 10-mm inter-electrode spacing centre-to-centre. Subdural
stainless steel recording grid and strip contacts were 4 mm in diameter; conse-
quently the distance between contacts was 6mmand they had an exposed 2.3-mm
diameter recording contact.

For 7 of the 16 subjects, neural signals from up to 256 channels were amplified
(310, INA121Burr-Brown instrumentation amplifier), bandpass filtered between
0.1–4,000Hzanddigitized at 10kHz (NSpike,Harvard InstrumentationLaboratories)
before being continuously streamed to disk for off-line analysis (custom C and
Matlab code). The front-end amplifier system was powered by sealed lead acid
batteries (Powersonic) and optically isolated from the subject. After acquisition,
neuronal recordings were further low-pass filtered at 800 Hz and down-sampled
offline to 2,000Hz for all subsequent analysis. For the remaining 9 subjects, neural
signals from up to 128 channels were recorded on a Nicolet One EEG system,
bandpass-filtered between 0.5–250Hz anddigitized at 512Hz. In some recordings,
modest electrical noise was removed using line-filters centred on 60, 120 and 180
Hz (ref. 34).

Data Analysis. For activation analysis, time-frequency decomposition was per-
formed using amulti-taper spectral analysis34. The power spectrumwas calculated
during a 500-ms analysiswindowwith6 5Hz frequency smoothing stepped 50ms
between estimates. Single trials were removed from the analysis if the raw voltage
exceeded eight standard deviations from the across trial pool, and noisy channels
were removed from the analysis by visual inspection or if they did not contain at
least 60% of the total trials after the standard deviation threshold removal.

Sensory–motor transformations were defined as activity in the gamma range
(70–90 Hz) that followed the auditory stimulus as well as the production cue
during both listen–speak and listen–mime (Fig. 1b). As the example responses
illustrate, some electrodes showed consistent increases in activity in the high
gamma band as high as 300 Hz. As the frequency extent varied across subjects,
we chose to focus on the 70–90-Hz frequency range as this band showed the
greatest activation consistently across all subjects. Similar results were obtained
when a broader frequency range extending up to 150 Hz was analysed. Although
the listen–mime condition does involve altering the motor plan (no vocal cord
vibration), sensory–motor activations were based on the conjunction of activity in
both the listen–speak and the listen–mime conditions. Anyneural activity that was
specific to the listen–mime condition and not present in ‘normal’ speaking con-
ditions was therefore excluded (see Supplementary Fig. 10).

Responses were divided into three types. The first response type, auditory
(AUD), was defined as containing a response that was seen within 250–750 ms
following the onset of the auditory stimulus in all three conditions (Fig. 1b, top).
The second response type, production (PROD), was characterized as containing a
response occurring between 500–1,000 ms after the respond cue in the listen–
speak and the listen–mime conditions (Fig. 1b, middle). The last response type,
S-M, contained both post stimulus and a post response cue activation in both the
listen–speak and the listen–mime conditions (Fig. 1b bottom). The baseline period
was defined as the 500 ms preceding the auditory stimulus.

In Fig. 1b, the experimental epoch was defined as 2500 ms (pre) to 3,500 ms
post auditory stimulus onset. In Fig. 2c the experimental epoch was defined as
2500 ms (pre) to 4,000 ms post auditory stimulus onset. The additional 500 ms
was included in Fig. 2c to compensate for slightly later production responses for
that the subject. Power in each frequency band was normalized to the power in the
baseline period by dividing by the power at each frequency. As the neural res-
ponses had variable onset times but were on average quite long in duration, the
times were chosen to sample adequately all the responses under investigation.

To assess statistical significance, the average power across trialswas taken in two
time regions of interest for each trial within each condition. For the listen con-
dition, the baseline values for each trial were shuffled with the post auditory values
10,000 times to create a null distribution. For the listen–speak and the listen–mime
conditions, both the post-auditory and the post-production values were shuffled
10,000 times with the baseline values to create two null distributions. Initial sig-
nificance was assessed using a permutation test by comparing the actual difference
between the post auditory and post production values with the shuffled data
differences35. To correct for multiple comparisons, for all subjects, all three con-
ditions and both analysis epochs (listen (post auditory), listen–speak (post aud-
itory and post production) and listen–mime (post auditory and post production))
were pooled together and a false discovery rate (FDR) analysis was performedwith
an alpha threshold set at 0.05 (ref. 36).
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The population latency analysis was performed using the baseline-corrected
high gamma power response profiles for each electrode within each response class
(S-M, AUD and PROD). The high gamma neural responses were first bandpass
filtered (70–90 Hz) and then averaged within conditions. The listen–speak and
listen–mime conditions were averaged together. As the data were recorded using
two different sampling rates, the data were resampled to a 500 Hz sampling rate.
To test for latencies within a response class, the latencies following either the
auditory onset or the go cue were compared against the activity in the listen
condition following the go cue by computing a permuted distribution for each
time point. The significance values at each time point were then corrected for
multiple comparisons using a FDR set with an alpha of 0.05. The first time point
that was followed by at least 20 consecutive significant time points (40 ms) was
taken to be the latency of the neural response. This resulted in four significant
latency values. In the auditory epoch, AUD electrodes had significant neural
responses at 164 ms and S-M electrodes had significant responses at 158 ms.
During the production epoch, PROD electrodes had significant responses starting
at 302 ms, whereas S-M electrodes had significant responses starting at 248 ms. A
similar analysis was carried out comparing the left S-M electrodes with the right
S-M electrodes, which resulted in four more significant latency values: right hemi-
sphere (auditory 156 ms), left hemisphere (auditory 182 ms), right hemisphere
(production 272 ms) and left hemisphere (production 268 ms). A direct compar-
ison between these latencies within each task epoch using FDR-corrected shuffle
tests (see above) revealed no significant results.
To assess whether or not during the auditory and production epochs, the S-M

electrodes display significantly faster neural responses than the AUD and PROD
electrodes, we repeated the permutation test, except instead of using the compar-
ison of the task compared to the ‘Listen’ condition, we compared the S-M electro-
des to the AUD electrodes in the auditory epoch and the S-M electrodes to the
PROD electrodes in the production epoch. The results showed that whereas S-M
and AUD electrodes did not differ in their latency values during the auditory
epoch, S-M electrodes were significantly faster than PROD electrodes in the pro-
duction epoch.
To test for power differences of the high gamma response (70–90 Hz) across

hemispheres, we performed FDR-corrected permutation tests. Data were analysed
by averaging a 300-ms time window, sliding 50 ms between estimates. The data
were baseline-corrected (average 2500 ms (pre) to 0 ms pre-stimulus activity
across conditions, within electrodes) and then log-transformed before analysis.
For each condition (listen–speak, listen–mime and listen) and within each hemi-
sphere (left and right), we computed the task epoch responses by computing the
average of the high gamma response during the auditory epoch (0–1,000 ms post
auditory onset) andduring the production epoch (0–1,500ms post production cue
onset). We then performed a series of permutation tests where we permuted the
neural response across condition and/or across hemisphere, correcting for mul-
tiple comparisons using a FDR procedure. Only four tests produced significant
results: listen–speak versus listen during the production epoch in each hemi-
sphere, and listen–mime versus listen during the production epoch in each hemi-
sphere. Furthermore, the neural responses within all conditions were not different
across hemispheres (see Supplementary Fig. 11, P. 0.05, FDR corrected).
To assess the significant delay activation for each electrode class, a permutation

test was carried out using filtered data as listed above. A permutation test was
performed for each electrode class in which the average high gamma neural
activity of the delay period (1–2 s post auditory onset) was compared to that of
the baseline period (21 s to20.5 s pre auditory onset). AlthoughPRODelectrodes
and AUD electrodes did not display elevated population neural activity (P5 0.64
and 0.53, respectively), S-M electrodes had significantly higher elevated delay
activity compared to baseline (P5 0.01; see Fig. 2d).
Classificationwas performed using the single value decomposition (SVD) of the

high gamma neural response (70–160-Hz, 300-ms sliding windows with an over-
lap of 250 ms) in either the auditory epoch (0–1,000 ms post auditory onset, AUD
electrodes) or the production epoch (0–1,500ms post go cue, PROD electrodes) or
both (S-M electrodes). A linear discriminant analysis (LDA) classification was
performed using a leave-one-out validation method, in which the training set
consisted of all the trials of the data set except the one being tested. Note that
analysing the different task epochs separately for the S-M electrodes produced
classifier results that were also significantly above chance (auditory epoch, 40.2%
(x2 (1)5 47, P5 73 10212), production epoch, 23.2% (x2 (1)5 5.6, P5 0.02)).

To create the cumulative curves, the number of electrodes inputted into the
classifier was increased linearly. To control for the variability in trial numbers, the
minimum number of trials common to all subjects and electrodes was used. One-
hundred iterations for each number of cumulative electrodes were performed, in
which the specific trials and the specific electrodes were varied randomly and the
number of SVD components was equal to the number of electrodes inputted to the
classifier for the AUD and S-M electrodes, whereas five components were used for
the PROD electrodes due to a lower number of components present in the PROD-
electrode data.

Confusion matrix scores are simply the proportion of trails classified as the
token on the horizontal axis (decoded) given that the actual trial came from the
vertical axis (actual).Confusionmatrices inFig. 3a are shown for the largest number
of cumulative electrodes in each electrode class.

To analyse the listen–speak transformation task responses (Fig. 4), the same
decomposition (SVD) of the neural signal (70–160Hz)was used.Note that instead
of a seven-way classifier, a four-way classifierwas used. Confusionmatrices (Fig. 4C)
are shown for the largest number of cumulative electrodes in each electrode class
(AUD5 10; PROD5 19; S-M5 8). For the S-M electrodes, each response epoch
(auditory, Fig. 4Cc; production, Fig. 4Cd) was analysed separately.

Tomeasure the quality of each of themodels (sensory,motor, sensory–motor or
chance; Fig. 4d) we used the Kullback–Leibler divergence, which quantifies the
amount of information lost in bits when Q (the model) is used to approximate P
(the data):

DKL(PjjQ)~
X

i
P(i) log2

P(i)

Q(i)

� �

where P is the classification percentage for each actual or decoded pair (see above)
and Q is one of the four models: sensory, motor, sensory–motor and chance. The
Kullback–Leibler divergence estimates the information distance between the pat-
tern of classification errors predicted by each model, shown in Fig. 4B and the
pattern of classification errors based on neural recordings, shown in Fig. 4C.
Smaller Kullback–Leibler divergence reflects more information about classifica-
tion errors and improved model fit. The sensory model (Fig. 4Ba) reflects clas-
sification scores that track the auditory speech input such that in both the match
and the mismatch cases, the same input will be confused with each other.
Conversely, the motor model (Fig. 4Bb) reflects classification scores that track
the production output so that the same outputs will be confused with one another.
However, the sensory–motor model (Fig. 4Bc) will reflect both the input and
output such that classifications for each of the conditions presented (kigRkig,
pobRpob, kigRpob and pobRkig) will be classified correctly. Finally, the chance
model will simply reflect chance performance in all cases (0.25).

Classifier analysis of the cue data (‘Match Listen’ versus ‘Mismatch Listen’) in
the listen–speak transformation task was analysed on the S-M electrodes for the
subjects performing the task. The same linear classifier was used as above, but was
performed during the cue period (0–1,000ms post Cue) andwas two-way (‘Match
Listen’ versus ‘MismatchListen’ cues). The resultsdemonstrated that the classifica-
tion was not significant (mean classification5 52.3%, x2 (1)5 0.08, P5 0.78).
Furthermore, using the same two-way classifier between the match andmismatch
condition during the auditory epoch was also not significant (mean classifica-
tion5 56.4%, x2 (1)5 0.72, P5 0.4). Taken together, this indicates that the sens-
ory–motor transformations displayed by these electrodes cannot be due to a third
population of neurons that code for the visual cue.
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