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Arabidopsis MADS box protein complex formation<p>A yeast 3-hybrid screen in Arabidopsis reveals MADS box protein complexes: SEP3 is shown to mediate complex formation and floral timing.</p>

Abstract

Background: Plant MADS box proteins play important roles in a plethora of developmental

processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are

thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid

screen is utilized to provide insight into the higher-order complex formation capacity of the

Arabidopsis MADS box family. SEPALLATA3 (SEP3) has been shown to mediate complex formation

and, therefore, special attention is paid to this factor in this study.

Results: In total, 106 multimeric complexes were identified; in more than half of these at least one

SEP protein was present. Besides the known complexes involved in determining floral organ

identity, various complexes consisting of combinations of proteins known to play a role in floral

organ identity specification, and flowering time determination were discovered. The capacity to

form this latter type of complex suggests that homeotic factors play essential roles in down-

regulation of the MADS box genes involved in floral timing in the flower via negative auto-

regulatory loops. Furthermore, various novel complexes were identified that may be important for

the direct regulation of the floral transition process. A subsequent detailed analysis of the

APETALA3, PISTILLATA, and SEP3 proteins in living plant cells suggests the formation of a

multimeric complex in vivo.

Conclusions: Overall, these results provide strong indications that higher-order complex

formation is a general and essential molecular mechanism for plant MADS box protein functioning

and attribute a pivotal role to the SEP3 'glue' protein in mediating multimerization.
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Background
Since the isolation of the first plant MADS box transcription

factor gene, substantial knowledge has been gained about the

biological functions of these developmental regulators in var-

ious plant species. A thorough analysis of the complete

genome sequence from the model species Arabidopsis thal-

iana revealed the presence of 107 different members belong-

ing to this transcription factor family, with known or

predicted functions in floral induction, plant architecture,

female gametophyte development, fruit formation, fruit rip-

ening, pod shattering, nitrate signaling and floral organ

development [1-3]. Already in the early 1990s, genetic studies

using floral organ mutants in Arabidopsis and Antirrhinum

majus, representing mutations in mainly MADS box tran-

scription factor genes, led to the establishment of the robust

'ABC model' for floral organ formation [4]. According to this

original model, organ identities are determined by combina-

tions of three functions, in which the A-function is essential

for the specification of sepal identity, A- and B-functions for

petals, B- and C-functions determine stamen identity, and the

C-function on its own is responsible for carpel formation. In

Arabidopsis the A-function is defined by APETALA1 (AP1)

and APETALA2 (AP2), the B-function by APETALA3 (AP3)

and PISTILLATA (PI), and the C-function by AGAMOUS

(AG), from which only the AP2 gene does not belong to the

MADS box family.

Although the original 'ABC model' describes well the home-

otic mutations in the various floral mutants, the lack of floral

organ formation outside the flower when B- and/or C-func-

tion MADS box genes were ectopically expressed indicated

that more factors are required for the floral organ identity

functions [5,6]. In Arabidopsis, the SEPALLATA (SEP)

MADS box genes appeared to be the missing co-factors and

this new class of floral organ identity genes was termed E-

function genes [7]. In line with the refined and extended 'ABC

model', combinatorial over-expression of A-, B- and E-func-

tion genes results in conversion of leaves into petals, whereas

constitutive expression of B-, C- and E-function genes gives

rise to the formation of stamens instead of leaves [8-10]. Like

for many MADS box genes, functional redundancy exists for

the E-function genes, and only in the sep1 sep2 sep3 triple

mutant were clear phenotypical alterations observed, namely

the conversion of the second and third whorl organs into

sepals and the development of a new inflorescence from the

central region of the floral meristem [7]. Mutation of the

fourth Arabidopsis SEP gene (SEP4) in a sep1 sep2 sep3

background resulted in the production of leaves only [11] and

reveals an important function for SEP4 in sepal development.

In addition, these latter observations give supporting evi-

dence for Goethe's so-called 'big metamorphose', which pro-

poses that a genetic program for the development of leaves is

the basis for the formation of the flower, implying that floral

organs can be regarded as modified leaves [12]. More detailed

analyses of double and triple sep4, cauliflower (cal), and ap1

mutants and genetic titration experiments for the sep muta-

tions demonstrated that SEP4 also has a role in establishing

floral meristem identity and petal, stamen and carpel devel-

opment [11]. Furthermore, the genetic titration experiments

for the sep mutations described by Ditta and colleagues [11]

showed dosage effects and redundancy for the SEP genes.

Similar conclusions were drawn in relation to ovule develop-

ment, in which the SEP genes act in a dose-dependent man-

ner together with the C-function gene AG and the D-function

genes SEEDSTICK (STK), SHATTERPROOF1 (SHP1) and

SHATTERPROOF2 (SHP2) [13].

In conclusion, all these genetic data point towards a central

role for the SEP genes in floral meristem and floral organ

development. The importance of this class of genes for floral

development has been put forward from an evolutionary

point of view as well. Based on detailed phylogenetic studies

and the fact that SEP like genes have been isolated from

angiosperms only, Zahn and colleagues [14] suggested that

the SEP genes might be the basis for the origin of flowers.

An intriguing question arising from the ABC model is how all

these different MADS box transcription factors co-operate

together at the molecular level. Part of this question could be

answered based on in vitro biochemical assays [15] and yeast

two-, three- and four-hybrid experiments that were per-

formed over the past decade (among others [8,16,17]). The

yeast experiments revealed binary interactions between spe-

cific A-, B-, C-, D-, and E-function MADS box proteins and,

furthermore, they suggest the assembly into higher-order

complexes consisting of 'ABC'-function MADS domain pro-

teins and dimers. These results support the notion that MADS

box proteins are active in a combinatorial manner and,

accordingly, the 'Quartet model' has been proposed for MADS

box transcription factor functioning [18]. In this model, a piv-

otal role has been attributed to the SEP proteins (E-function),

which are present in almost all known higher-order com-

plexes and, thus, can be regarded as the 'glue' proteins of flo-

ral organ development. Similar higher-order complexes have

been identified for MADS box proteins of other species, such

as Antirrhinum [17], chrysanthemum [19], petunia [20-23]

and tomato [24], demonstrating that these types of interac-

tions are conserved among angiosperm species. Furthermore,

it has been shown recently that the SEP3 protein on its own is

able to form homotetramers in vitro [25]. Based on all these

findings, it is acceptable to use the 'Quartet model' as the

working model for MADS box transcription factor function-

ing, although hardly any evidence for direct physical higher-

order complex formation between MADS proteins in plant

cells has been found. Recently, it has been shown that the

transient interaction between the petunia MADS box proteins

FLORAL BINDING PROTEIN11 (FBP11) and FBP24 in proto-

plasts can be stabilized by adding the FBP2 protein, suggest-

ing that a multimeric protein complex is formed in living

plant cells [23]. Furthermore, gel filtration experiments with

native protein extracts revealed that the FLOWERING

LOCUS C (FLC) MADS box transcription factor is present in
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high molecular weight complexes [26]. In conclusion, MADS

box proteins are able to multimerize in plant cells and are

present in large complexes in vivo; however, the exact com-

position and stoichiometry of these complexes remains

unknown.

In this study a large-scale yeast three-hybrid screen was per-

formed to unravel the capacity and selectivity of higher-order

complex formation for Arabidopsis MADS box transcription

factors, with a special focus on the SEP proteins. In total, 106

ternary interactions were scored and in 78 cases at least one

SEP protein appeared to be involved. The obtained results

illustrate that higher-order complex formation is common

among MADS proteins, and that this mechanism is employed

by all subfamilies of the MADS box family. Based on available

expression data for the MADS box genes that code for the

interacting proteins, previous mutant analyses, and interac-

tion studies in living plant cells, biological functions could be

proposed for particular SEP3 complexes.

Results
Large scale yeast three-hybrid analysis

After the discovery that A. majus MADS box proteins are able

to form multimeric complexes in yeast [17], a small number of

additional ternary and quaternary complexes has been iden-

tified for MADS box proteins from various species. Currently,

approximately 20 potential higher-order complexes involving

Arabidopsis MADS box proteins have been reported

[8,13,20,27] (Table S1 in Additional data file 1). Remarkably,

the vast majority of these complexes contains the SEP3 pro-

tein, which suggests that proteins of this sub-clade are impor-

tant mediators of higher-order complex formation.

To get a better understanding about the capacity and specifi-

city of complex formation for Arabidopsis MADS box pro-

teins in general, and for the SEP3 protein in particular, a large

scale yeast three-hybrid screening was performed. For this

purpose all MADS box protein dimers that were identified in

the comprehensive yeast two-hybrid screening [16] were

reconstituted in yeast strain PJ69-4 mating type A (Table S2

in Additional data file 1) by expressing one of the two dimeri-

zation partners as a fusion with the activation domain (AD) of

the yeast GAL4 transcription factor, while the other protein

was fused to a nuclear localization signal only [28]. Subse-

quently, these yeast clones were screened against the availa-

ble collection of single MADS box proteins fused to the GAL4

binding domain (BD) in yeast strain PJ69-4 mating type

Alpha [16].

In total, 27,400 combinations (274 dimers × 100 single pro-

teins) were tested for ternary complex formation and this

screen yielded 47 positives (Table S3 in Additional data file 1).

The results reveal a preference for ternary complex formation

with proteins of the same sub-class of MADS box proteins; in

general, type II proteins interact with other type II proteins

and the same holds for members of the type I sub-class.

Besides the 47 higher-order complexes that were identified in

this screen, nine additional dimers were found that were

missed in the large-scale yeast two-hybrid screening per-

formed by De Folter and colleagues [16] (Table S4 in Addi-

tional data file 1). Most likely, this difference is caused by the

more mild selection criteria used for the yeast three-hybrid

experiments. Although, many new triple combinations were

found, the total number of ternary interactions was much

lower than expected and, to our surprise, none of the known

complexes was identified. The latter discrepancy could be

explained to a large extent by technical limitations of the sys-

tem: many combinations could not be tested for ternary com-

plex formation, because the two proteins that were fused to

GAL4-AD and -BD were already able to form a dimer that

activated the yeast reporter genes even without the incorpo-

ration of the third protein in the complex. For instance, we

could not observe the interaction between SEP3, STK (dimer

257 in Table S2 in Additional data file 1) and AG [13], because

GAL4-AD-SEP3 and GAL4-BD-AG are able to dimerize and

activate the yeast reporter [16]. Furthermore, the presence of

an intrinsic transcriptional AD in about 20% of the Arabidop-

sis MADS box proteins [16], including the SEP1 and SEP3

proteins [10], limited drastically the number of combinations

that could be tested for ternary interactions due to auto-acti-

vation of the yeast reporters.

SEP3 ternary complex formation

One of the main goals of the large-scale yeast three-hybrid

screening was to obtain a comprehensive picture of the poten-

tial of SEP proteins to mediate higher-order complex forma-

tion. However, this objective was hampered by the large

number of dimers formed by these proteins and auto-activa-

tion of the yeast reporters by the SEP proteins. To overcome

the latter problem we mapped the auto-activation domain in

the SEP3 protein in order to remove this domain from the

protein. This SEP member was chosen because genetic stud-

ies [7,11], transactivation assays [10], and yeast two-hybrid

experiments [16] have revealed that SEP3 is the most 'active'

member of the SEP clade. To predict the presence of potential

transcriptional activation domains, a search for motifs was

performed with the software program DILIMOT on the full-

length sequences of all MADS box proteins that gave auto-

activation in yeast [16]. In this screen, a total of ten motifs was

found, including the ones that were identified for the AP1 pro-

tein previously [29], and almost all appeared to be located in

the carboxy-terminal region of the MADS box proteins (Table

S5 in Additional data file 1). This observation supports results

from previous studies, where transcriptional activation

capacity was often detected in the carboxy-terminal domain

of plant MADS box proteins [10,21,29,30]. Subsequent anal-

yses revealed that the identified motifs are underrepresented

in the sequences of MADS box proteins that do not give auto-

activation in yeast. Based on this, a decision tree model could

be designed using those motifs that discriminate between

auto-activating and non-auto-activating MADS box
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sequences, providing additional evidence for their role in

transcriptional activation (Table S5 in Additional data file 1).

As control, DILIMOT was used again to search for eventual

overrepresented motifs in the set of MADS box proteins that

do not give auto-activation in yeast. This search did not reveal

any motif, consistent with their lack of transcriptional activa-

tion. When using the predicted auto-activation motifs to scan

all proteins from the Arabidopsis genome, we found that

these motifs are over two-fold overrepresented in transcrip-

tion factors compared to all proteins, and that this overrepre-

sentation is even higher (over four-fold) when analyzing

proteins with at least two of the motifs present (Table S5 in

Additional data file 1). This result provides additional valida-

tion for the putative role of the motifs in transcription activa-

tion. Note that one does not expect all transcription factors to

be auto-activating, and, in addition, not all auto-activating

transcription factors need to contain the same motifs.

Figure 1 illustrates the putative transcriptional activation

motifs in the SEP3 protein sequence. Previous studies have

demonstrated that besides transcriptional activation capac-

ity, ternary interaction determinants are also localized in the

carboxy-terminal region of MADS box proteins [17], and,

therefore, it was important to take this characteristic into

account as well. Yang and Jack [31] performed an in-depth

mapping of the domains involved in ternary complex forma-

tion between the B-function proteins and SEP3, and this

study assigned an important role to the last predicted

amphipathic alpha-helical structure at the border between

the K-box and the carboxy-terminal region (Figure 1). Stimu-

lated by these results, we used the web-based programs Pair-

coil [32] and Multicoil [33] to predict alpha-helical structures

within the SEP3 protein. Based on these predictions and the

identified putative activation domains, we designed two trun-

cated SEP3 proteins lacking 80 and 67 amino acid residues at

the carboxyl terminus, and named SEP3C1 and SEP3C2,

respectively (Figure 1). The first truncated protein stops

within the last predicted alpha helix, while the SEP3C2 pro-

tein terminates directly after this predicted structural

domain. Subsequently, the shortened proteins were fused to

GAL4-BD and tested in yeast for auto-activation capacity,

which appeared to be abolished in both cases. To investigate

the ability of the two truncated SEP3 versions to form dimers

and higher-order complexes, the previously identified het-

erodimer between AG and SEP3 [16] and the ternary complex

between AG, STK and SEP3 [13] were tested in yeast. As

expected, both SEP3C protein versions were still able to

dimerize with AG; however, only SEP3C2 interacted with

AG and STK in the yeast three-hybrid experiment, demon-

strating once more the importance of the predicted alpha-hel-

ical structure at the end of the K-box for ternary protein

interactions (helix III in Figure 1). Based on these observa-

tions, we reconstituted all known SEP3 dimers in yeast mak-

ing use of the SEP3C2 construct (Table S6 in Additional data

file 1). This new collection of dimers was screened against all

single MADS box proteins in a yeast three-hybrid assay, and

reciprocally, the single SEP3C2 protein fused to GAL4-BD

was combined with the set of MADS domain dimers (Table S2

in Additional data file 1). This experiment yielded 59 addi-

tional higher-order complexes (Table S7 in Additional data

file 1), including the known SEP3 ternary interactions (Table

S1 in Additional data file 1). Figure 2a shows the sub-network

representing all SEP3 interactions, whereas the overall net-

SEP3 protein sequence, domains and motifsFigure 1

SEP3 protein sequence, domains and motifs. Predicted alpha helices are outlined and numbered (I-III) and the K-box (AA75-177, PFAM [84]) is shaded. 
Motifs predicted to be involved in transcriptional activation are underlined (NxNQ, HQxQ, QxQH, and MGxxxxxN). The arrow indicates the position at 
which SEP3C1 stops (after amino acid 171) and the end of SEP3C2 is indicated by an arrowhead (after amino acid 184).

I

IIIII

060402

MGRGRVELKRIENKINRQVTFAKRRNGLLKKAYELSVLCDAEVALIIFSNRGKLYEFCSS

02100108

SSMLRTLERYQKCNYGAPEPNVPSREALAVELSSQQEYLKLKERYDALQRTQRNLLGEDL

081061041

GPLSTKELESLERQLDSSLKQIRALRTQFMLDQLNDLQSKERMLTETNKTLRLRLADGYQ

042022002

MPLQLNPNQEEVDHYGRHHHQQQQHSQAFFQPLECEPILQIGYQGQQDGMGAGPSVNNYM

LGWLPYDTNSI : 251
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work, including the complexes listed in Table S3 in Additional

data file 1, is depicted in Figure 2b.

SEP3 complex partners are co-expressed

A prerequisite for a biologically relevant protein-protein

interaction in planta is coexistence of the proteins in the same

cell and at the same moment during development. Therefore,

the expression patterns of the genes encoding complex-form-

ing MADS box proteins were compared using AtGenExpress

data [34]. Note that a few MADS box genes are not presented

on the ATH1 arrays used for AtGenExpress. For these partic-

ular MADS box genes, the AtTAX data were analyzed. This

data set represent the results from whole genome tiling array

hybridizations [35]. Unfortunately, no expression above

background levels could be detected for most of the MADS

box genes missing from the ATH1 arrays in the limited

number of tissues tested on the tiling arrays. As a conse-

quence, co-expression could not be confirmed for 16 out of

the 106 identified complexes. Except for one complex, these

are all complexes involving type I MADS box proteins, which

are hardly studied. The co-expression analysis revealed that

for almost 100% of the identified complexes containing type

II MADS box proteins, the encoding genes have an overlap in

expression in at least one tissue (Tables S3 and S7 in Addi-

tional data file 1). Remarkably, for type I proteins this was

only 78%. This may reflect a real lack of co-expression, but,

more likely, this is due to the low and very localized expres-

sion of a number of type I proteins [2,3,36-40], which makes

the microarray data less reliable. For the few identified com-

plexes consisting of combinations of type I and type II pro-

teins, the expression patterns of the encoding genes appeared

to overlap. The high percentage of co-expression (overall

95%) indicates that almost all identified complexes could

potentially be formed in planta, although, for some of the

genes, the expression levels were very low in the overlapping

tissues. We also realize that these data are mRNA expression

data and do not reflect protein levels; however, as far as is

known, the spatial and temporal distribution of MADS

domain proteins follows roughly the mRNA expression pat-

terns [41,42]. Nevertheless, we can not exclude that non-cell

autonomous action of MADS proteins plays a role and that

some proteins are transported to adjacent cell layers and tis-

sues. This has been shown, for instance, for the B-function

MADS box proteins from Antirrhinum [43]. In Figure S1 in

Additional data file 1 a comparison of expression patterns is

presented for all gene combinations encoding putative ter-

nary complex components for the complexes that contain the

SEP3 protein.

SEP3, AP3, and PI complex formation in living plant 

cells

To our surprise, a ternary complex was found in yeast

between AP3, PI and SEP3, making use of full-length B-func-

tion proteins (Table S7 in Additional data file 1). Previous

experiments revealed that the supposed heterodimer

between AP3 and PI could not be detected in the yeast two-

hybrid system when full-length proteins were used [16,44].

This strongly suggests that SEP3 can mediate the interaction

between AP3 and PI in yeast. To investigate the behavior of

these proteins in plant cells in more detail, we analyzed their

interactions by fluorescence resonance energy transfer-fluo-

rescence lifetime imaging microscopy (FRET-FLIM) in Ara-

bidopsis leaf cells [23,45,46]. Initially, AP3, PI and SEP3 were

carboxy-terminally labeled by enhanced cyan fluorescent

protein (CFP) or enhanced yellow fluorescent protein (YFP)

and transiently expressed in protoplasts, followed by confocal

laser scanning microscopy for the analysis of their intracellu-

lar localization. Surprisingly, besides SEP3, PI was also

nuclear localized, whereas the AP3 protein was found in both

the nucleus and cytoplasm (Figure 3a-c). These localization

results are not in agreement with previous intracellular local-

ization data obtained for AP3 and PI in studies by McGonigle

and colleagues [47], who observed that nuclear localization of

the two B-function proteins occurs only when both proteins

are simultaneously expressed. However, in their case, the

GUS reporter was used and amino-terminally fused to the

MADS box protein, followed by expression in onion epider-

mal cells, which might be the reason for the observed differ-

ences. It has been shown before that fusion of green

fluorescent protein-like fluorophores to the amino terminus

of MADS box proteins can influence their nuclear import

[23,48]. To analyze whether there is a difference between

amino- and carboxy-terminal labeling with respect to locali-

zation, AP3 and PI were also labeled with YFP at the amino

terminus and transfected into protoplasts. In accordance with

the results reported in the literature [47], most of the signal

appeared to be localized in the cytoplasm in this case (Figure

3d); however, co-expression of the other B-function protein

labeled at the carboxy-terminal results in a mainly nuclear

localized signal for both proteins (Figure 3e) and the same

result was obtained when both proteins were carboxy-termi-

nally labeled (Figure 3f). Based on these observations, we

decided to make use of carboxy-terminal fusions for all fur-

ther experiments.

FRET-FLIM was used to investigate the physical interaction

of the labeled proteins in the leaf cells. The homodimer com-

binations 'SEP3-CFP + SEP3-YFP', 'PI-CFP + PI-YFP' and

'AP3-CFP + AP3-YFP' were analyzed first and 'PI-YFP + free

CFP' was used as a negative control (Figure 4). Interestingly,

a remarkable difference was detected among the proteins

analyzed for homodimerization capacity. In the case of SEP3,

a strong reduction of the fluorescence lifetime was observed

over the entire nucleus, suggesting efficient homodimer for-

mation (Figure 4b). In contrast, AP3 and PI showed only a

strong reduction of fluorescence lifetime in particular sub-

nuclear spots, which may represent more transient interac-

tions (Figure 4c,d). Interaction in parts of the nucleus has

been reported before for petunia MADS box proteins [23].

Currently, it is unclear whether these non-homogeneous

interactions are biologically relevant; however, the ability of

B-function proteins to homodimerize is supposed to be the
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Figure 2 (see legend on next page)
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ancestral status, which subsequently evolved into obligatory

heterodimerization in the core eudicots [49]. In line with this,

it could be that the homodimer interactions identified for the

individual Arabidopsis B-function proteins by FRET-FLIM

are remnants of their former ability to homodimerize, which

has been almost lost during evolution. In a following experi-

ment, we tested the supposed heterodimerization between

the full-length PI and AP3 proteins in plant cells. Because no

interaction was found between these two full-length proteins

in yeast, the heterodimer between AP1 and SEP3 was added

as a positive control [16]. As expected, the AP1-SEP3 combi-

nation showed a very strong reduction in fluorescence life-

time over the entire nucleus (Figure 4e). Interestingly, the

combination AP3-PI also showed a strong FRET-FLIM signal

demonstrated by a short fluorescence lifetime, suggesting

that these proteins are able to form heterodimers in living

plant cells (Figure 4f). Remarkably, this combination always

resulted in a strong accumulation of fluorescent signal in a

ring-like pattern at the position of the nucleolus (Figures 3f

and 4f), a phenomenon that was never observed for any other

combination of MADS box proteins tested.

Subsequently, the effect of SEP3 on the AP3-PI heterodimer

was analyzed by FRET-FLIM to gain insight into higher-order

complex formation. For this purpose the occurrence of FRET

was measured between PI-CFP and AP3-YFP in the presence

of a non-labeled SEP3 protein. The addition of SEP3

appeared to have a strong effect on the localization of the PI

and AP3 proteins: instead of localization at the nucleolus

(Figure 4f), the AP3 and PI protein interaction appeared to be

more equally distributed over the nucleus in the presence of

SEP3 (Figure 4g). Furthermore, a short fluorescence lifetime

could be observed over the entire nucleus, although the drop

in fluorescence lifetime was less strong than in the absence of

SEP3 (Figure 4f). An explanation for this could be that SEP3,

which is supposed to bind to the carboxy-terminal regions of

AP3 and PI, interferes with the optimal positioning of CFP

and YFP for a high FRET efficiency.

Discussion
Plant MADS domain protein higher-order complex 

formation

MADS box transcription factors play essential roles during

the plant lifecycle and can be characterized as the architects

of plant development. Their specific functioning is mainly

determined by direct physical protein-DNA and protein-pro-

tein interactions (reviewed in [45,50]). Besides the formation

of dimers, the well studied type II floral organ identity MADS

box proteins [51] are supposed to form multimeric protein

complexes consisting of three to four different MADS box

proteins (for example, [8,17,21]). Remarkably, the majority of

higher-order complexes known to date contains at least one

protein belonging to the 'E-function' class, which is repre-

sented by the SEP proteins in Arabidopsis [7]. It was

unknown whether assembly into these large complexes is a

common molecular mechanism that mediates plant MADS

box transcription factor functioning, or whether this is only

characteristic for the 'ABC-function' proteins and, in particu-

lar, for 'E-function' proteins. Therefore, we performed a

large-scale yeast three-hybrid analysis for members of the

Arabidopsis MADS box transcription factor family. Although

this study was not comprehensive due to technical limitations

of the screen, many novel complexes could be identified for

both type I and type II MADS box transcription factors. In the

initial screen with the full-length proteins, more complexes

were identified that exclusively consist of type II proteins (25)

than complexes with only type I proteins (15), while the Ara-

bidopsis genome encodes more proteins belonging to the lat-

ter class. Whether this difference in the capacity to assemble

into multimeric complexes between these two groups is due

to differences in protein structure and reflects their biological

functions needs more thorough investigations by alternative

MADS box transcription factor interaction networksFigure 2 (see previous page)

MADS box transcription factor interaction networks. (a) Visualization of a sub-network representing all SEP3 interactions and (b) the network 
representing all identified higher-order complexes. Proteins are indicated by ovals and interactions by lines. Purple lines indicate dimer formation and blue 
lines indicate ternary interactions. Ternary complexes are graphically represented in the network as a line between the protein that is expressed from the 
pAD-GAL4 vector and the protein expressed from the pARC352 vector (the dimer combination), and a line between the protein in the pARC352 vector 
and the pBD-GAL4 vector. Layout computed using the Pathway Studio 4.0 software (Ariadne Genomics, Inc., Rockville, MD, USA). Type I and type II 
MADS box protein sub-networks are indicated.

Localization of MADS box proteins in living cellsFigure 3

Localization of MADS box proteins in living cells. The MADS box proteins 
under study were fused to CFP or YFP and transiently expressed in 
Arabidopsis protoplasts. (a) PI-CFP; (b) SEP3-YFP; (c) AP3-YFP; (d) YFP-
AP3; (e) YFP-AP3 + PI-CFP; (f) AP3-YFP + PI-CFP. Note that the proteins 
accumulate in a ring-like pattern at the position of the nucleolus. Scale bar 
= 10 m.

(a) (b) (c)

(d) (e) (f)
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methods. The fact that type I proteins lack a K-box, which has

been shown to be an important mediator for dimerization and

higher-order complex formation [31,44], could explain the

observed differences. Nevertheless, coiled-coil structures

have been predicted within the carboxy-terminal region of

type I proteins [2] and these structural motifs are well-known

molecular recognition structures [52] that potentially can be

involved in type I complex formation.

In the previous two-hybrid screen from De Folter and col-

leagues [16], interactions between type I and type II MADS

box proteins were observed, although rare. In the current

three-hybrid screen also only a few complexes (7) were found

that contain both type I and type II proteins, though the genes

encoding these interacting proteins are co-expressed (Table

S3 in Additional data file 1). The presence of these interac-

tions suggests that they arose before the duplication that gave

rise to the two lineages, which happened before the diver-

gence of plants and animals [51]. Alternatively but less likely,

these hybrid interactions were acquired after the birth of the

type I and II MADS box lineages. Interestingly, the interac-

tion networks of the type I and type II proteins are clearly sep-

arated (Figure 2b), which may reflect the different functions

these proteins play in plants. Most type II proteins are

involved in identity specification and phase changes, while

recent studies on type I genes [2,3,36-40] support the notion

that they play an important role in gametophyte and embryo

development. The inter-lineage interactions between the type

I and II sub-networks may link the different roles these

MADS box proteins play. In this respect it is interesting to

notice that five out of seven 'type I-type II' interactions con-

tain either the type II proteins ARABIDOPSIS BSISTER

(ABS) or AG; both proteins are important for gametophyte

and seed development in Arabidopsis [20,27,53]. The ABS

gene encodes two proteins, ABS-I and ABS-II, which are

derived through alternative splicing [20]. The yeast three-

hybrid experiments revealed that both proteins multimerize

with type I proteins, but with a difference in specificity.

Besides these differences, novel and distinctive interactions

with type II proteins were also found for the two ABS pro-

teins, which had not been identified in previous studies

[20,27]. These differences in interaction specificity probably

explain the observation that only the long splice form (ABS-I)

can complement the endothelium defects in the abs mutant

[20]. In contrast to ABS-II, the ABS-I protein is able to form

a ternary complex with AGAMOUS-LIKE16 (AGL16)-SEP3,

PI-SEP3, AGL74N-SEP2 and SEP1-SEP2. Except for

'AGL74N-SEP2-ABS-I', co-expression of the genes encoding

these interacting proteins in carpels and young pistils con-

taining seeds has been detected [34]. Unfortunately, detailed

information about expression in the ovule and function of

these ABS-I specific interaction partners is missing, leaving

the question of whether one of these novel complexes is

responsible for the functional discrepancy between ABS-I and

ABS-II unanswered.

Expression of the genes encoding complex members

In general, co-expression of genes encoding interaction part-

ners may give clues about a common function for the proteins

involved. For example, members of the MIKC* sub-clade

(also known as M [2]) are specifically expressed during pol-

len formation and the encoded proteins form higher-order

complexes with other members of this sub-clade, suggesting

that they play an important role during pollen development

[54]. However, a lack of a large expression overlap in planta

does not necessarily mean that we are dealing with a false

positive protein interaction. Note that, for example, the AG-

SEP3 dimer interacts with a set of ternary interacting factors

that overlap in expression pattern with the dimerization part-

ners in distinct tissues, or during particular stages of develop-

ment only (Tables S3 and S7 and Figure S1 in Additional data

file 1). Complexes were also identified for proteins that show

no obvious overlap in their corresponding mRNA expression

patterns, as, for example, complexes consisting of the floral

activators AGL24 [55], SUPRESSOR OF OVEREXPRESSION

OF CONSTANS1 (SOC1) [56], and the AGL17 or AGL19 pro-

teins, which are both encoded by genes preferentially

expressed in roots [57,58]. However, recent functional analy-

ses of AGL17 [59] and AGL19 [58] revealed that these pro-

teins are also inducers of flowering and share this function

with their putative complex partners. Besides the expression

in roots, both AGL17 and AGL19 show low expression in

above-ground vegetative parts [58,59], which probably

results in sufficient molecules for complex formation and

subsequent activation of flowering in the shoot apical meris-

tem. Furthermore, it is known that the expression levels of

AGL24 [60], SOC1 [61], and AGL17 [59] are coordinately up-

regulated by CONSTANS (CO) and, hence, that these MADS

box genes act downstream of this protein in the photoperiodic

flowering pathway. Based on all these findings, we hypothe-

size that the specific higher-order complex formation

between these MADS box proteins is an important mecha-

nism for the functioning of these proteins in the regulation of

flowering time. Notably, similar kinds of complexes have

been found for a couple of other related and preferentially

root-expressed MADS box proteins (AGL14, AGL21 and

AGL42) [57,62,63], whose functions are unknown. From the

genes encoding these proteins, AGL42 is strongly up-regu-

lated upon a switch from short day to long day conditions, as

is the case for SOC1 and AGL24 [64]. Based on the common

complex formation partners identified in this study, we may

speculate that the AGL42 protein also plays a role in floral

induction.

The importance of SEP proteins for multimerization

SEP proteins seem to be important mediators of higher-order

complex formation and, therefore, we have focused on the

capacity of the SEP3 protein to form multimeric complexes.

In the dedicated yeast three-hybrid screen with the carboxy-

terminally truncated SEP3 protein, known SEP3 ternary

complexes were confirmed, showing that the conditions of

our yeast three-hybrid assay permit the detection of these ter-
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Figure 4 (see legend on next page)
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nary interactions. To our surprise, the screen with the trun-

cated SEP3 protein more than doubled the total number of

identified ternary MADS box protein complexes. Despite the

fact that the number of ternary interactions found in this

study resembles most likely only a small proportion of the

potential higher-order complexes present in Arabidopsis,

this result reveals an important role for SEP3 in MADS box

protein complex formation. Therefore, the SEP3 protein can

be regarded as a 'glue' that mediates the assembly of MADS

box transcription factor complexes and is functional as a hub

in the MADS box transcription factor interaction network.

We may hypothesize that the other SEP proteins have a simi-

lar specificity for higher-order complex formation, knowing

that there is functional redundancy within this clade of MADS

box proteins [7,11]. In line with this idea, the comprehensive

yeast two-hybrid screening performed by us showed similar

binary interactions for SEP1 and SEP3 [16]. However, SEP2

and SEP4-I/II seem to have a number of different dimeriza-

tion partners in yeast; also in the yeast three-hybrid screen

presented in this report, specific complexes were identified

for SEP2 and SEP4-II that could not be found for SEP3.

Together, this suggests that the functional redundancy

present in the Arabidopsis SEP clade is not complete and,

hence, that some of the SEP proteins have gained or main-

tained specific interactions and functions that are not shared

by the other members of the family. A similar comprehensive

approach as followed in this study for SEP3, consisting of

mapping the auto-activation domain and performing the

three-hybrid screen with mutated or truncated clones, would

be needed for each individual SEP protein to elucidate their

specific ternary complex formation capacities. Regardless of

the outcome of such an experiment, however, it is clear from

the genetic studies that besides small differences, there is

overlap between the functions of the SEP proteins in the inner

three whorls of the flower, which means that the different SEP

proteins should have the capacity to form complexes with at

least some common MADS box partners. Assuming that SEP3

is the 'glue' for higher-order complex formation in the inner

three floral whorls, the question arises as to which SEP pro-

tein functions as 'glue' during the vegetative stage of develop-

ment. SEP4 is expressed early during development in the

green parts of the plant, in contrast to SEP3 [34], though at

relatively low levels. Because of this, it may also be possible

that another type II MADS box protein is functional as a 'glue'

protein during the vegetative stage. In this respect, SOC1 is a

good candidate, because it has the right spatial expression

pattern and a large number of two-hybrid interaction part-

ners like the SEP proteins. It functions as a hub in the two-

hybrid network [16] and, more importantly, this protein is

incorporated in ternary complexes almost as frequently as

SEP3 (Tables S3 and S7 in Additional data file 1).

Biological functions of ternary SEP3 MADS box protein 

complexes

Studies performed previously revealed the importance of SEP

proteins present in ternary and quaternary floral organ iden-

tity complexes [8,9] and recent in planta protein localization

studies showed co-localization of the 'ABC' proteins in

accordance with the 'ABC model' [42]. Besides these interac-

tions with other ABC-function MADS box proteins, our

results have shown that the SEP3 protein is potentially incor-

porated in complexes with MADS box proteins involved in the

regulation of flowering time, such as SOC1 [56], AGL24 [55],

SHORT VEGETATIVE PHASE (SVP) [65], and AGL15 [66]

(Figure 5). These interactions suggest that the SEP3 protein

also functions in the transition to flowering, which is in line

with observations in a study by Pelaz and colleagues [67], who

obtained an enhanced early flowering phenotype for Arabi-

dopsis plants ectopically expressing both AP1 and SEP3 when

compared to plants over-expressing AP1 alone. Expression of

the SEP3 protein could not be detected in vegetative tissues;

however, the protein is present at low levels in the inflores-

cence meristem [42]. SEP3 probably performs this early func-

tion redundantly with SEP4, which, in contrast to SEP3, is

expressed during the vegetative stage of development and is

Analyses of MADS box protein interactions in protoplasts by FRETFigure 4 (see previous page)

Analyses of MADS box protein interactions in protoplasts by FRET. Arabidopsis leaf protoplasts, co-expressing MADS box proteins fused to either CFP or 
YFP, were analyzed by FLIM, in order to detect FRET. One representative protoplast is shown for each analyzed combination. The left panels display the 
intensity channel, the middle panels show the fluorescence lifetime image of the same nucleus in a false color code, and the right panels depict histograms 
representing the distribution of fluorescence lifetime values over the nucleus. FLIM analysis on a protoplast transiently expressing (a) pECFP + PI-YFP 
(negative control); (b) SEP3-CFP + SEP3-YFP; (c) AP3-CFP + AP3-YFP; (d) PI-CFP + PI-YFP; (e) AP1-CFP + SEP3-YFP; (f) PI-CFP + AP3-YFP; (g) PI-CFP 
+ AP3-YFP + SEP3. Scale bars = 10 m.

SEP3 ternary complexes that, based on expression patterns of the genes encoding the involved proteins, might be formed in the shoot apical meristem (SAM) at the moment of the phase switch between vegetative and generative developmentFigure 5

SEP3 ternary complexes that, based on expression patterns of the genes 
encoding the involved proteins, might be formed in the shoot apical 
meristem (SAM) at the moment of the phase switch between vegetative 
and generative development. Taking into account known functions for 
some of these proteins, the complexes have been categorized in two 
classes; one for complexes supposed to be involved in regulating the 
timing of flowering, and one for complexes that might function in negative 
auto-regulatory loops. Our hypothesis is that complexes from this latter 
group are essential for the repression of the genes involved in timing of 
flowering in the floral organs.
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also able to form a couple of ternary complexes with the flow-

ering time MADS box proteins. In addition or alternatively,

ternary complexes consisting of MADS box proteins involved

in regulation of flowering time and floral organ identity pro-

teins (for example, SEP3, AG, AP1) could function in negative

auto-regulatory feed-back mechanisms (Figure 5). De Folter

and colleagues [16] hypothesized that the expression of genes

encoding floral inducing MADS box proteins is down-regu-

lated in the floral organ primordia by a negative auto-regula-

tory loop involving dimerization of the encoded proteins with

the MADS box proteins functioning in floral organ develop-

ment [16]. Recently, the research group of Yu showed that the

floral meristem identity protein AP1 is involved in the down-

regulation of the flowering time genes SOC1, SVP and AGL24

[68]. Based on our results, it is tempting to speculate that

down-regulation of these flowering time genes is mediated by

a negative feed-back loop, in which both the flowering pro-

teins and SEP3 are involved (Figure 5). In line with this, in

situ hybridization analyses for flowering time genes in wild-

type plants show hardly any signal during later stages of

flower development [68,69]. However, in mutant back-

grounds of floral organ identity MADS box genes, such as ap1,

ag, and sep1/sep2/sep3, ectopic expression of these flowering

time genes is obtained in floral tissues [68,69]. Although this

gives strong evidence for the supposed negative auto-regula-

tory loops, further studies are required to support the hypoth-

esis that higher-order complexes are essential for this

function.

It is difficult to assign a biological role for some of the other

ternary SEP3 complexes identified in our study because no

information is available about the functions of the individual

proteins. Furthermore, many proteins may have multiple

functions throughout the life cycle of a plant and, therefore,

late functions can be masked by early functions in genetic

studies. The expression of MADS box genes late during devel-

opment of the floral organs [42] and the late functions identi-

fied for, for example, B-function MADS box proteins [70,71]

and AG [72] demonstrate that these transcription factors are

multi-tasking and play a role during further differentiation of

the floral organs. These various functions are reflected in the

different complexes formed by such a MADS box protein,

each supposed to regulate a specific set of target genes. SEP3

is part of many complexes and, therefore, may bind to differ-

ent target genes controlling distinct developmental pathways.

Because the sep1 sep2 sep3 triple mutant produces only

sepals in the flower [7], it is difficult to predict SEP3 functions

at later flowering stages, but, based on its expression pattern

and our interaction data, we could assign a role for this pro-

tein as a key regulator in many developmental processes (Fig-

ure 6). For instance, the protein complex consisting of SEP3,

STK and AG is involved in ovule identity specification [13],

while a combination with the integument and seed coat-spe-

cific protein ABS may be required for the subsequent steps in

seed development [20].

Molecular function of SEP3 in ternary MADS box 

protein complexes

As shown by yeast-based and FRET-FLIM studies, the ter-

nary factor SEP3 is able to stabilize dimeric interactions and

to affect the subcellular localization of its interaction part-

ners. Stabilization of a MADS box transcription factor dimer

by a ternary factor has been shown in petunia before [23] and

may be a general function for ternary MADS box factors. The

effect of SEP3 on AP3-PI localization could play an important

role in the temporal storage or, alternatively, in the activation

of this specific MADS box protein dimer. Recently, it has been

shown that the mammalian basic helix-loop-helix transcrip-

tion factor Hand1 is sequestered in the nucleolus due to inter-

action with a co-factor, and that the release of this protein

from the nucleolus is essential for its activation [73]. Similar

mechanisms may play a role in activating particular plant

MADS box proteins, such as AP3 and PI. The question

remains if this is the only function for ternary factors, like

SEP3, in higher-order complexes. SEP3 appears to contain a

strong transcription activation domain and, based on this, it

has been hypothesized that an important function of this ter-

nary factor is to add transcriptional activity to multimeric

transcription factor complexes [10]. This might be true, but,

at least in the case of the complex AP3-PI-SEP3, the SEP3

protein is doing more, because plants with constitutive over-

expression of AP3 and PI fused to the VP16 trans-activation

domain do not show homeotic changes of cauline leaves into

floral organs (K Goto, personal communication). In contrast,

the constitutive expression of AP3 and PI in combination with

SEP3 gives conversions of cauline leaves into petals [8,9].

Although the combination of constitutive AP3 and PI-VP16

expression is sufficient to activate the positive auto-regula-

tory loop for the B-function MADS box genes - that is, it acti-

vates the AP3 promoter [10] - it is not sufficient for the

regulation of all AP3-PI target genes that are essential for

petal development. In conclusion, SEP3 can change the sub-

nuclear localization of the AP3-PI heterodimer and probably

this is crucial for petal development. Furthermore, Egea-Cor-

tines and colleagues [17] have shown that ternary complexes

bind more strongly to the consensus CArG-box in DNA

sequences than MADS box protein dimers. SEP3 in a mul-

timeric complex may facilitate the protein-DNA interaction,

either by stabilizing the dimer or by direct binding to the DNA

and providing specificity. In the latter case, the DNA will bend

and the transcription complex will bind to two binding sites at

a short distance from each other. In addition, ternary com-

plex formation may play a role in the recruitment of co-fac-

tors. Recent studies have shown that the MADS box proteins

AGL24 and SVP are not able to interact with the LEUNIG-

SEUSS co-repressor complex, although interaction between

these proteins could be mediated by the AP1 protein [74]. In

a similar way, SEP3 enables the interaction between MADS

box proteins involved in ovule development (for example,

STK) and the BELL1 homeodomain factor [75].
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Conclusions
This study yielded a collection of potential multimeric MADS

domain protein complexes in which SEP3, the 'glue protein',

plays a central role. Besides the initial steps of floral organ

formation, this protein seems to function in various other

plant developmental processes via multimerization (Figures 5

and 6). Higher-order complex formation of MADS domain

proteins appears to be a common process and provides these

Putative function of SEP3 complexes during plant developmentFigure 6

Putative function of SEP3 complexes during plant development. Some of the identified higher-order SEP3 complexes have been placed in the Arabidopsis life 
cycle at the stage in which they are supposed to be functional. For all the indicated complexes the genes encoding the proteins are co-expressed in a 
particular tissue or developmental stage (Tables S3 and S7 and Figure S1 in Additional data file 1). Note, that the graphical representation probably does 
not reflect the real stoichiometry of the complexes. It is possible, for example, that proteins are present as homodimers in the complexes.
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transcription factors with unique attributes to function in a

specific manner, such as the possibility to change interaction

stability, localization of the proteins, and their DNA binding

specificity. Combining protein interaction analyses as per-

formed in this study and co-expression analyses provides

complementary functional information about MADS tran-

scription factors, in particular when mutant phenotypes are

missing due to redundancy or when the proteins are involved

in multiple developmental processes, as is the case for SEP3.

Materials and methods
Plant material

Protoplasts were obtained from Arabidopsis thaliana Col-0

leaves, which were grown under normal greenhouse condi-

tions (16/8 h light/dark, 22°C), according to Aker and col-

leagues [76].

Plasmid constructions

For the yeast three-hybrid experiments two new SEP3 Gate-

way entry clones were generated, encoding the carboxy-ter-

minally truncated versions of this protein. The first clone,

designated SEP3C1, encodes SEP3 lacking the last 80 amino

acids of the carboxyl terminus and the second clone,

SEP3C2, encodes the SEP3 protein lacking 67 amino acids

at its carboxyl end. The truncated coding regions were

obtained by PCR and a new stop codon was included in the

reverse primer. Subsequently, the PCR fragments were

cloned into pCR8/GW/TOPO (Invitrogen, Carlsbad, CA,

USA), followed by sub-cloning via a Gateway LR reaction into

pBDGAL4 (pDEST32; Invitrogen) and the Gateway compati-

ble pTFT1 yeast expression vector (pARC352) [28]. For the in

vivo localization and interaction studies, the coding region of

the MADS box genes APETALA1 (AP1), APETALA3 (AP3),

PISTILLATA (PI), AGAMOUS (AG), SEP3 and SEP3C1,

were cloned as Gateway entry clones without stop codons

(pCR8/GW/TOPO; Invitrogen), in order to allow carboxy-

terminal fusions. The obtained entry clones were recombined

into the Gateway compatible destination vectors pARC971

and pARC428 from which expression is driven by the consti-

tutive CaMV35S promoter and that contain the coding

regions of the fluorophores CFP and YFP, respectively [23].

Furthermore, amino-terminal fusions were made for AP3 and

PI. In this case, the destination vector was pK7WGY2,0 from

the VIB collection [77], containing the coding region of the

YFP molecule. AP3 and PI entry clones including stop codons

were taken from the REGIA collection [2,16]. All plasmids

were controlled by sequence analyses (DETT sequence kit;

Amersham, Sunnyvale, CA, USA).

Yeast three-hybrid screen

Transformations of yeast strain PJ69-4, mating type A and 
[78], were done as described by the laboratory of Gietz [79].

Triple combinations of MADS box proteins in yeast were

obtained by robotized mating between individual mat yeast

cultures containing 'pBD-GAL4-MADS' vectors [16] and

matA yeast cultures containing the MADS dimers (Tables S2

and S6 in Additional data file 1), following the protocol

described before [16]. The mated yeast was grown for 2 days

at 30°C on plates with synthetic dropout medium without leu-

cine (L), tryptophan (W) and adenine (A), to select for the

presence of all three plasmids. Subsequently, some yeast

material was resuspended in 50 l sterile water, in a 96-well

micro-titer plate. Aliquots (5 l) of these suspensions were

spotted onto synthetic dropout medium plates lacking the

amino acids L, W, A and histidine (H) and supplemented with

1 mM 3-amino-1,2,4-triazole (3-AT) in a grid of 96 spots, to

select for protein interactions. These plates were incubated at

20°C for 7 days before scoring of yeast growth. All positives

due to dimerization between two of the three proteins, and/or

auto-activation by the MADS box protein expressed from the

pBD-GAL4 vector, or its dimerization partner in the

pARC352 vector, were discarded based on our knowledge

from the large-scale yeast two-hybrid experiment [16]. For all

remaining positive combinations the mating was repeated

and the interaction confirmed by spotting onto plates with

synthetic dropout medium lacking amino acids L, W, A, H

and supplemented with 1, 5, or 10 mM 3-AT. In parallel, a

LacZ assay [80] was performed to test for the activation of

this second reporter gene. All combinations that were scored

at least two times positive and for both the HIS and LacZ

selection markers, were selected as true positives.

Fluorescence microscopy in living cells

Arabidopsis leaf protoplasts were transfected as described by

Aker and colleagues [76]. Plasmid DNA (15-30 g) was used

and the protoplasts were incubated overnight at 25°C before

imaging. Images were made using a confocal laser micro-

scope 510 (Carl Zeiss, Jena, Germany). The Argon laser was

used to excite at 458 and 514 nm for CFP and YFP, respec-

tively. Fluorescence was detected through a band pass filter of

470-500 nm for CFP and 535-590 nm for YFP [76].

FRET-FLIM measurements in living cells

FRET-FLIM analyses were done in Arabidopsis protoplasts

as described before [23,81]. The donor fluorescence lifetime

was measured on the central part of the nucleus of each single

cell, pixel by pixel, and at least ten cells were analyzed per

combination in three independent experiments. The donor

lifetime of CFP was fixed at 2.6 ns for all further analyses.

Images were acquired by using the Becker and Hickl 1 SPC

830 module, and SPC image 2.8 software was used for the

data analyses (Becker and Hickl, Berlin, Germany).

Prediction of transcriptional activation

DILIMOT [82] was applied using default parameters (maxi-

mum motif length 8, number of fixed positions 3, minimal

number of motifs in dataset 3) on all 19 sequences of MADS

box proteins showing auto-activation in yeast [16]. Subse-

quently, using ps_scan [82], it was confirmed that these

motifs occur much less often in other MADS box protein

sequences. To obtain further insight into the role of these
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motifs, a decision tree model was built (using the function

'tree' in the software package R) with class indicator 'auto-

activation' or 'no auto-activation' and variables describing

occurrence of each motif in the sequences. This analysis

selected five motifs out of the ten motifs returned by

DILIMOT (Table S5 in Additional data file 1) and resulted in

a model with over 80% accuracy, 80% specificity and 50%

coverage. The accuracy is the overall percentage of correct

predictions and the specificity indicates the percentage of

predicted auto-activating proteins for which auto-activation

was identified in yeast. The coverage gives the percentage of

experimentally detected auto-activating proteins that were

also predicted to give auto-activation.

Co-expression analysis

The developmental set of the AtGenExpress expression atlas

[34] was analyzed for expression of MADS box genes, as pre-

viously described [16]. A threshold of log2  4 was applied to

identify overlap in tissues with expression of genes. For genes

not expressed in the AtGenExpress expression atlas (AGL13,

AGL61, AGL92, AGL96, and AGL103) other publicly available

expression data were used [2,35,83].
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