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ABSTRACT

Immunogenic antigen sets possess high potential
for minimally invasive disease detection and mon-
itoring. For various diseases, including cancer,
appropriate antigen sets have already been
detected in blood sera of patients. Typically, a
large number of sera from diseased and unaffected
persons is screened for the antigens of interest.
Sophisticated statistical learning approaches are
trained on the resulting data set to classify sera as
either tumor or normal sera. We developed a web-
based application, called ‘Seroreactivity Profile
Classification Service’ (SePaCS) that enables clin-
ical groups to carry out analyzes of training sets and
predictions of unclassified seroreactivity profiles
with minimal effort. SePaCS provides a broad range
of classification methods: four versions of a Naı̈ve
Bayes Classifier, Support Vector Machines with a
radial basis function kernel, Linear Discriminant
Analysis, and Diagonal Discriminant Analysis.
The computed results are summarized in a PDF
file. We demonstrate the functionality of SePaCS
exemplarily for meningioma, a generally benign
intracranial tumor. As a second example, we
evaluated SePaCS on glioma, a malignant brain
tumor. SePaCS is freely available at http://
www.bioinf.uni-sb.de/sepacs.

INTRODUCTION

Tumor markers are widely used to detect cancer and to
monitor cancer progression. They can be grouped into
markers that are identified in cancer cells and markers
that are secreted into body fluids. To perform early stage
cancer diagnosis, the second group of markers is more
appropriate. A promising method that allows minimal
invasive tumor diagnosis based on markers is mass

spectroscopy. Matrix-Assisted Laser Desorption and
Ionization (MALDI) mass spectroscopy evaluated by
‘peak probability contrasts’ revealed an accuracy of
around 70% for ovarian cancer (1). Similar approaches
for pancreatic cancer performed slightly better with
88% sensitivity and 75% specificity (2).
Tumor antigens in blood sera represent an alternative

approach for minimally invasive cancer diagnosis.
A popular example is the prostate specific antigen (PSA)
that is widely used in the diagnosis of prostate cancer (3).
Since PSA is also present in the blood sera of 33% of
unaffected people, PSA as a single tumor marker shows
a lack of specificity. Likewise, other single antigen markers
including CA-19.9 (pancreatic cancer) and CA-15.3 (breast
cancer) show severe limitations (4). Recent studies strongly
indicate that antigen marker sets significantly improve the
specificity and sensitivity of cancer diagnosis compared to
single antigen markers (5–7). Our Minimally Invasive
Multiple Marker (MIMM) approach for meningioma (8)
e.g. is based on 57 meningioma-associated antigens.
Meningiomas are frequently occurring, generally benign
intracranial tumors that are grouped by the World
Health Organization (WHO) in three grades, grade
I (common type), grade II (atypical) and grade III
(anaplastic) meningioma. On a data set of 183 seroreactiv-
ity profiles from 83 meningioma and 90 normal sera,
MIMM reached a specificity of 96.2% [95% confidence
interval (CI)¼ (96.0–96.5%)], sensitivity of 84.5%
(95% CI¼ 84.3–84.8%), and accuracy of 90.3%
(95% CI¼ 90.1–90.4%). The area under the receiver
operator curve (AUC-value) was 0.957 (95% CI¼
0.956–0.957%).
We developed a web-based application, called

‘Seroreactivity Profile Classification Service’ (SePaCS)
that gives experimental groups easy access to several
supervised statistical learning approaches for classifying
seroreactivity profiles. The results of SePaCS are sum-
marized in an easy interpretable table that contains for
each seroreactivity profile and each classification method
the predicted class label. Our tool also provides a detailed
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result file containing for example, graphical representation
of computed results. We demonstrate the capabilities and
the ease-of-use of our web-based application on the
example of meningioma.

MATERIALS AND METHODS

Supervised learning methods

We tested a variety of supervised learning methods on a
meningioma data set. The approaches that yielded the best
results were ‘Naı̈ve Bayes (NB) Classifiers’ (NB), ‘Support
Vector Machines’ (SVM) with radial basis kernel func-
tions (9), ‘Linear Discriminant Analysis’ (LDA), and
‘Diagonal Discriminant Analysis’ (DLDA). Since further
evaluations on glioma autoantibody profiles confirmed the
results, these statistical learning approaches were included
in SePaCS.
If the WHO grades of cancer sera in the data sets are

also provided by the user, SePaCS additionally offers the
possibility to predict the WHO grade of these sera using a
modified ‘NB Classifier’ (NBC). All statistical computa-
tions are performed using the R language (10).

Mutual informationMI

The mutual information (MI) is a well-known measure in
information theory introduced by Shannon (11). The MI
of an antigen s and the disease state (for example, cancer
and control) represents a measure of the information
content that s provides for the classification task, i.e. the
disease state. Given two random variables X and Y, the
MI I(X,Y) is a measure of the reduction in uncertainty
about X due to the knowledge of Y. In our case, X and Y
are binary random variables. The two possible states of
the random variable X are ‘normal’ (X¼ 0) or ‘diseased’
(X¼ 1). In our application, the binary random variable Y
represents the occurence of the antigen s, i.e. Y can take
the states ‘s not detected’ (Y¼ 0) or ‘s detected’ (Y¼ 1).
Thus, we can consider I(X,Y) as the reduction in
uncertainty about the disease state due to the occurrence
of antigen s. The higher the value of the MI of antigen s,
the more ‘valuable’ s is for the classification task.

Subset selection

Variable selection is a widely used machine learning
technique to increase the performance of classification
methods by focusing on a subset of relevant features.
Basically, two methods for feature subset selection exist,
filter and wrapper approaches (12). Filter approaches
perform the subset selection as a pre-processing step
independent of the classification algorithm (13–15). One
disadvantage of filter approaches is that two correlated
features may be both included in the selected subset. In
contrast, wrapper approaches conduct the search for an
appropriate feature subset using the classification algo-
rithm as part of the function for evaluating variable
subsets (16), avoiding the problem of correlated features.
Thus, in general wrappers should be preferred over filter
approaches although they are computationally much more
demanding.

We compared different wrapper and filter approaches
that revealed comparable effectiveness. The subset selec-
tion method that showed the best performance is based on
the so called ‘MI’ (11). By computing the MI of an antigen
and the class label (0 for normal and 1 for cancer sera),
it allows for measuring the diagnostic information that
the antigen provides. We use a greedy algorithm that adds
in each step the antigen that provides the highest MI.
Using 10-fold cross validation we determine the subset
that shows the lowest error rate for classification.

SEROREACTIVITY PROFILES CLASSIFICATION
SERVICE

SePaCS offers two different modes of operation. In the
first mode, usage of own training data, the user can upload
two antibody profile sets, a training and a test set. In the
second mode, no training data set has to be provided.
Instead, classification methods that are already trained on
our data sets can be applied to the uploaded antibody
profiles. Currently, SePaCS provides trained classifiers for
meningioma. Similar models for other cancer entities will
be available soon, starting with predictors for gliomas
(manuscript in preparation). Additionally, we plan to
provide classification methods trained with autoantibody
profiles of prostate cancer patients, nephroblastoma
patients, and patients with lung cancer.

In both operating modes the results of SePaCS are
summarized in tabular form, i.e. for each classification
method and each test sample the result table contains a ‘1’
if a tumor is predicted and a ‘0’ otherwise.

The web-interface of SePaCS is implemented in Perl and
consists of three modules: parameter specification, data
upload, and data processing and output. The required
parameters can be specified using the web-interface. On
this interface, the user has to select the operating mode
and has to choose at least one of the offered classification
methods. At present, the user can choose from the
following statistical learning methods: four different
versions of a NB Approach, SVM with a radial basis
function kernel (9), LDA and DLDA. Furthermore, the
user has to define a parameter, specifying, whether a
subset selection based on MI (11) should be performed

In the second step the data is uploaded. If the user
intends to train the selected statistical learning algorithms
with his own training set (operating mode one), he can
optionally assign names to the antigens. The antigen
names have to be separated by a semicolon. If no names
are given, the antigens are numbered. Afterwards, the user
has to upload the training data that should be imported as
a matrix M of size n� ( pþ 1), where each of the n rows
represents one serum. The first column denotes the class
label, i.e. a ‘0’ for each normal serum and a ‘1’ for each
patient’s serum. Each of the following p columns
represents an antigen. The matrix entryM [i,jþ 1] contains
the information whether antigen j has been detected in
serum i (M [i,jþ 1]¼ 1) or not (M[i,jþ 1]¼ 0). The entries
of the data matrix are delimited by white spaces. The
described format allows for an easy data-upload by ‘copy
and paste’ from spreadsheets. An example for a training
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data matrix M is provided in the supplemental material. In
both operating modes, the antigen profiles to be classified
are uploaded next. If m sera are to be diagnosed, this data
matrix is expected to be of dimension m� p, i.e. the matrix
has one row per serum and one column per antigen. These
sera can also be named. If sera names are given, they have
to be separated by a semicolon, if no names are given, the
test sera are numbered.

Additionally, SePaCS offers the option to upload a data
file if a user intends to use own seroreactivity profiles. For
details on the data file, we refer to the SePaCS tutorial,
where an example data file can be downloaded.

The statistical analysis starts with an evaluation of the
training data, including among others the mean antigen
reactivity in cancer and control sera, the MI of single
antigens, and the estimation of the classification methods’
performance using standard 10-fold cross validation.
Considering the MI profile, users can easily detect the
most ‘valuable’ antigens that are especially suited to
perform an accurate classification. The cross-validation
error rates enables researchers to assess the classification
results obtained for the test set. If a data set shows a low
cross-validation error, the predictions of the test data are
likely to be correct. In contrast, if a high cross-validation
error rate is reached (maybe due to noisy data), the
classification results of the test data may be incorrect.
Thus, the first part of the statistical analysis facilitates
the interpretation of the data set.

Thereafter, the supervised statistical learning methods
are applied to the antibody profiles and the classification
results are provided on a web-page starting with a
summarizing table. This table shows the output for each
classification method and each antibody profile. Positive
predictions (tumor) are colored red and negative (normal)
predictions are colored green. An example of a table is
shown in Figure 1. The web-page additionally contains
links to supporting plots, e.g. MI profiles.

Besides this summary page, details of the analysis are
provided as PDF report. This report can be either
downloaded or accessed online via a unique job ID. For
example, the report generated with the meningioma data
set described in ‘Results’ can be accessed by using the job
ID 000001. The PDF report is divided into up to five
sections, depending on the chosen parameters. In the first
section, a summary of the analyzed data set is presented,
including images of the data matrices as well as basic
statistics of the training data set. For example, the mean
antigen reactivity of healthy and diseased sera and a
balloon plot of the antigen distribution are shown.
An example of such a balloon plot for the meningioma
data set is given in Figure 2. The second section contains
the classification results for each serum and each
classification method. For some of the statistical learning
methods, as the NB approaches, additional graphical
output is provided. Here, the quotient of the probabilities
that a serum is a normal serum and that the serum is a
cancer serum is plotted. An example of such a plot is
shown in Figure 3. Test and training set are divided by the
vertical blue line, and all sera above the horizontal green
line are classified as cancer sera. If a subset selection based
on MI has been performed, the next section presents the
MI of all antigens. This section also contains the
performance of the classification methods that have been
evaluated on the training data using 10-fold cross
validation as function of the subset size. Additionally,
the classification results computed with the shrunken
subsets are provided. In the last section, all available
classification results are summarized in tabular form.

Figure 1. Classification results of all supported supervised learning
methods with and without subset selection for 10 randomly selected
sera (5 control sera and 5 meningioma sera) based on the models
trained with the meningioma data set. All methods showed correct
classification results, only LDA without subset selection miss-classified
a single meningioma serum as control serum.

Figure 2. Analysis of the antigen distribution in the meningioma test
set. The balloon plot shows at position i, j how many antigens occur in
i meningioma sera and j control sera. The size of the blue balloons is
chosen proportional to the number of antigens. The numbers on the
right side of the figure and below the figure denote the sums of rows
and columns. Antigens with high information content are typically
located in the lower left corner of the balloon plot. The green
highlighted antigens provide the highest diagnostic value (see also
Figure 4). The antigens in the first column are only detected in
meningioma sera and are called specific sera.
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RESULTS

The functionality of SePaCS is demonstrated exemplarily
on a meningioma data set including a total of 183 sera
(90 meningioma patients and 93 controls). These sera have
been screened for reactivity against 57 antigens that are
known to be meningioma associated (6). For example, we
divided the data set such that classification was performed
for 10 randomly selected sera based on a training data set
of 173 sera. The pdf report for this example can be
reviewed on www.bioinf.uni-sb.de/sepacs, using the job
ID 000001 and is also available in the supplementary
material.
The analysis of the training set showed that the mean

antigen reactivity in meningioma sera (20%) is signifi-
cantly higher than in control sera (11%). The antigen
distribution shown in Figure 2 reveals that in meningioma
sera up to 53 of the 57 considered antigens have been
detected, whereas in normal sera only up to 41 antigens
have been found. Out of the 57 antigens 8 antigens react
only with meningioma sera, but not with control sera as
detailed in Figure 2. In Figure 4, the MI of all antigens is
provided. The diagnostic value of each antigen can be
directly compared to the value of all other antigens.
The antigen with the highest MI (0.2) is NKTR that
occurs in 31 of 87 meningioma sera (37%), but not in a
single control serum. NKTR represents the last antigen in
the first column of the balloon plot in Figure 2. The
antigen with the second highest MI (0.14), NIT2,

is detected in 3 of 85 control sera and in 32 of 87
meningioma sera. The two antigens providing the highest
MI are highlighted in Figure 2.

Table 1 shows the cross validation error rates of the
training set for the subset selection together with
the respective subset sizes. This information enables the
user to judge the predictive power of the different
classification methods regarding his data set. In our
example, best performance is obtained with the
NB Classifiers, whereas LDA and DLDA show signifi-
cantly decreased performance.

As shown in Figure 1, the first five sera that stem from
control persons are classified by all prediction methods as
non-meningioma sera. With the exception of LDA
(without subset selection) that misclassifies one menin-
gioma serum, all meningioma sera have been correctly
predicted. We also tested the server with seroreactivity
patterns of 95 glioma sera versus 82 control sera. The
results were of comparable quality as the results computed
by using meningioma antibody profiles.

Figure 3. Classification result of the first NB approach. Ten sera are
classified based on the model generated with 173 meningioma and
control sera. Training and test sera are separated by a vertical blue line.
All sera above the horizontal green line are predicted to be meningioma
sera. Each zero in the training set represents a control serum, each
number represents a serum of a meningioma serum with the respective
WHO grade. The y-axis represents the logarithmized quotient P(A) of
P(M|A) divided by P(N|A), where P(M|A) is the conditional probability
that given the antibody profile A the serum is a meningioma serum,
and P(N|A) is the conditional probability that given the antibody
profile A the serum is a normal serum. The higher the value P(A) the
more probable the serum is a meningioma serum.

Figure 4. MI of the 57 antigens and the disease state. The color of bars
indicates whether the antigens occur only in diseased sera (so called
specific antigens; blue bars) or in diseased and control sera (green bars).
That representation allows users to rank the antigens easily according
to their diagnostic value. In general, specific antigens show higher
information content than non-specific antigens, however, some non-
specific antigens as NIT2 also provide a high diagnostic value.

Table 1. Cross validation error rates of the different classification

methods together with the antigen subset size

Method Subset size Error rate

NBA 31 0.087
NBB 40 0.081
NBC 32 0.283
NBD 34 0.081
Linear Discriminant Analysis 32 0.104
Diagonal Discriminant Analysis 40 0.104
Support Vector Machine 50 0.087
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DISCUSSION

SePaCS grants non-experts in the field of statistical
learning easy access to a comprehensive analysis frame-
work for classifying seroreactivity profiles. Our tool offers
the possibility to analyze seroreactivity profiles not only
from different tumor entities, but from a wide variety of
other human diseases that trigger a complex immune
response, e.g. autoimmune diseases. Although, SePaCS
was designed to analyze autoantibody profiles, it can be
used for any kind of binary data.

The easy usage of our statistical framework and its
diagnostic value have been demonstrated with a menin-
gioma data set. A second test with glioma seroreactivity
profiles showed a similar performance. Currently, we are
preparing analyzes of seroreactivity profiles for other
tumor types.
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