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ABSTRACT

In this paper, we propose an efficient embedding for modeling higher-
order (n-gram) phrases that projects the n-grams to low-dimensional
latent semantic space, where a classification function can be de-
fined. We utilize a deep neural network to build a unified discrim-
inative framework that allows for estimating the parameters of the
latent space as well as the classification function with a bias for
the target classification task at hand. We apply the framework to
large-scale sentimental classification task. We present comparative
evaluation of the proposed method on two (large) benchmark data
sets for online product reviews. The proposed method achieves su-
perior performance in comparison to the state of the art.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information filtering; I.2.7 [Artificial Intelligence]:
Natural Language Processing—Text analysis

General Terms

Algorithms, Experimentation

Keywords

sentiment analysis, supervised embedding, deep learning

1. INTRODUCTION
Sentiment analysis (SA) or polarity mining refers to identifying

and extracting subjective information from natural language text.
The problem of automatic sentiment analysis has received signifi-
cant attention in recent years, largely due to the explosion of online
social-oriented content (e.g., user reviews, blogs, etc). As one of its
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main applications, sentiment classification targets to rate the polar-
ity of a given text accurately towards a label or a score, predicting
whether the expressed opinion in the text is positive, negative, or
neutral.
In this paper, we will explore the use of high order n-grams for

classifying the sentiment orientation of a given text at article level.
The motivation is that longer phrases tend to be less ambiguous
in terms of their polarity. The authors in [10] pointed out that a
discriminating classifier combined with high order n-grams as fea-
tures can achieve comparable, or better SA performance than state
of the art on large-scale data sets. Indeed, e.g., while term “good”
is likely a positive sentiment, “not good” or “not very good” are
less likely to appear in positive comments. Needless to say, mod-
els such as bag-of-unigrams or bag-of-bigrams will possibly fail
to deal with “not good” and “not very good”, respectively. The
other facet of SA is the degree of positivity or negativity of long
phrases. As one such example, consider the compounding effect
of the phrase “... terrible terrible terrible ...” in contrast to three
dispersed “terrible” in a text. The use of n-gram features can pro-
vide a remedy for such scenarios [10]. Unfortunately, this comes at
a very high computational cost associated with modeling n-grams
for n ≥ 3. This is due to the extremely large parameter space asso-
ciated to n-grams. For instance, assuming English word dictionary
D of size |D|, then bigram representation of text relates to |D|2

free parameters, while trigram relates to |D|3 free parameters. This
will become intimidating even for a dictionary of moderate size.
When the number of training samples is limited, it can easily lead
to overfitting. If unigram dictionary has the size |D| = 10, 000,
we have |D|2 = 108 free parameters or |D|3 = 1012 that need
to be estimated, which is far too many for a small corpora. As
more and more web-scale sentimental data sets become available,
large corpora with sentimental labels could easily be accessible for
researchers. The availability of large datasets also encourages us
to explore n-grams. To the best of our knowledge, there are only
a few experimental evaluations involving large-scale data sets [12,
8].
This paper partly motivated our idea and we believe that poten-

tially, using higher order n-grams is beneficial in capturing senti-
ments in the text. For example, term good commonly appears in
positive reviews, but “not good” or “not very good” are less likely
to happen in positive comments. If using bag-of-unigram, “not” is
separated from “good”, which does not have the ability to describe
the “not good” combination. Similarly using just bag-of-bigrams,



the model can not represent the short pattern “not very good” ei-
ther. Another example is: if a product review uses the phrase “Ter-
rible Terrible Terrible”, it contains more negative opinion than three
“Terrible” separately occur in the text. Building n-gram features is
a method to remedy this issue [10], but it is computationally very
difficult to model n-grams (for n >= 3) raw features directly.
We utilize a multi-level embedding strategy to project n-grams

into a low-dimensional latent semantic space where the projection
parameters are trained in a supervised fashion together with the
sentiment classification task.
In this paper, we present a novel approach for using high-order

n-grams for sentimental classification problem. We will also devise
a new embedding mechanism of n-grams, called “latent n-grams”,
that will enable us to deal with the curse of dimensionality. Next,
the proposed embedding of n-grams to low-dimensional latent se-
mantic space will be tied to a classifier, trained for sentiment anal-
ysis tasks. Using a deep neural network allows one to learn the
parameters for the latent space and the classifier jointly in one uni-
fied discriminative framework. It is worth noting that performing
dimensionality reduction in the original feature space is a common
practice for various classification methods. However, as we dis-
cuss in Section 3, methods that bias parameters of the embedding
towards specific classification task has not received much attention
until recently. The proposed multi-layer embedding and classifica-
tion model provides two major advantages. First, the latent model
greatly reduces the dimensionality and computational efficiency in
comparison to raw n-gram features. Moreover, the parameters of
latent space are learned using supervised signals arising from the
sentiment classification. Two clear advantages to use the proposed
method involves that (1), the system utilizes an embedding space
to greatly reduce the dimensionality of n-gram, and is thus much
easier to model than n-grams raw features. (2), The n-gram embed-
dings are learned using supervised signals with the main sentiment
classification task which means they are optimized for the task and
require little human labors in feature engineering.
We evaluate the performance of the proposed method along with

several state of art baselines using two typical tasks relevant for
SA: (1) binary classification, predicting binary (positive or nega-
tive) sentiment of the text; and (2) multi-score sentiment classifi-
cation, predicting a range of scores on Likert-scale (e.g. 1-5 stars)
that reflect both polarity and strength of the sentiment in the text.
The presented empirical evidence demonstrate the superior perfor-
mance of the proposed system on two major publically available
benchmark datasets: Amazon1 and TripAdvisor2.
The rest of this paper is organized as follows. Section 2 describe

our method in details. Section 3 provides an overview of related
work. In Section 4 we present the experimental results, and con-
clude the paper in Section 5.

2. METHOD
Sentiment classification can be stated as the general task of clas-

sifying an input text-sequence into certain types or as rating the in-
put text with a certain score. Feature extraction and feature-based
representation are critical to the effectiveness of sequence analysis,
since text sequences cannot be readily described as feature vectors.
Traditional text categorization methods use feature vectors indexed
by all possible words (e.g., the so-called “bag-of-words”) of a given
dictionary to represent text documents. The bag-of-words strategy
treats articles as an unordered set of features (words), for which the
critical word ordering information is not preserved.

1
http://times.cs.uiuc.edu/~wang296/Data/TripAdvisor.tar.gz

2
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/unprocessed.tar.gz

Figure 1: The overall structure of the proposed system.

To take word ordering into account, text articles can be consid-
ered as bags of short sequences of words with feature vectors cor-
responding to all possible word n-grams (n adjacent words from
vocabulary D). In the sequel, we will refer to this as “bag-of-
ngram” (BON). [20, 10] showed that introducing 2-grams into the
bag representation significantly improves the performance of sen-
timent classification. However, adding higher order n-grams, for
n ≥ 3, into BON model can be prohibitively expensive, since the
dimensionality of a BON vector grows exponentially as a function
of n.
There are two possible approaches to remedy the curse of dimen-

sionality associated with n-gram representation. First is the feature
selection approach. To this ends, pre-selected n-gram patterns or
short sequences (e.g. with certain semantic meaning) will be uti-
lized for modeling the sequences. Another possible approach is
the use of the dimensionality reduction to approximate the original
space – e.g., latent semantic indexing (LSI), an embedding based
on term-document matrix.
In this paper, we will use a supervised embedding strategy. We

represent a document using its n-gram embedding, which in turn is
built upon its word embedding. The step utilizes the supervised sig-
nal and acts as feature learning for sentiment classification. Next,
the document representation is fed into a perceptron classifier to
learn a function mapping toward sentiment labels. The embed-
ding feature learning and the sentiment classification are trained
jointly in an end-to-end fashion, which can be illustrated using a
multi-layer perceptron (MLP) network structure, as illustrated in
Figure 1.



2.1 Embedding of n-Grams
Formally, the basic bag-of-word representation for text applies a

mapping φ(·) to strings of variable length into a feature space of
fixed dimension. It is in this space that a standard classifier such as
linear perceptron or support vector machine can be applied. Let D
denote the underlying dictionary and S denote the set of all finite
length sequences of words from D. We use |.| to denote the cardi-
nality of a set. We will also assume the aforementioned mapping
φ : S → RM maps words sequences in S to finite dimension fea-
ture space. The sentiment labels will form a set Y = {1, ..., K},
e.g.,K = 2 denotes sentiment classes such as “positive” or “nega-
tive”. We will also denote a labeled training-set with training labels
from Y as {{(xi, yi)}i=1,...,L|xi ∈ S, yi ∈ Y}. An input text se-
quence of length N will be denoted as x = (w1, . . . , wN ), where
wj ∈ D. Let Γ denote the vocabulary of n-grams in the corpus,
and γj = (wj , wj+1, . . . , wj+n−1), where j indicates the j-th po-
sition in x. Given the bag-of-unigram representation, φ(x) maps
the input x in a natural way as a (sparse) vector of dimensional-
ity M = |D|. Similarly, In a bags-of-ngrams φ(x) maps x to a
M = |Γ|-dimensional representation, with |Γ| = O(|D|n).
Motivated by the fact that individual words carry significant se-

mantic information, we learn a mapping of each word into a real-
valued vector space, referred to as an “embedding”. Specifically,
each word wj ∈ D is embedded into an m-dimensional feature
space using a lookup table LTE(·) defined as

LTE(wj) = E × (0, . . . , 0, 1
at indexwj

, . . . , 0)"

= Ewj
= [E1,wj

, E2,wj
, . . . , E1,wj

]"

where E ∈ Rm×|D| is a matrix with word embedding parameters
to be learn. Here, Ewj

∈ Rm is the embedding of the word wj

in the dictionary D and m denotes the target word embedding di-
mensionality. It is important to note that the parameters of E are
automatically trained during the learning process using backprop-
agation.
In our framework, formation of n-grams will be carried through

a sliding window of length n. As illustrated in Figure 1, setting
n = 3, the first n-gram is (w1, w2, w3), second n-gram will be
(w2, w3, w4), etc. Given an n-gram of adjacent words, we repre-
sent its embedding based on the embedding of individual words
it contains. Specifically, given γj = (wj , wj+1, . . . , wj+n−1),
define zγj

= [E"
wj

, E"
wj+1

, . . . , E"
wj+n−1

]" as an operator con-
catenating embeddings of words in the n-gram γj , resulting in an
nm-dimensional vector zγj

. The embedding of the γj can then be
defined as

pγj
= h(F× zγj

),

where projection matrix F ∈ R
M×nm maps the vector zγj

into a

M -dimensional latent space, and h(·) = tanh(·)3.
Finally, we use the n-gram embeddings to form a vector repre-

sentation for each input text document. Formally, the document
representation will be defined as

φ(x) ≡ dx =
1

N

N∑

j=1

pγj
(1)

where dx ∈ R
M and x = (w1, . . . , wN ). In other words, dx is the

centroid of the vector associated with n-grams of the document x.
Intuitively, the sentiment of a document is related to the aggregated
polarity of all its n-grams; that is, the more positive n-grams that

3the non-linear function tanh(·) converts unbounded range of the
input into [−1, 1]

exist in the document, it is more likely for it to express a positive
opinion. While there are many possibilities for aggregation func-
tion, mean value provides a good summarization of the document’s
sentiment in this latent space. As suggested by [9], one can also
use themax function that selects the maximum value along each
latent dimension. Our empirical evidence indicate that themean

function is a more appropriate choice for the SA task.
Another fundamental reason for this formulation is that the num-

ber of phrases in the sentence is variable depending on the sentence
length n. Thus, we need a function to compress the information
from these phrases into a fixed length document embedding vector.

2.2 Sentiment Classification
We will consider two types of sentiment classification in this pa-

per. First, similar to most prior approaches, we will consider binary
classification setting that classifies a document either as a positive
or negative. Next, we try to predict the text polarity toward its star-
scale score directly using ordinal regression. It is our believe that
this setting will become more prominent in the future since most
of the online evaluation system are utilizing Likert-scale (e.g. 1-5
stars).
Given the document representation dx defined as above, the bi-

nary sentiment classification learns a function by optimizing the
following loss measure:

L =
∑

x∈S

(sgn(g(dx))− yx), (2)

where sgn(g(·)) ∈ {1,−1} are the prediction obtained from the
classifier, and yx ∈ {1,−1} is the label of the document x. We
chose a linear function for g, where

g(dx) = a · dx + b,

Linear classifiers have proven record of achieving the state of the
art performance in previous sentiment classification results [19].
The Likert-scale classification problem belongs to the more gen-

eral class known as “Ordinal Classification” [1], where the class
labels have orderings. Utilizing this ordinal information in the
classification will achieve better performance than treating each
class separately without the order. There exist different methods to
tackle ordinal classification or regression. Here, we present a sim-
ple marginal ordinal loss based strategy. We aim to learn a function
g that optimizes the following loss:

L =
∑

x∈S

{
∑

1≤l≤yx
max(0, 1− g(dx) + βl) (3)

+
∑

yx<l≤L
max(0, 1− βl + g(dx))}.

In this case, we are handling a L-likert-scale system. We have a set
of boundaries βl for each class l ∈ [1, L]. These boundaries are
in ascending order, i.e βi < βj , ∀i < j. The function g(·) out-
puts a score for a document vector dx. The discriminative train-
ing estimates the parameters of function g(·) and class boundaries
βi, i ∈ [1, L] by minimizing the loss function L.4 The final classi-
fier g(d) is defined as:

argmin
l∈[1,L]

(βl−1 < g(dx) < βl).

The ordinal classification can be related to Rank Loss used in
information retrieval society. Given a set of objects xi ∈ X, i ∈

[1, |S|], their corresponding labels yi ∈ Y, i ∈ [1,S], and a scoring

4For simplicity, we define β0 = −∞, for the first class that does
not need a lower boundary for g(·)



function, the rank loss can be defined as:

L =
∑

i,j s.t. yi>yj

max(0, 1− g(dxi
) + g(dxj

)).

The objective is to learn function g(·) while minimizing the loss
function L(·). Clearly the score g(·) will try to put the objects in
the order just like their labels. This order is consistent with the
ordinal classification objective.

2.3 Embedding and Sentiment Classification
within a Unified Model

We use the multi-layer perceptron network to implement the above
modules in a unified framework. As illustrated in Table 1, the
overall system can be represented in a 6-layer network architecture
(T = 6):

level layer params

f1 lookup table E

(word embedding)

f2 temporal convolution F

(n-gram embedding)
f3 transfer layer tanh -

(n-gram embedding)
f4 mean function -

(document representation)

f5 binary/ordinal classifier a, b,β
f6 loss function -

Table 1: Parameters learned at each level.

We take advantages of the simple and efficient backpropagation
process to train this layered network. The stacked layers in our
network can be written in a more general form of multi-level func-
tions:

lx = fT (fT−1(...(f1(x))...)),

where lx denotes the loss on a single example x, and the exact loss
function fT is defined in Equation 2 and Equation 3. For a layer
fi, i ∈ [1, T ], the derivative for updating its parameter set θi is
using the delta rule:

∂l

∂θi

=
∂fT

∂fi
×

∂fi

∂θi

,

and the first factor on the right can be recursively calculated:

∂fT

∂fi
=

∂fT

∂fi+1
×

∂fi+1

∂fi
.

Note that f and θ are usually vectors (the scalar loss l = fT can be
treated as an all 1’s vector), so ∂fT

∂fi+1
and ∂fi

∂θi

are Jacobian matri-

ces, and “×” is matrix multiplication.
We can use stochastic gradient descent (SGD) method to to per-

form training of parameters [7]. For a set of training samples, in-
stead of calculating true gradient of the objective on all training
samples, SGD calculates gradient and updates accordingly on each
training sample. SGD is proved to be scalable and more efficient
than batch-mode gradient descent methods, especially when deal-
ing with large-scale datasets. The training procedure is presented
in Algorithm 2.3. The 3rd column in Table 1 specify the parameters
that will be learned during this end-to-end learning process in each
layer.
We also want to point out that when using “deep learning” net-

work, unsupervised pre-training of lower-layers is a common prac-

Algorithm 1 End-to-End Training procedure for the proposed sys-
tem

for j = 1 to MaxIter do
if converge then
break

end if

x, y ← random sampled data point and label
calculate loss l(x; y)
cumulative← 1
for i = 6 to 1 do

∂l

∂θi

← cumulative ∗ ∂fi

∂θi

θi ← θi − λ ∂l

∂θi

cumulative← cumulative *
∂fi+1

∂fi

end for

end for

tice [3] and shows to improve the results. We adopt a similar strat-
egy and use the projection matrix learned via LSI (using the term-
doc matrix on a large unlabeled text set) to initialize the word em-
bedding - E matrix, i.e. unsupervised pre-training, in our experi-
ment.

3. RELATEDWORK
Our proposed framework is closely related to the following areas

and research topics.

3.1 Sentiment Analysis
An in-depth survey of the earlier methods for sentiment analy-

sis has been presented in [20]. We will primarily focus on related
works on polarity classification with similar objective tasks. The
main approaches classify the polarity of a given text at either the
word, sentence or paragraph, or document levels. In the most in-
tuitive model, the polarity of an article can be related to the sen-
timent orientation of its words [13]. Latent semantic analysis has
been used in [23] to to calculate the semantic orientation of the
extracted words according to their co-occurrences with the seed
words, such as “excellent” and “poor”. The polarity of the arti-
cle is then determined through averaging the sentimental orienta-
tion of its corresponding words. Instead of limiting the sentiment
analysis at the word level, the mainstream research community per-
forms sentiment classification at the article level. Various methods
based on this principle have been proposed. These methods can
be contrasted in terms of features they use: utilizing either uni-
gram features [20] and/or filtered bigrams [6]. It is claimed that
unigram and bigram features beat other features in the evaluation
of several small-scale benchmark data sets [10]. It should also be
noted that [19] investigated the use of several inverse document
frequency (IDF) weighting schemes as features. They observed
that such features improve the accuracy of sentiment classification.
The third noteworthy trend is based on capturing existing substruc-
tures and their ordering in the text. In a recent paper, [22] used an
HMM-based model to describe the dependency between local sub-
structures to improve sentiment prediction. Similarly, [8] proposed
a learning method for local content modeling (aspect-sentiment
sense) using large-scale unsupervised data sets.

3.2 Latent Topic/Concept Models
There exists a number of word-level embedding methods that

are able to capture semantic similarity between word pairs. One of
the earliest but widely used approaches is Latent Semantic Index-
ing (LSI) [11]. LSI applies SVD to term-document co-occurrence



matrix, producing a low-dimensional representation for both doc-
uments (including unseen ones) and words, and enables efficient
computation of semantic similarity between them. LSI is consid-
ered the pioneering work that inspired methods such as probabilis-
tic LSI (pLSI) [14] and Latent Dirichlet Allocation (LDA) using a
generative probabilistic framework [5].
There are also supervised variants that try to compute embedding

by fitting to the labeled data. Such approaches have been applied
to a variety of information retrieval tasks such as link prediction,
cross-lingual retrieval, and image annotations [2, 25]. Another
variant of supervised embedding method was recently introduced
by [21] that learns (128 bit) hash-coding for term-frequency vec-
tors of documents in the corpus, enabling semantic similarity-based
hashing.

3.3 String Classification Using String Kernel
Broadly speaking, the proposed method is applicable to the gen-

eral string classification problem. A variety of methods have been
proposed to tackle the string classification problem, including gen-
erative (e.g., HMMs) or discriminative approaches, such as string
kernel-based machine learning methods [15, 26]. The key idea of
basic string kernels is to map text strings of variable length into a
vectorial feature space of fixed length. In this space a standard clas-
sifier such as a support vector machine (SVM) can then be applied.
As SVMs require only inner products between examples in the fea-
ture space, rather than the feature vectors themselves, one can de-
fine a string kernel which implicitly computes an inner product in
the feature space. String kernels are designed so that the high sim-
ilarity value between two text documents indicates that they have
numerous n-grams in common.
We note that our proposed method implements a variation of in-

exact matching between n-grams which is also a critical compo-
nent in the string kernel research, usually tackled by using different
families of mismatch in the string kernel [16].

3.4 Deep Learning for Natural Language Pro-
cessing

Lately, “deep learning” research grows to bring in attentions. As
pointed out by [3], recent results have suggested that in order to
learn the kind of complicated functions that can represent high-
level abstractions (e.g. in natural language, or vision), one would
need deep architectures. Each layer in the architecture represents
features at a different level of abstraction, defined as a composition
of lower-level features. Statistical language modeling is a key topic
in natural language processing (NLP), where the difficulty is the
curse of dimensionality, especially when modeling joint distribu-
tion between many discrete random variables. [4, 18] proposed a
language model based on the multi-layered neural networks, which
tries to model a distributed representation for each word and the
probability function for word sequences, simultaneously. Later, [9]
utilized a single multi-layered convolutional neural network archi-
tecture to handle multiple classic NLP tasks at the same time. The
proposed unified framework provides an end-to-end system that,
given a sentence, outputs a host of language processing predictions.
Our proposed method is motivated by the above approach and

uses a multi-layer “deep” neural network to combine the n-gram
embedding and sentiment classification in a single framework. It
is our belief that the word embedding and n-gram embedding are
feature learning in some sense.

4. EXPERIMENTS

4.1 Datasets
We have evaluated the performance of the proposed method on

two sentiment dataset, Amazon and TripAdvisor that were intro-
duced by [6] and [24], respectively. The Amazon dataset contains
customer reviews of 25 various categories including apparel, au-
tomotive, baby, DVDs, electronics, magazines, tools and hardware,
etc. The TripAdvisor data set contains customer reviews for various
hotels across the globe. In addition to the overall reviewer’s senti-
ment rating, this corpus contains scores for various aspects such as
rooms, location, cleanliness, etc. However, sentiment scores for the
specific aspects are absent from a significant number of the reviews
in the TripAdvisor data set, so In our experiments we only consider
overall ratings for this data set. These are considered some of the
largest SA data sets currently available. We note that, our approach
requires training for a large number of parameters in comparison to
a simple shallow BOW model. Consequently, the advantage of our
model becomes more obvious on larger datasets (we will show the
effect in section 4.3.3).
Both datasets contain user-generated reviews where an overall

sentiment for each review is quantified with an integer 1 through
5 (a.k.a the 5 stars scale). A sentiment score of 1 star corresponds
to the lowest (negative) sentiment, while the score of 5 stars cor-
responds to the highest (positive) sentiment. For each dataset, we
create a balanced version of the data that contains equal number of
positive (4 and 5 stars) and negative (1 and 2 stars) reviews. Tri-
pAdvisor data also contains neutral reviews (3 stars) that do not
exceed the number of positive nor negative reviews, so we add the
neutral reviews to the balanced version of the data as well. In ad-
dition, we drop very small number of reviews from TripAdvisor
with overall sentiment scores of zero stars, since the meaning of
this sentiment rating is ambiguous. Statistics of both datasets can
be found in Table 2.
We split balanced datasets with 70%/30% ratio into training and

testing sets, respectively. We sample positive, negative, and (op-
tionally) neutral reviews separately. This results in equal number
of positive and negative reviews in both training and testing sets.
Furthermore, in the case of Amazon dataset, each of the 25 cat-
egories is handled separately, resulting in balanced version of the
data and splitting it into training/testing sets. This is done to ob-
tain equally split sets in terms of polarity for each category, as the
number of reviews varies significantly across the categories (e.g.,
from couple of hundreds to tens of thousands). Finally, once train-
ing and testing sets are constructed, we sample the training sets to
obtain subsets required for validation. We use 20, 000 and 3, 000
reviews for validation from the Amazon and TripAdvisor datasets,
respectively. The datasets used in our experiments are made avail-
able online. 5

4.2 Evaluation Methodology
We have evaluated the performance of sentiment prediction us-

ing binary and ordinal classifications described in Section 2. We
also present comparative results between our method and linear
classifiers on bag-of-word features (1-gram and 2-gram). The lat-
ter approaches are considered to achieve the state of the art perfor-
mance on sentiment prediction [19].
First, we outline the baseline procedure producing 1-gram and

2-gram features. We follow the method used by [6] to limit vocab-
ulary size to 10, 000 terms with highest mutual information (MI),
shared with the binary labels (positive or negative). As was men-

5
http://mst.cs.drexel.edu/datasets/CIKM2011



Amazon TripAdvisor

! 103,953 15,152
!! 80,278 20,040
! ! ! 0 25,968
! ! !! 48,086 15,141
! ! ! ! ! 136,145 20,051

Train 237,900 64,445
Test 110,562 28,907
Validate 20,000 3,000

Total 368,462 96,352

|D| 448,146 158,997
|Γ1| 54,334 54,000
|Γ2| 127,337 127,000

Table 2: Selected statistics for Amazon and TripAdvisor data

sets. The table lists the number of reviews for each star rating,

as well as for training, testing and validation sets separately. In

addition, total number of reviews in each data set is provided.

Original dictionary size (|D|) for each data set is listed along
with 1-gram (Γ1) and 2-gram (Γ2) vocabulary sizes. All of the

numbers listed are obtained from the balanced versions of the

datasets, containing equal number of positive and negative re-

views.

tioned earlier, Amazon dataset contains reviews for 25 categories of
consumer products. As a result, the MI-based procedure for build-
ing 1- and 2-gram vocabularies for the Amazon is performed on
each category separately. In the interest of fairness, the MI-based
procedure is performed only on the training data. Then 10, 000
terms for each of the 25 categories are concatenated together to
form the final vocabulary that contains 54, 334 unique terms. This
vocabulary is then used to filter all three sets of data; training, test-
ing, and validation, for both Supervised Latent n-gram Analysis
(SLNA) input and BOW input.
In addition to selecting single terms with highest mutual infor-

mation to form 1-gram vocabulary Γ1, we perform the same proce-
dure on both unigrams and bigrams to form 2-gram vocabulary Γ2,
yielding 127, 337 features. For the TripAdvisor corpus, we also
use MI-based procedure to build 1-gram and 2-gram vocabularies.
However, since there is only one category for this corpus, we sim-
ply limit the vocabulary size to match the size of the corresponding
vocabulary obtained from the Amazon training set. Table 2 lists 1-
and 2-gram vocabulary sizes for both sentiment datasets.
We train the SVM classifier with linear kernel using LibLin-

ear SVM tool6. Note that the size of the training data, as well
as its dimensionality makes it impractical to use any non-linear
kernel for the SVM classifier. This was previously pointed out
by [19]. The SVM classifier is obtained using the entire training
data, and its performance is evaluated on whole testing set. For
each term, we used two weighting schemes, regular TF-IDF and∆-
IDF (we have implemented a∆(t′)n variant). According to [19],
∆-IDF achieves state of art performance on a small subset of the
Amazon dataset. The optimal value for the cost constant C was
chosen using validation set with simple parameter grid search on
C = {2−7, 2−6, . . . , 26, 27}. We found that for both datasets,
setting C = 32 and C = 1

32
for TF-IDF and ∆-IDF weighting

schemes, respectively, yield the best validation performance.
The training of the perceptron classifiers is different under two

representations: BOW linear or SLNA. Specifically, we perform
training and validation of the perceptrons simultaneously in batches,
where each batch consists of training for 100, 000 iterations fol-

6
http://www.csie.ntu.edu.tw/~cjlin/liblinear/

lowed by the validation testing on the entire set. Each iteration
consists of one positive and one negative reviews selected at ran-
dom from the appropriate set. We stop the training either after 250
batches were performed (25, 000, 000 training iterations), or when
the running average validation error over the last 50 batches in-
creased for the three consecutive batches. Following the training
procedure, the classification error rate (reported in all of our exper-
iments) is computed on the entire testing set using trained neural
network. In our experiments, we set the dimensionality of the word
embedding (Level 1 in Table 1) to m = 50, dimensionality of the
n-gram embedding toM = 30 (Level 2 in Table 1), and size of the
window to n = 5 words (reducing the window size increased error
rate). Dimensionality of the word embedding (m = 50) was se-
lected to match dimensionality of the LSI-based embedding, and is
a common choice for the latter. Furthermore, reducing the dimen-
sionality of the n-gram embedding to M = 30 slightly improved
classification accuracy in our preliminary evaluations. Thus, we
chose to fix this parameter throughout all experiments presented in
Section 4.3.

4.3 Empirical Results

4.3.1 Binary Classification

The first experiment that we performed was to evaluate the per-
formance of the proposed Latent n-gram Analysis method for a
binary classification task – predicting polarity of the review (posi-
tive or negative). Binary classification setup was chosen, since it is
the most common measure of performance for the sentiment pre-
diction task. The binary classification error rates for Amazon and
TripAdvisor datasets can be found in Table 3.

Method Amazon TripAdvisor

BOW Prc 1g 10.96 8.27
BOW SVM 1g 11.10 8.89
BOW Prc 2g 7.59 7.37

BOW SVM 2g 7.45 7.47
BOW SVM∆-IDF 1g 10.91 8.74
BOW SVM∆-IDF 2g 7.39 7.96
BOW LSI SVM 1g 21.40 24.18
SLNA 9.84 8.92
SLNA LSI 7.12 8.33
SLNA LT-FIX 15.4 -

Table 3: Average error rate under binary classification.

The results indicate that for Amazon dataset, SLNA initialized
with LSI embedding achieved better performance in comparison to
both 1-gram and 2-gram, including the SVM classifier using ∆-
IDF. However, on TripAdvisor data, SLNA does not outperform
the BOW methods. Our hypothesis is that this is due to the size
limitation of the training data (60k) for the model. This will be
further confirmed in Section 4.3.3. As a comparison of SLNA to
an unsupervised embedding method, we also include results of a
linear SVM trained on BOW LSI embeddings (BOW LSI SVM),
and also a SLNA with fixed lookup table: i.e., classifier and n-
gram embeddings are trained, but word embeddings are fixed to
LSI embeddings (SLNA LT-FIX). Note that for BOW LSI SVM
method, LSI-based document embedding was obtained in transduc-
tive setting (i.e., using entire balanced dataset), and the best error
rate for 5-fold cross validation on each set is reported (cost param-
eters used: C = {2−7, 2−6, . . . , 26, 27}). It is clear from Table 3



1g vocabulary with unigrams
2g vocabulary with unigrams and bigrams

BOW bag-of-words text representation
Prc perceptron classifier
SVM support vector machine classifier
SLNA Supervised Latent n-gram Embedding
LSI lookup table is initialized with LSI-based latent

vocabulary
BOW LSI 50-dimensional LSI document embedding for

BOW
LT-FIX SLNA structure initialized by LSI, except that

we don’t update word embedding in training
RL The neural network for ordinal classification is

initialized with the network pre-trained for mar-
gin ranking loss

Table 4: Acronym legend.

that neither of these two methods reaches the level of SLNA. For a
description of acronyms, please refer to Table 4.

4.3.2 Rank Loss and Ordinal Classification

Table 5 shows the results on rank loss.

Method Amazon TripAdvisor

BOW Prc 2g 12.5 16.0
SLNA LSI 10.2 13.7

Table 5: Average error when using margin ranking loss. For

TripAdvisor dataset, the experiments were performed on the

data containing neutral reviews.

Clearly, SLNA outperforms BOW approaches on both Amazon
and TripAdvisor datasets. This is different from the results we
observed for binary classifications. We believe this behavior can
be attributed to the fact that pair-wise training examples generates
more training data than simple binary classification. Furthermore,
the rank loss is consistent with the ordinal classification results pre-
sented in Table 6, where SLNA yields the best performance in all
scenarios. We are not aware of any prior art reporting results for
ordinal classification on these two datasets, so direct comparisons
is not possible. For the sake completeness, we calculated mean
squared error (MSE) based on predictions with ordinal classifica-
tion. We obtained MSE = 1.03 on Amazon dataset using SLNA
LSI RL model, which is considerably better than previously re-
ported MSE ≈ 1.5 on a small subset of Amazon dataset [17].

Method Amazon TripAdvisor

BOW Prc 2g 37.8 44.9 (52.1)
BOW Prc 2g RL 35.8 41.5 (51.6)
SLNA LSI 30.7 42.7 (51.4)
SLNA LSI RL 28.2 39.6 (49.2)

Table 6: Ordinal classification average error rate. The error

rate for 5 star classification (i.e., including neutral reviews) are

provided in parentheses.

4.3.3 Effect of the training set size

In table 2, we train Amazon data on the binary classification task,
while varying the size of the training data. We can see that as we in-
crease the size of the training set, the gap between SLNA and BOW
diminishes and eventually SLNA out-performs 2-gram BOW.

Figure 2: Testing error on Amazon with different training set

size.

5. CONCLUSIONS
It is our belief that an n-grammodel, combined with latent repre-

sentation, will produce an more suitable embedding for document-
level classification tasks, such as sentiment polarity prediction. Our
proposed embedding combines n-gram representation with a latent
model to produce a simple and efficient embedding for short seg-
ments of text. Our experimental evaluation indicates that for binary
classification and regression tasks, our method with 1-gram (i.e.,
single words) dictionary of size |D| achieves accuracy of BOW
representation with a 1- and 2-gram dictionary of size |D|2. Fur-
thermore, we show that in a multi-class experimental setting (i.e.,
predicting star values for reviews) our embedding outperforms the
baseline methods based on BOW with 2-gram dictionary.
One potential limitation associated with the proposed method is

its need of large enough training set for model training. However,
due the increasing availability of large scale SA datasets become
available, this is not considered a major shortcoming. Moreover,
our study indicates the model trained on mixed categories has ex-
cellent performance on both mixed and separated categories. These
are all indications of great potential of proposed method in senti-
ment analysis. This model is not restricted to the task of sentiment
classification and can potentially be applied for other document
classification applications.
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