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ABSTRACT
We study the problem of building low-cost city-wide location track-
ing systems with the intention to provide a platform for large-scale
human mobility data collection. We take the city-bikes as our first
target, motivated by several social networking applications, and
choose Cambridge in the UK as our pilot case. We highlight the
main application requirements, discuss the practical design issues,
and propose a system architecture based on a hybrid sensor net-
work.

1. INTRODUCTION
Recent years have seen the proliferation of powerful portable de-

vices that combined with human mobility enable a new networking
environment for store-and-forward and hop-by-hop opportunistic
communications within the cities. These opportunistic networks
are different to the traditional communication networks in which
end-to-end communication links are assumed. Hence successful
research and design of mobile communication systems require an
understanding of human mobility, and this requires access to mo-
bility data. However, the largest publicly available human contact
traces contain about only 100 sparsely connected nodes. Therefore
it is imperative to find practical and effective solutions to collect
large-scale human mobility traces.
Several bike-sharing schemes (often called community bicy-

cle program) have been introduced in some European cities
(Barcelona, Lyon and Paris1). These schemes attracted tens of
thousands of subscribers within few months. A cyclist produces far
less carbon emissions, thus helps to reduce our carbon footprint.
Bicycles are inexpensive when compared to vehicles, and they pro-
vide a means of physical exercise for their users. Thus, we believe
that mobility traces from cyclists would be a valuable resource for
the research community in mobile systems design.
Starting from here, we ask the question whether a low-cost loca-

tion tracking system for large-scale traffic of city-bikes is possible.
We would instrument bikes with sensors, and track them continu-
ously. Despite technical details, a bottom-up practical and privacy-

1http://en.wikipedia.org/wiki/Community bicycle program.
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driven approach is needed. We motivate our study by proposing the
following city-wide social application senarios:

Social networking Exploring encounters.
With the continuous locations of bikes, a cyclist can link up
with others he passes by, and establish new or strengthen his
social connections. For example, the positioning system can
be linked to social networking websites such as Facebook
and Twitter. If the system finds two registered participants in
close proximity it updates their status in Facebook. Also, the
positioning system can calculate the participants’ cycled dis-
tances and provide incentives (e.g. virtual credit) for those
who travelled the most in their daily cycling. This enables
comparisons of travel profiles among friends and other cy-
clists.

Security Bike theft.
The public bike-sharing schemes have been receiving con-
siderable attention in Europe. To check out and return a
bike, a user swipes his payment/membership card at the bike
stations spread throughout a city. To promote the use of
bikes instead of cars, the programme’s organisers offer af-
fordable rental to their users. It has been reported, however,
that the rental scheme in Paris has run into problems just
18 months after its launch. Over half of the original fleet
of 15,000 custom-made bicycles have disappeared, and pre-
sumed stolen. Since the launch of this scheme nearly all the
original bicycles have been replaced at a cost of 400 Euros
each. We hope that there is a practical, city-wide location
tracking system that can effectively help authorities tackle
bike theft in community bicycle programs. And if we can
build such a system at a low cost (say 10% of the Paris bike
replacement cost), that would be a step forward.

In this paper we propose a general platform for large-scale col-
lection of human mobility data with a particular focus on the se-
curity scenario. We want to target a city-wide deployment, with
low-cost devices, and we do not require high accuracy for the po-
sition. The design of such a system needs a number of considera-
tions. There are several possible competing approaches.
The contribution of this paper is a discussion of the practical

problems of deploying a low-cost bike positioning system. We pro-
pose a system architecture that relies on a hybrid sensor network
(an infrastructure with mobile sensor nodes). We advocate that the
best approach for us to understand wireless sensor system is build-
ing them (bottom-up practical experimentation). Thus, we take an
application-driven system design approach that favors simple solu-
tions to our issues. We share the same view as the one put forward
in [11] where we design systems and protocols for one specific sce-
nario after another, and after a few solutions, we look for generality



across the specific. The bicycle network of Cambridge (UK) is our
application domain.

2. APPLICATION REQUIREMENTS
We choose Cambridge as our city since it has the highest level of

cycling in the UK with one in four residents cycling to work2. The
city-bikes need to be constantly tracked from a central location. We
equip each of the bikes with a tiny battery-powered sensor device
that can collect sufficient data to estimate location. The location
update rate is in the order of tens of seconds. The bike sensor device
needs to continuously send sensor data to back-end servers. The
system requirements are as follow:

• Sensing: location of bikes (e.g WGS84 coordinates) within
a city map should be computed within an accuracy of 50 me-
tres. Inertial MEMS sensors can be integrated to improve the
accuracy of location estimates through dead reckoning. Such
sensors can also assist in optimising the system power con-
sumption, for instance, by switching off sensor components
when the bike is not in motion.

• Communication: the network coverage is around 2.5 km x
2.5 km (Cambridge city centre). The infrastructure should
have back-end servers, and around 30 fixed nodes. We aim
at instrumenting approximately 200 bikes.

• Real-time versus data logging: the location is updated
every 100 metres for real-time tracking. However, finer-
grained sensor data should be logged on the device for post-
processing and reliability.

• Sensor system packaging: small size and compact form fac-
tor to be fitted on a suitable part of the bike (e.g frame or hub)
or inside the light case.

• Battery life: it should last for at least a month on average
commuting journeys (an hour per day). Energy harvesting
can be exploited from the bike’s motion (wheel dynamo sys-
tem) to increase battery lifetime.

• Security: it should provide an effective way to avoid damag-
ing to sensor devices, likely to be the case when addressing
bike thefts.

• Cost of the system: Ideally the cost should be around 35 US
dollars for a sensor device to be placed on the bike.

3. RELATED SYSTEMS
The most commonly available location technology today is the

Global Positioning System (GPS). Although accurate and very ef-
fective in open environments, GPS alone does not support two-way
data communications, which is required by a tracking application.
We anticipate, however, the use of GPS integrated with wireless
communication in some of our systems.
The city-bike location discussed here concerns mostly outdoor

location systems and techniques. Although a number of suitable
indoor location systems exist, in this section we discuss only those
that employ RF signals in their engine.
At first distributed location algorithms (e.g DV-hop [10] and

four-stage [14]) seem favourable to our city-wide positioning. But
the majority of these techniques lack practical deployments and
2Cambridge City Council: http://www.cambridge.gov.uk

evaluations. They have been analysed mostly in simulations. How-
ever, there are a number of practical deployments of location sys-
tems that rely on an infrastructure of servers for information ag-
gregation and position calculation, and they are mostly limited to
single hop localisation from a set of known access points (APs).
Such approaches improve accuracy, reliability, and dependability
of the system.
The wide adoption of WiFi-enabled mobile devices (e.g. smart

phones, PDA) and the rapid deployment of WiFi access points
make WiFi localisation attractive. The RADAR project [1] pio-
neered indoor WiFi location, using WiFi “fingerprints” previously
collected at known locations inside a building to identify the lo-
cation of a user’s device down to 2-3 metres (median accuracy).
The fingerprint algorithm assumes that at a location point, a user’s
WiFi device may receive beacons from different access points with
certain signal strengths; this set of APs and their associated signal
strength represents a fingerprint that should characterise that po-
sition. The fingerprint algorithm is split into two stages. In the
first, the radio map at different locations are built by using methods
such as war-driving in open spaces, and in the second stage (posi-
tion phase), a device performs a scan of its environment, calculates
its relative location with regard to the surrounding APs (such as
in [12]), and compares this with its known radio map . The tech-
niques that address the issue of APs that have been deployed after
the war-driving radio mapping are discussed in [3].
UCSD’s Active Campus project [6] employs WiFi to locate de-

vices inside and outside buildings based on a simplistic algorithm
that relies on known positions of access points on a university cam-
pus. Place Lab [7] introduced wide-area WiFi location, showing a
median accuracy ranging between 15 and 60 meters and high cover-
age. Place Lab depends on war-driving data collected by a variety
of users as they move naturally throughout a region. Place Lab is
intended for use in metropolitan-scale deployment, and it is useful
for users with smart devices. But if we want the end devices to be
low cost, it may not be an appropriate choice.
The BikeNet project [4] addressed environment monitoring ap-

plications with various types of sensors attached to bikes. It also
studied the sensors for inter-bike networking through data muling.
Unlike BikeNet, this work focuses purely on the tracking of objects
using scalable and low cost mobile sensor devices. We approach
these issues with a dual-function system, where bikes are tracked
around a city area, and this data communicated wirelessly to an in-
frastructure. Bicing is a bicycle-sharing programme in Barcelona.
In [5], the authors based on a six-week dataset of observations, in-
troduced a notion that the digital footprints of cyclists could be used
to uncover human behavior patterns and city dynamics. However,
they do not have information on where the bikes travel between
bike stations. Our work provides the system to upload locations
of bikes in real time, which serves as complementary data to their
work. In addition, this can increase the operational efficiency of
bike-sharing programmes and reduce the rate of bike theft.

4. THE SENTIENT CITY-BIKE
The Sentient City-Bike system is designed according to an event-

based layered architecture. City-bike mobile sensor nodes publish
event sensor data that are pushed towards trackside servers. The
sensor data mainly comprises signal strength of WiFi AP beacons.
Inertial sensor data may be collected in selected subsets of sensor
nodes. This can be used for strapdown inertial navigation tech-
niques.
To reduce costs, the majority of the mobile node devices have

limited processing power, memory and battery lifetime. The track-
side servers are sufficiently powerful to perform the location es-



Figure 1: Measurement setup (AP 4000-MR-LR)

timation by correlating the AP information with the available AP
database using some of the techniques discussed in Section 3. The
system architecture is split into three subsystems: the communica-
tion infrastructure, the central server, and mobile nodes.

4.1 Communication infrastructures
We assume there is a gateway that delivers data wirelessly be-

tween the bike sensor system and trackside servers on the infras-
tructure. We were presented with a number of industry standard
wireless systems (Bluetooth, Zigbee, Wifi). Bluetooth requires de-
vice discovery and connection establishment which causes prob-
lems for real-time data collection. Zigbee is designed for low power
and low sampling rate (250 Kbps) and short range (up to 30m) ap-
plications. Our practical attempts with ZigBee radio from various
makers failed mostly because of a lack of robustness.
WiFi is more on the expensive side exhibiting higher power con-

sumption compared to the other two options. But WiFi power con-
sumption has improved with recent developments for smart phones
(iPhone and Google Android). Manufacturers (e.g. Marvell and
Atheros) have developed low power chips, and Gain Span (Intel
spin off) has claimed a WiFi sensor node that can last for years on
a single AA charge. Of course, this assumes an efficient schedul-
ing of tasks on the sensor node (sampling, processing, data logging
and data transmission). Another benefit of WiFi is its ability to
support data communication with an extended range. Data rates of
54Mbit/s in 802.11a/g and beyond in 802.11n exceed the required
throughput of general tracking system. The extra bandwidth can be
exploited by other applications.
We consider WiFi Mesh that is a communications network made

up of WiFi radio nodes organised in a mesh topology. Mesh net-
works often consist of clients, routers and gateway. In our system,
the mobile nodes are the mesh clients, and the infrastructure track-
side nodes form the mesh routers and gateways. Table 1 lists a few
options of mesh routers. We carried out some initial tests to under-
stand the communication coverage of a mesh router. We used an
AP4000-MR-LR (24dbm) with 18dbi flat board antenna in an open
space (Figure 1). The antenna was placed on the roof of a ten-story
building. A remote user carrying a WiFi device was able to watch a
movie in real-time at a distance of 250m, and surf the web at 400m.
The communication range was 800m between any two mesh back-
haul router. These preliminary results are encouraging.

4.2 Central Server
The central server is used for long-term storage and computation.

Since it has powerful resources, we leave the computation of loca-

Figure 2: Cambridge Sensor Kit (CSK) WiFi board

tion and other sensor-related analysis to this subsystem. It offers
a web interface to end-users with enhanced map applications. The
server provides web services to make location and sensor derived
information available in social networking websites (Facebook, or
Twitter for quick location updates).

4.3 Mobile sensor node
Our system has two types of lightweight and small physical size

nodes. The basic node has essential sensing capabilities. Super
nodes are more powerful devices in terms of processing, sensors
and memory. We equip a fraction of super nodes (between 15%
and 30%) with GPS receivers and other types of sensors. We se-
lect those nodes with potential to be active throughout the coverage
area. They should be able to do complementary fingerprint data
collection, so that the AP central database is kept up to date. This
is an on-going task to complement the initial fingerprint data col-
lection as part of an existing infrastrucutre/database. Super nodes
equipped with GPS should also provide additional calibration data
to verify and further improve the accuracy of location information
gathered from the other fraction of nodes.
The sensor nodes together with lightweight batteries (10 grams)

will be placed inside the plastic bike light casing, frame or hub.
Some of the nodes may include inertial on-board MEMS sensors
(accelerometers, gyroscopes, and magnetometers). Such inertial
data can be fused with WiFi Fingerprint information (basic and
super nodes) and GPS data (super nodes) through an Extended
Kalman Filter (EKF). Techniques similar to the ones employed in
strapdown inertial navigation systems can be used here to improve
the accuracy of the location estimates.
We looked at various WiFi-based sensor systems (GainSpan,

G2 Microsystems) but chose to discuss the Cambridge Sensor Kit
(CSK), and mobile phones as first candidates for mobile nodes.

4.3.1 Cambridge Sensor Kit (CSK)
The UCAM-WSB100 3 is a low power WiFi-based sensor board

designed in the Computer Lab (University Cambridge). This board
is part of the Cambridge Sensor Kit (CSK) that has been developed
for a sports sensing application 4. The CSK WSB100 is compati-
ble with the Crossbow Imote2 processor board. It has a 12-channel
ADC and supports 802.11 b/g with power management. We expect
the CSK WiFi system to work adequately in our city-bike applica-
tion. And if customisations are needed they can be made since the
CSK hardware design and Linux-based software are open source.
We did some preliminary tests to examine the WiFi connectivity

of the CSK. The sensor kit was placed in a bicycle light casing,
and WiFi signal strength measurements were taken as a cyclist ap-
proached and passed a WiFi base station in an urban environment
(Figure 4). In this setup, we used an off-the-shelf D-Link WiFi
AP with a single 9dB antenna, elevated to the 1.2m off the ground.
Figure 3 shows these measurements as the cyclist approached and
3http://imote2-linux.wiki.sourceforge.net/UCAM-WSB100
4SESAME: http://www.sesame.ucl.ac.uk



AP Name Tx Power Rx Sensitivity Frequency Band Aerial Gain Price (USD)
ORiNOCO AP400-MR 20dbm (radius coverage up to 300m) NA 2.4G (client) 5.47-5.725G (backhaul) 8/10/18dbi $800 + $200 (aerial)
Motorola IAP4300 27dbm -100dBm@1Mbps 2.4GHz(client and backhaul) 8/10/18dbi $2000

Table 1: Options of mesh routers

−60 −40 −20 0 20 40 600

10

20

30

40

50

60

70

80

90

100

Distance from WiFi base station (m)

W
iF

i l
in

k 
qu

al
ity

 (%
)

Start Stop

Figure 3: CSKWiFi Signal Strength

Figure 4: Bike Experiment Setup

passed the base station (located at the zero metre landmark). The
’start’ and ’stop’ labels on the diagram indicate the direction of the
motion. As evident, the WiFi signal strength improves as the cyclist
approaches the base station, and it drops when the cyclist passes the
base station. The rate of increase and decrease in the signal strength
is uneven, as the WiFi signal changes characteristics from line-of-
sight connectivity to non-line-of-sight connectivity. In the former
setting, there is a clear signal path between the base station and
the sensor system (light case facing the base station). Whereas in
the latter setting, the human body blocks and substantially attenu-
ates the main signal propagating from the base station to the CSK
sensor node.

4.3.2 Phone as Mobile Sensor Node

         


































Figure 5: iPhone RTT measurements.
Given the fact that almost everybody has a mobile phone, we also

consider using mobile phone devices as our sensor nodes. The lat-
est smartphones (iPhone, Google Android G1) include a number of
the sensor systems we discussed above (GPS receivers, accelerom-
eters). It is expected that other types of sensors will be added in
future phones. We tested an iPhone in the same urban setup as the
one described for the CSK (above). We ping the iPhone from a
laptop. The mean RTT value was around 200 ms at 250 m dis-
tance. But we observed that when pinging the basestation from the
iPhone the mean RTT dropped to around a sensible value ( 3ms).
This suggests the iPhone OS process/task scheduling is giving low
priority to IP protocol processing when the foreground application
is not any network function. We did not observe packet loss within
the 250 metres range. In another experiment we collected data by
running ping from a steady laptop against the iPhone, all connected
to a local basestation. Figure 5 shows the RTT measurements from
a laptop to an iPhone with WLAN for an hour (a sample every
second). The mean RTT was 150 ms, and the difference between
minimum (3 ms) and maximum (1000 ms) is worrying.

4.4 WiFi Coverage

Figure 6: FON WiFi Access Points in Cambridge

WiFi Fingerprint scheme uses not only public but also private
APs, whenever these are available. The scheme does not require
proprietary support from the WiFi infrastructure vendors. The ma-
jor effort needed is the war-driving to build a database of known
APs and their locations. We expect this work to take a month or so.
Cambridge is a University town with a number of residences, and
we expect a high density of WiFi APs. Figure 6 shows the FON
WiFi/AP coverage in Cambridge. We can see that even if we only
rely on the FON APs, the city is reasonably well covered.

4.5 Power consumption
The issue is building a low-cost location system that would not

require frequent charges of battery. This poses a challenge to the
form factor and size of the device since continuous power con-
sumption at high data rates requires a larger battery capacity, which
is proportional to battery physical size. WiFi is commonly regarded
as power hungry. But recent low voltage hardware designs have
taken the consumption down.
The trade-off between data rate, power consumption and com-



Chipset IEEE MAC RX Pw TX Pw Data Rate Energy/bit
Chipcon CC2420 802.15.4 19.6mA x 1.8V ≈ 35.28mW 17.04 mA x 1.8V ≈ 30.67 mW 250 Kbps TX: 122 nJ/bit
Marvell 88W8686 802.11b/g 174.87mA x (1.8 and 3.0V) ≈ 320.61 mW 257.05 mA x (1.8V and 3.0V) ≈ 593.55 mW 11 Mbps TX: 53 nJ/bit

Table 2: Preliminary power measurements

munication range is a key issue to be addressed. We did some
back-of-the-envelope calculations that may be used as an indica-
tion of the power draw for the Marvell 8686 chip used in both CSK
and iPhone. We argue that any power consumption (cost) analy-
sis should consider the data rate (benefit). Table 2 makes a com-
parison between IEEE 802.15.4 and 802.11 based on a metric that
correlates cost/benefit (energy per bit):

Ebit =
P

b

where P is power consumption and b bit rate. It can be seen that
the energy per bit for the CC2420 (IEEE 802.15.4) is twice as high
than theMarvell 8686 (IEEE 802.11 b/g). This is due to the fact that
the 802.11 achieves much higher data rates (higher benefit). This
is very conservative because we assume the 802.11 is operating at
11 Mbit/s, where it can achieve up to 54 Mbit/s (802.11g). Both
systems have similar power budgets while in power down modes.
The time cost for switching from the idle to sleeping modes (power
down) is likely to be different though, with higher latencies ex-
pected for the IEEE 802.11 b/g.
We believe that the real issue is the design of an improved duty

cycle scheme for the sensor node system - a compromise in the
scheduling of tasks (sampling, processing, logging, and data trans-
mission). This issue needs to be further investigated in our practical
application scenario. In addition, we expect to be able to convert
some of the mechanical energy from the bike’s motion, and store it
in the sensor node system [9]. For example, we can put the sensor
in the wheel-hub to make it powered by a dynamo system. Whether
this energy will be sufficient to power up our entire system remains
to be investigated.

4.6 Synchronisation of heterogeneous systems
Data samples collected from the various city-bike sensor nodes

should be correlated for either real-time monitoring or post-
processing analysis. This brings the issue of synchronisation of
different systems. The complexity of the problem tends to increase
with strict accuracy requirements. In practical terms, we deal with a
hybrid wireless network, partly formed by mobile sensor nodes on
city-bikes that exchange information with infrastructure trackside
servers. The synchronisation is needed across these heterogeneous
systems for real-time, and post-processing analysis. A number of
time synchronisation protocols for wireless sensor networks have
been proposed in the literature [13]. However we seek simple solu-
tions to synchronise the clocks of the systems relative to a common
reference time (say world time). Time synchronisation will be re-
quired within 100 ms (10 samples/second sampling).
We anticipate that sensor data collection should also benefit from

this synchronisation. For instance, data collection may have to be
smarter in downloading data from crowds of bicycles, for instance,
during the morning rush hour in Cambridge. Even if there is rea-
sonable network bandwidth available (say 54 MBps in 802.11g),
the burst of data may overwhelm the system in such situations.
Thus sensor nodes may have to postpone data download to the next
data collection point simply because the current spot (say an AP
close to a traffic light) is overwhelmed. To work in this solution
space, we require synchronisation of systems across sensor nodes,
and infrastructure nodes.

4.7 Privacy-compliant system design
We anticipate that there will be a number of technical (system-

related as discussed above) and non-technical challenges (social
and legal) when a city-wide location system is deployed. This re-
quires the expertise from engineers, social scientists and lawyers.
From a city planner’s view, a location system is likely to serve dif-
ferent purposes, mostly related to the tracking of people and vehi-
cles in the city so that better facilities and services can be rolled
out. Most of such services require collection, storage and process-
ing of a huge amount of personal data. This brings the issues of
privacy, data protection and trust - all crucial for the development
of location-based applications. A central authority has access to the
location information of each individual. This poses an obstacle to
the deployment of such a system as users may be discouraged in
taking part [2]. Incentives and privacy measures should be intro-
duced to motivate the users. Users should trust our systems, and
it is crucial that we make transparent how the user’s data will be
processed and used. Once trust is established, incentives for user
adoption of our systems will be introduced with the integration of
user location data to online social networking (e.g. Facebook and
Twitter).
However, we understand that early adoption of privacy issues

in the design of our low-cost city-wide localisation system should
be encouraged. Otherwise, later corrections through regulatory
measures can be expensive to implement. In this context, privacy
should not be dealt with as an add-on function to the system, e.g.
by data filtering and minimisation measures. An approach here
is to take an iterative design with user feedback using the social
science technique of realised scenarios proposed by Martin et al.
[8]. Realised scenarios are real technical installations, combined
with social situations of an application, on a low level of technical
sophistication and social realism. With this technique the users ac-
ceptance of different modes of data collection and processing can
be modelled as a give-and-get game. It could be determined what
type and amount of sensitive information users are willing to give
to the technical system with respect to the reward they expect to
receive. Instead of an overall scepticism towards these technolo-
gies, this approach could lead to a scaled and more situation-aware
analysis, which will not require an overall consensus.

5. COST AND SECURITY
We want to start with 200 sentient city-bikes instrumented with

CSK sensor nodes at unit cost of around US$35, which gives a
total of US$8,000 in sensor devices. We also plan to use 30 WiFi
access points that can cover the Cambridge city centre (2.5 km x
2.5 km). The ORiNOCO AP400-MR AP costsUS$1,000 per unit,
totalling US$30,000. This is a high initial setup cost which is likely
to be amortised when more bikes are instrumented in this scheme.
Another option is to use inexpensive wireless routers (e.g. LinkSys
WRT54G) at US$50, and 30 routers should bring the cost down
to US$1,500. Table 3 gives the cost breakdown. In addition to
the infrastructure, the software development (i.e. mobile sensor
node, AP, and war-drive) is another considerable cost. However, by
resorting to the location database of SKYHOOK 5, this cost item is
5SKYHOOK, http://www.skyhookwireless.com/, provides public
APIs to access its location database.



negligible.
These figures are independent of the number of bikes. With these

estimates the cost per bike is US$53, which is almost twice of the
intended cost of US$35 as discussed in Section 2. But we expect
the unit cost to decrease significantly when the system scales up.
Nevertheless, US$53 remains a fraction of the 400 Euros cost per
bike stolen on the Paris city-bike program.

Mobile node with CSK US$8,000
Infrastructure US$1,500
Central server US$600

Basic cost in total US$11,600

Table 3: Cost breakdown

For the security of devices and bikes, we plan to install the de-
vice inside the hub of the bike’s wheel, making it sufficiently hard
to remove without damaging the bike. Below we discuss several
options to secure bikes against thefts:

• For the bike-sharing scheme, most systems require a user to
return a bike to a well-known place (e.g. bike kiosk). We
can place a software-triggered alarm in the server or in the
WiFi APs nearby. If the user cycles outside an area of normal
cycling the alarm is fired and the system reports the latest
known location.

• Thieves typically take bikes somewhere to remove various
distinctive markers for re-selling. The system may provide
hints to the location of such professional thieves’ garages.
This information may assist the police authorities in reaching
those places.

• The tracking device can be linked to distance or time-based
charging for instance, via surcharging a credit card if a mali-
cious user wants the bike to go more than a short way within
a short time, then the bill can be set prohibitive. In a stronger
approach for this situation, it is interesting to instrument a
bike with a immobilizer controlled by the tracking device, to
keep the bike from further proceeding.

6. CONCLUSIONS
In this paper we made an attempt to discuss the design issues

for practically experimenting with a location tracking system - the
Sentient City-Bike. We looked at our city-bike application require-
ments, and discussed some of the key design choices and compet-
ing solutions. We favour a hybrid sensor network, with mobile sen-
sor nodes communicating with track-side servers. Low power WiFi
with optimised power management serves dual-function in our ap-
proach: location tracking and data communication. We also pro-
posed potential social networking applications to engage large par-
ticipation of users. Although application-driven research requires
time and money for prototyping and data collection, we argue that
large-scale mobility traces collection is a premise for successful re-
search, design, and building of mobile systems.
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