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Separability and geometry of object manifolds
in deep neural networks
Uri Cohen 1,6, SueYeon Chung 2,3,4,6, Daniel D. Lee5 & Haim Sompolinsky1,2*

Stimuli are represented in the brain by the collective population responses of sensory neu-

rons, and an object presented under varying conditions gives rise to a collection of neural

population responses called an ‘object manifold’. Changes in the object representation along

a hierarchical sensory system are associated with changes in the geometry of those mani-

folds, and recent theoretical progress connects this geometry with ‘classification capacity’, a

quantitative measure of the ability to support object classification. Deep neural networks

trained on object classification tasks are a natural testbed for the applicability of this relation.

We show how classification capacity improves along the hierarchies of deep neural networks

with different architectures. We demonstrate that changes in the geometry of the associated

object manifolds underlie this improved capacity, and shed light on the functional roles

different levels in the hierarchy play to achieve it, through orchestrated reduction of mani-

folds’ radius, dimensionality and inter-manifold correlations.
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T
he visual hierarchy of the brain has a remarkable ability to
identify objects despite differences in appearance due to
changes in variables such as position, illumination, and

background1. Recent research in machine learning has shown
that deep convolutional neural networks (DCNNs)2 can perform
invariant object categorization with almost human-level accu-
racy3, and that their network representations are similar to the
brain’s4–6. DCNNs are therefore very important as models of
visual hierarchy7–9, though understanding their operational
capabilities and design principles remain a significant challenge10.

In a visual hierarchy, the neuronal population response to
stimuli belonging to the same object defines an object manifold.
The brain’s ability to discriminate between objects can be mapped
to the separability of object manifolds by a simple, biologically
plausible readout, modeled as a linear hyperplane11. It has been
hypothesized that the visual hierarchy untangles object manifolds
to transform inseparable object manifolds into linearly separable
ones, as illustrated in Fig. 1. This intuition underlies a number of
studies on object representations in the brain1,12–15, and in deep
artificial neural networks16–19. As separability of manifolds
depends on numerous factors—numbers of neurons and mani-
folds, sizes and shapes of the manifolds, target labels, among
others—it has been difficult to elucidate which specific properties
of the representation truly contribute to untangling. Quantifying
the changes in neural representations between different sensory
stages has been a focus of research in computational
neuroscience10,20–22. Canonical correlation analysis (CCA) has
recently been proposed to compare the representations in hier-
archical deep networks23,24. Another approach, representational
similarity analysis (RSA), uses similarity matrices to determine
which stimuli are more correlated within neural data and in
network representations4,7,25. Others have considered various
measures such as curvature15 and dimensionality to capture the
structure within neural representations26–32; but it is unclear how
these measures are related to task performance such as classifi-
cation accuracy. Conversely, others have explored functional
aspects by using different layer representations for transfer
learning33, or object classification31, but it is unclear why per-
formance improves or deteriorates. Other attempts to character-
ize representations have focused primarily on single-neuron
properties in relation to object invariance17,34,35.

In this work, we apply the theory of linear separability of
manifolds36 to analytically demonstrate that separability depends
on three measurable quantities, manifold dimension and extent,
and inter-manifold correlation. This result provides a powerful
new tool to elucidate how changes in object representations
within deep networks underlie the emergence of manifold
untangling and separability. We show how to apply these mea-
sures to reveal key changes in manifold geometries in several
representative DCNNs currently used for object categorization.
Thus, our analysis provides novel insight into the functional
role of sensory hierarchies in the processing of categorical
information.

Results
Geometrical framework. We start our analysis by defining the
separability of objects on the basis of their representations in a
given neuronal populations. We denote a collection of objects as
linearly separable (or simply separable) if they can be classified
into two desired classes by a hyperplane in the state space of the
population (Fig. 1). Specifically, we consider a layer consisting of
N neurons representing P object manifolds; the system load is
defined by the ratio α= P/N37. We ask whether these manifolds
can be separated by a hyperplane. In the regime where P and N
are large, our theory shows the existence of a critical load value αc,

called manifold classification capacity, such that when P < αcN
object manifolds are separable with high probability, whereas if
P > αcN the manifolds are inseparable with high probability. That
is, when assigning random binary labels to the P manifolds, the
probability of successful linear classification of the objects
decreases sharply from 1 below capacity to 0 above it. Intuitively,
this capacity serves as a measure of the linearly decodable
information per neuron about object identity.

Next we study the role of manifolds’ geometry on their
classification capacity. It is very useful to consider several limiting
cases. The largest possible value of αc is 236–38 and is achieved
when manifolds are just single points, i.e., fully invariant object
representations. For a lower bound, we consider unstructured
point-cloud manifolds, in which a set of M ⋅ P points is randomly
grouped into P manifolds. Since the points of each manifold do
not share any special geometric features, the capacity is equal to
that of M ⋅ P points37,39 so the system is separable while M ⋅ P <
2N, or equivalently αc= 2/M. Thus, the capacity of structured
point-cloud manifolds consisting of M points per manifold
obeys 2

M
� αc � 2. Another limit of interest in unbounded

smooth manifolds, each filling a D-dimensional linear subspace
with randomly oriented axes, in which case αc= 1∕(D+ 1∕2)36.

Since real-world manifolds span high-dimensional subspaces
and consist of a large or infinite number of points, a substantial
capacity implies constraints on both the manifold dimensionality
and extent. Realistic manifolds are expected to show inhomoge-
neous variations along different manifold axes, raising the
question of how to assess their effective dimensionality and
extent. Our theory provides a precise definition of the relevant
manifold dimension and radius, denoted DM and RM, that
underlie their separability.

These quantities are derived from the structure of the
hyperplane separating the manifolds when P∕N is close to
capacity. When linearly classifying points, the structure of the
separating hyperplane is determined by a set of input vectors
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Fig. 1 Changes in the geometry of object manifolds as they are

transformed in a deep neural network. Illustration of three layers in a

visual hierarchy where the population response of the first layer is mapped

into intermediate layer by F1 and into the last layer by F2 (top). The

transformation of per-stimuli responses is associated with changes in the

geometry of the object manifold, the collection of responses to stimuli of

the same object (colored blue for a ‘dog’ manifold and pink for a ‘cat’

manifold). Changes in geometry may result in transforming object

manifolds which are not linearly separable (in the first and intermediate

layers) into separable ones in the last layer (separating hyperplane, colored

orange).
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known as support vectors40, namely, the weight vector normal to
the separating plane is a linear combination of these vectors. As
shown in ref. 36, this concept can be generalized to the case of
manifolds, where the weight vector normal to their separating
plane is a linear combination of anchor points. Each manifold
contributes (at most) a single anchor point, which is a point
residing in the manifold or in its convex hull. These points
uniquely define the separating plane, thus anchoring it. The
identity of the anchor points depends not only on the manifolds’
shape but also on their location or orientation in state space as
well as the particular choice of random labeling (Fig. 2). Thus, for
a given fixed manifold, as the location and labeling of the other
manifolds are varied, the manifold’s anchor point will change,
thereby generating a statistical distribution of anchor points for a
manifold embedded in a statistical ensemble of other manifolds.
The manifold’s effective radius RM is the total variance of its
anchor points normalized by the average distance between the
manifold centers. Its effective dimension DM is the spread of the
anchor points along the different manifold axes.

Our theory has shown that for manifolds occupying D≫ 1
dimensions (as in most cases of interest), RM and DM determine
the classification capacity; in fact the capacity is similar to that of
balls with radius and dimensions equal to RM and DM,
respectively (see Methods). Furthermore, using statistical
mechanical mean-field techniques, we derive algorithms for
measuring the capacity, RM and DM for manifolds given by either
empirical data samples or from parametric generative
models36,41. This theory assumed that the position and orienta-
tion of different manifolds are uncorrelated. Here we extend the
theory and apply it to realistic manifolds with substantial inter-
manifold correlations.

In the following, we apply this theory and algorithms to study
how stages of deep networks transform object manifolds,
illuminating the effect of architectural building blocks and non-
linear operations on shaping manifold geometry and their
correlations, and demonstrating their role in the enhancement
of object classification capacity.

Learning enhances manifold separability across layers. We
consider DCNNs trained for object recognition tasks on large
labeled data-set, ImageNet42. Several state-of-the-art networks,
such as AlexNet43 and VGG-1644, share similar computational
building blocks consisting of alternating layers of linear con-
volutions, point-wise ReLU nonlinearities and max pooling, fol-
lowed by several fully connected layers (Fig. 3a–c).

In each network, we measure classification capacity and
geometry of point-cloud manifolds consisting of high scoring
samples from ImageNet classes42 (illustrated in Fig. 3d) processed
by AlexNet43. Figure 3e demonstrates that the manifold
classification capacity increases along the hierarchy for a fully
trained network, with a concomitant decrease in manifold
dimension and radius. The dimension undergoes a pronounced
decrease, from above 80 in the early layers to about 20 in the last
feature layer (Fig. 3f). Manifold radius exhibits a uniform
decrease from above 1.4 in the input pixel layer to 0.8 in the
feature layer (Fig. 3g).

An important question in the theory of DCNNs is to what
extent their impressive performance results from the choice of
architecture and nonlinearities prior to training45–47. We address
this issue by processing the same images using an untrained
network (with the same architecture but random weights). An
untrained network shows very little improvements in classifica-
tion capacity and manifold geometry; the residual improvement
reflects the effect of the architecture. Another useful baseline is
the performance on shuffled manifolds. We repeated our analysis
of the fully trained network but shuffled the assignment of images
into objects. This shuffling destroys any geometrical structure in
the manifolds, leaving only residual capacity due to the finite
number of samples. The properties of the shuffled manifolds
are constant across the hierarchy, similar to those of the true
manifolds in the pixel layers, suggesting that for that layer, the
manifolds’ variability is so large that their properties are similar to
random points. In contrast, the last layers of the trained network
exhibit substantial improvement in capacity and geometry,
reflecting the emergence of robust object representations.

Capacity increases along hierarchy in point-cloud manifolds.
How does manifold classification capacity depend on the statistics
of images representing each object? To answer those questions we
consider manifolds with two levels of variability, low variability
manifolds consisting of images with the top 10% score (“top
10%”, see Methods) and high variability manifolds consisting of
all (roughly 1000) images per class (“full class”). Both manifold
types exhibit enhanced capacity in the last layers (Fig. 4a). As the
absolute value of capacity depends not only on the geometry of
the point-cloud manifold but also on the number of samples per
manifold (which differ between those two classes of manifolds),
we emphasize the improvement in capacity relative to manifolds
with shuffled labels; relative manifold capacity improves from
random-points level at the pixel layer to an order of magnitude
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Fig. 2 Anchor points in an object manifold. Anchor points on manifolds define the optimal hyperplane separating a binary dichotomy of manifolds. This

figure shows one realization of an anchor point on the ‘vase’ manifold (star) that separates it from the ‘head cabbage’ object manifold. Another realization

illustrates a different anchor point on the ‘vase’ manifold when it is classified against the ‘birdhouse’ object manifold. The statistics of the distribution of

these anchor points define the relevant geometrical manifold radius and manifold dimension of the ‘vase’manifold that characterizes its linear classification

properties (see Methods).
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above it in the last layers. Interestingly, although the high score
manifolds exhibit higher absolute capacity than the full manifolds
(Supplementary Fig. 1), as the former have fewer points and less
variability, the relative improvement is actually larger in the full
manifolds.

How does the capacity vary between different DCNNs trained
to preform the same object recognition task? Figure 4b shows
the corresponding capacity results for a deeper DCNN, VGG-
1644. Despite difference in the architecture the pattern of
improved capacity is quite similar, with most of the increase
taking place in the last layers of the networks. Notably, the
deeper network exhibits higher capacity in the last layers
compared to the shallower network, consistent with the
improved performance of VGG-16 in the ImageNet task (this
trend continues further with more recent DCNNs, residual
networks48, Supplementary Figs. 1, 2).

Capacity increases along hierarchy in smooth manifolds. We
now turn to consider manifolds which naturally arise when sti-
muli has several latent parameters (e.g., translation or distortions)
which are smoothly varied. We choose a set of ‘template’ images
(containing different objects, again from the ImageNet data-set42)
and warp them by multiple affine transformations (see illustration
at Fig. 5a, and Methods), resulting in a set of smooth manifolds,
each associated with a single template image. Manifolds created
by imposing smooth variations of single images are often used in
neuroscience experiments49. Such manifolds are computationally
easy to sample densely, thus allowing us to extrapolate to the case
of infinite number of samples, Supplementary Fig. 3). Further-
more, we can independently manipulate the intrinsic manifold
dimension (controlled by the number of affine transform para-
meters) and the manifold extent (controlled by the maximal
distortion of the object at the pixel layer, see Methods).

d

In
p
u
t

C
o
n
v

M
a
xP

C
o
n
v

M
a
xP

C
o
n
v

C
o
n
v

C
o
n
v

M
a
xP F
C

F
C

0

0.02

0.04

0.06

0.08

0.1

0.12

α
c

e
After training

Input

RGB

Input

RGB

Max

pool

Max

pool

Max

pool

Max

pool

Max

pool

Max

pool
Max

pool
Max

pool

FC

4096

FC

4096

FC

4096

FC

4096
Conv

64

Conv

64

224 × 224 112 × 112 56 × 56 28 × 28

227 × 227 55 × 55

x

x

f
1
 .. f

F

f
1

f
F

x
x

x
w W

Max(x, 0)

FCConvolution

Max pooling

Building blocksa

c

b AlexNet

VGG-16

ReLU

Max(x)

27 × 27 13 × 13 6 × 6 1 × 1

14 × 14 7 × 7 1 × 1

Conv

96

Conv

128
Conv

128

Conv

256

Conv

256

Conv

256

Conv

256
Conv

384

Conv

384

Conv

256

Conv

512

Conv

512

Conv

512

Conv

512

Conv

512

Conv

512

Before training

Random labels

Random data theory

In
p
u
t

C
o
n
v

M
a
xP

C
o
n
v

M
a
xP

C
o
n
v

C
o
n
v

C
o
n
v

M
a
xP F
C

F
C

0

20

40

60

80

100f

In
p
u
t

C
o
n
v

M
a
xP

C
o
n
v

M
a
xP

C
o
n
v

C
o
n
v

C
o
n
v

M
a
xP F
C

F
C

0.6

0.8

1

1.2

1.4

1.6

R
M

D
M

g

x x

Fig. 3 Manifolds capacity and geometry changes during learning. a Illustration of computational building blocks used in AlexNet and VGG-16.

Convolution: a set of linear 2-d filters applied on a spacial set of features, each producing a new spacial map. FC: linear fully connected operation (matrix

multiplication). Max pooling: a local nonlinearity calculating the maximal activation at small overlapping patches. ReLU: point-wise nonlinearity which sets

negative input value to zero. Detailed description of b AlexNet and c VGG-16 structure, composed of the above building blocks. Dimensions on top describe

the spacial dimensions of the layer; the dimension of Conv layers describe the number of convolution filters while the dimension of FC layers is the number

of output neurons. ReLU nonlinearity is shown following other operations and is not counted as a layer. d Illustration of a point-cloud manifold for the ‘giant

panda’ class, in high-dimensional state space. e–g Changes in capacity and manifold geometry along the layers of AlexNet point-cloud manifolds (top 10%)

for fully trained network (full line), randomly initialized network (dashed line) or randomly shuffled object manifolds (dotted line). Line and markers

indicate mean value over five different choices of 50 objects; surrounding shaded areas indicate 95% confidence interval. The value expected by theory for

random points (see Methods) is shown as dash-dot line. e Changes in classification capacity. f Changes in mean manifold dimension. g Changes in mean

manifold radii. Classification capacity, manifolds dimensions and radii were measured using mean-field theory (see Methods). The x-axis labels provides

abbreviation of the layer types (Input—pixel layer, Conv—convolutional layer, MaxP—max-pooling layer, FC—fully connected layer). Marker shape

represents layer type (circle—pixel layer, square—convolution layer, right-triangle—max-pooling layer, hexagon—fully connected layer). Features in linear

layers (Conv, FC) are extracted after a ReLU nonlinearity.
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AlexNet, green—VGG-16) changes from dark to light along the network. d Capacity increase from the input (pixel layer) to the output (features layer) of

AlexNet (blue markers) and VGG-16 (green markers) for 2-d translation smooth manifolds. The capacity increase is specified as ratio of capacity at the last

layer relative to the pixel layer (y-axis), at different levels of stimuli variation measured using Supplementary Eq. (3) at the pixel layer (x-axis).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14578-5 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:746 | https://doi.org/10.1038/s41467-020-14578-5 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


A substantial improvement of classification capacity of smooth
manifolds is observed along the networks with a pronounced
increase in the last layers (Fig. 5b, c), similar to the behavior
observed for point-cloud manifolds. The relative increase in
capacity from the first (pixel) layer to the last layer is shown in
Fig. 5d for manifolds with different variability levels. Notably this
increase is growing faster than manifold variability itself, reaching
an increase of almost two orders of magnitude for the highest
variability considered here. This holds for both 1-d and 2-d
smooth manifolds and in all deep networks considered, including
ResNet-50 (Supplementary Fig. 4).

Network layers reduce dimension, radius of object manifolds.
Changes in the measured classification capacity can be traced
back to changes in manifold geometry along the network hier-
archy, namely manifold radii and dimensions, which can be
estimated from data (see Methods, Eqs. (3) and (4), and Sup-
plementary Methods 2.1). Mean manifold dimension and radius
along DCNNs hierarchies are shown in Fig. 6a, b, respectively.
The results exhibit a surprisingly consistent pattern of changes
in the geometry of manifolds between different network archi-
tectures, along with interesting differences between the behavior
of point-cloud and smooth manifolds. Figure 6a (and Supple-
mentary Fig. 5 for ResNet-50 results) suggests that decreased
dimension along the deep hierarchies is the main source of the
observed increase in capacity from Figs. 4 and 5. Both point-
cloud and smooth manifolds exhibit non-monotonic behavior of
dimension, with increased dimension in intermediate layers; this
increase of dimensionality is also be observed in other measures
such as participation ratio (Supplementary Fig. 5). A notable
result is the very pronounced decrease in dimensions after the
pixel layer of smooth translation manifolds (Fig. 6a, bottom),
consistent with the expected ability of this convolution layer to
average out substantial variability in images due to translation.
On the other hand, manifold radii undergo modest decrease
along the deep hierarchy and across all manifolds (Fig. 6b, and

Supplementary Fig. 6 for ResNet-50). The larger role of
dimensions, rather than radii, in contributing to the increase in
capacity is demonstrated by comparing the observed capacity to
that expected for manifolds with the observed dimensions but
radii fixed at their value at the pixel layer, or the other way
around (Supplementary Fig. 7). Interestingly, the decrease in
radius is roughly linear in point-cloud manifolds while for
smooth manifolds we find a substantial decrease in the first layer
and the final (fully connected) layers, but not in intermediate
layers. Those differences may reflect the fact that the high
variability of point-cloud manifolds needs to be reduced incre-
mentally from layer to layer (both in terms of radius and
dimension), utilizing the increased complexity of downstream
features, while the variability created by local affine transfor-
mations is handled mostly by the local processing of the first
convolutional layer (consistent with ref. 35 reporting invariance
to such transformations in the receptive field of early layers).
The layer-wise compression of affine manifold plateaus in the
subsequent convolutional layers, as the manifolds are already
small enough. As signals propagate beyond the convolutional
layers, the fully connected layers add further reduction in size in
both manifold types.

This geometric description allows us to further shed light on
the structure of the smooth manifolds used here. For radius up to
1, the dimension of the manifolds with intrinsic 2-d variations
(e.g., created by vertical and horizontal translation) is just the sum
of the dimensions of the two corresponding 1-d manifolds with
the same maximal object displacement (Supplementary Fig. 8a);
only for larger radii, dimensions for 2-d manifolds are super-
additive. On the other hand, for all levels of stimulus variability
the radius of 2-d manifolds is about the same as the value of the
corresponding 1-d manifolds (Supplementary Fig. 8b). This
highlights the non-linear structure of those larger manifolds,
where the effect of changing multiple manifold coordinates is no
longer predicted from the effect of changing each coordinate
separately.
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Fig. 6 Manifold geometry. a Mean manifold dimension for point-cloud manifolds of AlexNet and VGG-16 (top, full line: full-class manifolds, dashed line:

top 10% manifolds) and smooth 2-d manifolds for the same deep networks (bottom, full line: translation manifolds, dashed line: shear manifolds). AlexNet

top 10% manifolds results already appeared as “after training” results from Fig. 3f. Values of point-cloud top 10% manifolds are showed against a

secondary y-axis (color-coded by the markers edge) to improve visibility. b Mean manifold radius for point-cloud manifolds of AlexNet and VGG-16 (top,

full line: full-class manifolds, dashed line: top 10% manifolds) and smooth 2-d manifolds for the same deep networks (bottom, full line: translation

manifolds, dashed line: shear manifolds). AlexNet top 10% manifolds results already appeared as “after training” results from Fig. 3g. Line and markers

indicate mean value over different choices of objects; surrounding shaded areas indicate 95% confidence interval. The x-axis labels provides abbreviation of

the layer types. Marker shape represents layer type (circle—pixel layer, square—convolution layer, right-triangle—max-pooling layer, hexagon—fully

connected layer, down-triangle—local normalization layer). Features in linear layers are extracted after a ReLU nonlinearity. Color (blue—AlexNet, green—

VGG-16) changes from dark to light along the network.
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Network layers reduce correlations between object centers.
Manifold geometry considered above characterizes the variability
in object manifolds’ shape but not the possible relations between
them. Here we focus on the correlations between the centers of
different manifolds (hereafter: center correlations), which may
create clusters of manifolds in the representation state space.
Though clustering may be beneficial for specific target classifi-
cations, our theory predicts that the overall effect of such mani-
fold clustering on random binary classification is detrimental.
Hence, these correlations reduce classification capacity (Supple-
mentary Note 3.1). Thus, the amount of center correlations at
each layer of a deep network is a computationally-relevant feature
of the underlying manifold representation.

Importantly, for both point-cloud and smooth manifolds we
find that in an AlexNet network trained for object classification,
center correlations decrease along the deep hierarchy (full
lines in Fig. 7a, b; additional VGG-16, ResNet-50 results in
Supplementary Fig. 9). This decrease is interpreted as incre-
mental improvement of the neural code for objects, and
supports the improved capacity (Figs. 4–5). In contrast, center
correlations at the same network architectures but prior to
training (dashed lines in Fig. 7a, b) do not decrease (except for
the affine manifolds in the first convolutional layer, Fig. 7b).
Thus this decorrelation of manifold centers is a result of the
network training. Interestingly, the center correlations of
shuffled manifolds exhibit lower levels of correlations, which
remain constant across layers after an initial decrease at the first
convolutional layer.

Another source of inter-manifold correlations are correlations
between the axes of variation of different manifolds; those also
decrease along the network hierarchies (Supplementary Fig. 9)
but their effect on classification capacity is small (as verified by
using surrogate data, Supplementary Fig. 10).

Effect of network building blocks on manifolds’ geometry. To
better understand the enhanced capacity exhibited by DCNNs we
study the roles of the different network building blocks. Based on
our theory, any operation applied to a neural representation may
change capacity by either changing the manifolds’ dimensions,
radii, or the inter-manifold correlations (where a reduction of
these measures is expected to increase capacity).

Figure 8a, b shows the effect of single operations used in
AlexNet and VGG-16. We find that the ReLU nonlinearity
usually reduces center correlations and manifolds’ radii, but
increases manifolds’ dimensions (Fig. 8a). This is expected as the
nonlinearity tends to generate a sparse, higher dimensional,
representations50,51. In contrast, pooling decreases manifolds’
radii and dimensions but usually increase correlations (Fig. 8b),
presumably due to the underlying spatial averaging. Such clear
behavior is not evident when considering convolutional or fully
connected operations in isolation (Supplementary Fig. 11).

In contrast to single operations, we find that the networks’
computational building blocks perform consistent transformation
on manifold properties (Fig. 8c, d). The initial building blocks
consist of sequences of convolution, ReLU operation followed by
pooling, which consistently act to decrease correlations and tend
to decrease both manifolds’ radii and dimensions (Fig. 8c). On
the other hand, the final building block, a fully connected
operation followed by ReLU, decreases manifolds’ radii and
dimensions, but may increase correlations (Fig. 8d), similarly to
the max-pooling operation (Fig. 8b). Furthermore, as composite
building blocks show more consistent behavior than individual
operations, we understand why DCNNs with randomly initialized
weights do not improve manifold properties. Only by appro-
priately trained weights, the combination of operations with often
opposing effects yields a net improvement in manifold properties.

Comparison of theory with numerically measured capacity.
The results presented so far were obtained using algorithms
derived from a mean-field theory which is exact in the limit of
large number of neurons and manifolds and additional simpli-
fying statistical assumptions (Supplementary Note 3.1). To test
the agreement between the theory and the capacity of finite-sized
networks with realistic data, we have numerically computed
capacity at each layer of the network, using recently developed
efficient algorithms for manifold linear classification41 (see
Methods). Comparing the numerically measured values to theory
shows good agreement for both point-cloud manifolds (Fig. 9a)
and smooth manifolds (Fig. 9b, Supplementary Fig. 12). This
agreement is a remarkable validation of the applicability of mean-
field theory to representations of realistic datasets generated by
complex networks.
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Fig. 7 Correlations between manifolds. Changes of mean between-manifold correlations along the layers of AlexNet. a Center correlations for top 10%

point-cloud manifolds in fully trained network (full line), randomly initialized network (dashed line) or randomly shuffled object manifolds (dotted line).

b Center correlations for smooth 2-d shear manifolds in fully trained network (full line) or randomly initialized network (dashed line). Line and markers

indicate mean value over different choices of objects; surrounding shaded areas indicate 95% confidence interval. The x-axis labels provides abbreviation of

the layer types. Marker shape represents layer type (circle—pixel layer, square—convolution layer, right-triangle—max-pooling layer, hexagon—fully

connected layer). Features in linear layers are extracted after a ReLU nonlinearity. Color changes from dark to light along the network. Center correlations

are ρCC ¼ <j x!μ � x
!ν j=jj x!μjj � jj x!ν jj>μ≠ν where x

!μ
is the center of object μ (Supplementary Eq. (1)).
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A fundamental prediction of the theory is that the maximal
number of classifiable manifolds Pc is extensive, namely grows in
proportion to the number of neurons in the representation N,
hence their ratio αc is unchanged. We validated this prediction in
realistic manifolds, by measuring numerically the capacity upon
changing both the number of neurons used for classification and
the number of data manifolds. Capacity for both point-cloud
manifolds (Fig. 9c) and smooth manifolds (Fig. 9d) exhibits only
a modest dependence on the number of objects on which it is
measured, and seems to saturate at a finite value of P ≈ 50

(additional results for 1-d and 2-d smooth manifolds with
different variability levels are provided in Supplementary Fig. 13).

Note that the mean-field prediction of extensivity of classifica-
tion holds for manifold ensembles whose individual geometric
measures such as manifold dimension and radius do not scale
with the representation size but retain a finite limit when N
grows. Indeed, we found that the radii and dimensions of our data
manifolds also show little dependence on the number of neurons
for values of N larger than several hundred (Supplementary
Fig. 14), consistent with the exhibited extensive capacity. The
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saturation of αc and manifold geometry with respect to N implies
that they can be estimated on a subsampled set of neurons (or
subset of random projections of the representation) at each layer
(see Methods), a fact that we utilized in calculating our results of
Figs. 3–8 and has important practical implications for the
applicability of these measures to large networks.

Effect of manifold perturbations on capacity. So far, we have
shown that deep networks enhance manifold classification capa-
city, while reducing their dimensions, radii and correlations. But
can we show that manifold dimension and radius, rather than
other salient shape features, are indeed causally related to the
increase in classification capacity? Here we utilize the full acces-
sibility of the representations in artificial neural networks to
address these questions, by manipulating the geometry of the
manifold representations. First, we show that increasing the size
of the manifolds without changing other geometric features is
sufficient to decrease capacity. We multiply all vectors belonging
to a manifold relative to the manifold center by a global scaling
factor. Figure 10a, c displays the decrease of capacity with the
scaling factor for both point-cloud and smooth manifolds at
several representative layers in AlexNet.

To show that the changes in manifold dimensions and radii are
sufficient to explain the observed changes in capacity, we
recalculated the capacity by replacing the manifolds at each layer
with balls with the same radius and dimension as the RM and DM,
respectively. Figure 10b, d shows a remarkable agreement
between the balls and the original manifolds, proving that RM
and DM are the dominant geometric measures underlying
the improved capacity. To quantitatively estimate the relative
contributions of reductions in dimensions and radii to the
enhanced capacity, we compared the actual capacity in different
layers with that of balls with the same dimension as the manifold
dimension in the respective layer but with radius fixed at its pixel
layer value (as in Supplementary Fig. 7). Figure 10b shows a
substantial improvement in capacity ranging between 90% of the
full capacity in early layers and 55% in last layers. In contrast, the
capacity of balls with the same radius as the manifolds but with
dimension fixed to their pixel layer value, exhibits only a small
improvement, supporting our conclusion that the dominant
factor in improved manifold separability is the reduction in their
dimensions.

Finally, to demonstrate the causal role of center correlations
on capacity, we have manipulated the manifold centers by
randomizing them without changing the geometry of the
manifolds, and compared the resultant capacity (Supplementary
Fig. 10b). As anticipated, center randomization improves
capacity, especially in the first layers where the actual capacity
exhibit high center correlations.

Discussion
The goal of our study was to delineate the contributions of
computational, geometric, and correlation-based measures to the
untangling of manifolds in deep networks, using a new theoretical
framework. To do this, we introduce classification capacity as a
measure of the amount of decodable categorical information per
neuron. Combining tools from statistical physics and insights
from high-dimensional geometry, we develop a mean-field esti-
mate of capacity and relate it to geometric measures of object
manifolds as well as their correlation structure. Using these
measures, we analyze how manifolds are reformatted as the sig-
nals propagate through the deep networks to yield an improved
invariant object recognition at the last stages.

We find that the classification capacity of the object manifolds
increases across the layers of trained DCNNs. At the pixel layer,
the extent of intra-manifold variability is so large that the resul-
tant manifold properties are almost indistinguishable from ran-
dom points. Subsequent processing by the trained networks
results in a significant increases in capacity along with an overall
reduction in the mean manifold dimensions and radii. In con-
trast, networks with the same architectures but random weights
do exhibit only slight improvement in capacity and manifold
geometry, indicating that training rather than mere architecture is
responsible for the successful reformatting of the manifolds.

For both point-cloud and smooth manifolds across multiple
DCNNs architectures (AlexNet, VGG-16, and ResNet-50), we
find improved manifold classification capacity (Figs. 4 and 5,
Supplementary Figs. 1, 2, 4) associated with decreased manifold
dimension and radius across the layers (Fig. 6, Supplementary
Figs. 5, 6). Our findings suggest that different network hierarchies
employ similar strategies to process stimulus variability, with
image warping handled by the initial convolution and last layers,
and intermediate layers needed to gradually reduce the dimension
and radius of point-cloud manifolds. We find that lowering the
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dimensionality of each object manifold is one of the primary
reasons for the improved separation capabilities of the trained
networks.

The networks also effectively reduce the inter-manifold cor-
relations, and some of the improved capacity exhibited by the
DCNNs results from decreased manifold center correlations
across the layers (Fig. 7, Supplementary Fig. 9). As with the
manifold geometrical measures, the improved decorrelation is
specific to networks with trained weights; for random weights,
center correlations remain high across all layers. Other studies of
object representations in DCNNs and in the visual system3,7,10

focused on the comparison between the correlational structures of
representations in different systems (e.g., different networks, or
animals vs humans). Here we find that the deep networks exhibit
an overall decrease of correlations between object manifolds and
demonstrate its computational significance. Decorrelation
between neuronal responses to natural stimuli and the associated
redundancy reduction has been one of earliest principles pro-
posed to explain principles of neural coding in early stages of
sensory processing50,52–55. Interestingly, here we find that dec-
orrelation between object representations is an important com-
putational principle in higher processing stages.

In this work we have not addressed the question of extracting
physical variables of stimuli, such as pose or articulation. In
principle, reformatting of object manifolds might also involve
alignment of their axes of variation, so that information about
physical variables can be easily readout by projection on subspace
orthogonal to directions which contain object identity informa-
tion56. Alternatively, separate channels may be specialized for
such tasks. Interestingly, in artificial networks, the axes–axes
alignment across manifolds is reduced after the first layers
(Supplementary Fig. 9), consistent with their training to perform
only object recognition tasks. This is qualitatively consistent with
the study of information processing in deep networks57 which
proposes a systematic decrease along the network hierarchy in
information about the stimulus accompanied by increased
representation of task related variables. It would be interesting to
examine systematically if high level neural representations in the
brain such as IT cortex show similar patterns or channel both
type of information in separate dimensions11,58.

Our analysis of the effect of common computational building
blocks in DCNNs (such as convolution, ReLU nonlinearity,
pooling and fully connected layers) shows that single stages do
not explain the overall improvement in manifold structure. Some
individual stages transform manifold geometry differently
dependent on their position in the network (e.g., convolution,
Supplementary Fig. 11). Other stages exhibit trade-offs between
different manifold features; for instance, the ReLU nonlinearity
tends to reduce radius and correlations but increase the dimen-
sionality. In contrast, composite building blocks, comprising a
sequence of spatial integration, local nonlinearities and non-local
pooling yield a consistent reduction in manifold radius and
dimension in addition to reduced correlations across the different
manifold types and network architectures.

We find very similar behavior in manifolds propagated
through another class of deep networks, residual networks, that
are not only much deeper but also incorporate a special set of skip
connections between consecutive modules. Residual networks
with different number of layers exhibit consistent behavior under
our analysis (Supplementary Fig. 2). Focusing on ResNet-50
(Supplementary Figs. 1, 4, 5, 6, 8, 9), we find quite similar
behavior to the networks in Figs. 3–7. Furthermore, on this
architecture, each skip module exhibits consistent reductions in
manifold dimensions, radii and correlations (Supplementary
Fig. 11c), similar to the changes in the other network archi-
tectures (Fig. 8).

Consistent across all the networks we studied, the increase in
capacity is modest for most of the initial layers and improves
considerably in the last stages (typically after the last convolution
building block). This trend is even more pronounced for residual
networks (Supplementary Figs. 1–4). This does not imply that
previous stages are not important. Instead, it reflects the fact that
capacity intimately depends on the incremental improvement of a
number of factors including geometry and correlation structure.

Given the ubiquity of the changes in the manifold repre-
sentations found here, we predict that similar patterns will be
observed for sensory hierarchies in the brain. One issue of con-
cern is trial-to-trial variability in neuronal responses. Our analysis
assumes deterministic neural responses with sharp manifold
boundaries, but it can be extended to the case of stochastic
representations where manifolds are not perfectly separable.
Alternatively, one can interpret the trial averaged neural
responses as representing the spatial averaging of the responses of
a group of stochastic neurons, with similar signal properties but
weak noise correlations. To properly assess the properties of
perceptual manifolds in the brain, responses of moderately large
subsampled populations of neurons to numerous objects with
multiple sources of physical variability is required. Such datasets
are becoming technically feasible with advanced calcium ima-
ging27. Recent work has also enabled quantitative comparisons to
DCNNs from electrophysiological recordings from V4 and IT
cortex in macaques59.

One extension of our framework would relate capacity to
generalization, the ability to correctly classify test points drawn
from the manifolds but not part of the training set. While not
addressed here, we expect that it will depend on similar geometric
manifold measures, namely stages with reduced RM and DM will
exhibit better generalization ability. Those geometric manifold
measures can be related to optimal separating hyperplanes which
are known to provide improved generalization performance in
support vector machines.

The statistical measures introduced in this work (capacity,
geometric manifold properties, and center correlations) can also
be used to guide the design and training of future deep networks.
By extending concepts of efficient coding and object representa-
tions to higher stages of sensory processing, our theory can help
elucidate some of the fundamental principles that underlie hier-
archical sensory processing in the brain and in deep artificial
neural networks.

Methods
Summary of manifold classification capacity and anchor points. Following the
theory introduced in ref. 36, manifolds are described by D+ 1 coordinates, one
which defines the location of the manifold center and the others the axes of the
manifold variability. The set of points that define the manifold within its subspace
of variability is formally designated as S which can represent a collection of
finite number of data points or a smooth manifold (e.g., a sphere or a curve).
An ensemble of P manifolds is defined by assuming the center locations and
the axes’ orientations are random (focusing first on the case where all manifolds
have the same shape). Near capacity the separating weight vector can be decom-
posed into at most P representative vectors, one from each manifold, such that

w ¼ PP
μ¼1λμy

μ
~xμ , where λμ ≥ 0 and ~xμ 2 conv Mμð Þ is a representative vector in

the convex hull of Mμ, the μ-th manifold. These vectors play a key role in the
theory, as they comprehensively determine the separating plane. We denote these
representative points from each manifold as the manifold anchor points.

Classification capacity is defined as αc= Pc/N where Pc is the maximum number
of manifolds that can be linearly separated using random binary labels. In mean-
field theory, capacity is described in terms of a self-consistent equations involving a
single manifold embedded in an ensemble of many others. These equations takes
the form of

α�1
c ¼ hFðT!Þi

T
! ð1Þ

FðT!Þ ¼ min

V
! V

!� T
!�

�
�

�
�
�

2

jmin

S
! V

!� S!j S!2 S
n o

� 0

( )

ð2Þ
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where ¼h i
T
! is an average over random D+ 1-dimensional vector T

!
whose

components are i.i.d. normally distributed T i � Nð0; 1Þ. The components of the

vector V
!

represent the signed fields induced by the separating vector w (near

capacity) on the axes of a single manifold, e.g.,Mμ. The inequality constraints on V
!

in Eq. (2) ensures that the projections of all the points on w are positive, so that all
the points on the manifold are correctly classified. The projected weight vector on a

manifold, V
!

is a sum of two contributions, one comes from the manifold’s own
anchor point λμy

μ
~xμ and another from the random projections of all other anchor

points on the subspace of Mμ. In the limit of large N and P, these projections are

normally distributed, and are denoted by a D+ 1 Gaussian vector T
!
. In order to

allow for maximal number of manifolds to be separated w has to be such that there

is maximal agreement between V
!

and the contributions from the other manifolds

T
!
, hence the minimization with respect to V

!� T
!�

�
�

�
�
�

2

¼ λμy
μ
~xμ

�
�
�

�
�
�

2

in Eq. (2).

Finally, due to a fixed square norm of the weight vector, chosen to be N, the total

contributions from all manifolds, which are on average PhFðT!Þi
T
! sums to N,

yielding Eq. (1) (details can be found in ref. 36). Note that in the mean-field theory,
the representation size N does not appear.

Geometric properties of manifolds. For a given manifold, its anchor point ~xμ

depends on the other manifolds in the ensemble. In the mean-field theory, sum-
marized above, this dependence is captured statistically, by the dependence of the

anchor point projection on the manifold subspaces, denoted by ~S on the random

vector T
!
, representing the random contributions to the separating plane from

other manifolds. Thus, the Gaussian statistics of T
!

induces a statistical measure on

the manifold’s anchor points (projected on the manifolds subspcaces) ~SðT!Þ. Since
the anchor points determine the separating hyperplane, their statistics, and in
particular the induced effective radius and dimension, plays an important role in
the classification capacity.

The effective radius and dimension are specified in terms of

δ~S ¼ ð~S� S0Þ= S0k k, the projection of the anchor point ~x onto the D+ 1-

dimensional subspace of each manifold, ~S, relative to the manifold center, S0,
capturing the statistics of the variation of the points in the D-dimensional subspace
of manifold variability. Here, the variation of these points is normalized by the
manifold center norm; as the centers are random this is equivalent, up to a
constant, to normalizing by the average distance between the manifold centers.
Then the manifold radius is the total variance of the normalized anchor points,

R2
M ¼ ~δSðT!Þ

�
�
�

�
�
�

2
� �

T
! ð3Þ

The effective dimension quantifies the spread of the anchor points along the

different manifold axes and is defined by the angular spread between δT
�! ¼

T
!� T0 (where T0 is T

!
projected on the center S0) and the corresponding anchor

point ~δSðT!Þ in the manifold subspace:

DM ¼ δT
�! � δ̂SðT!Þ

� �2
� �

T
! ð4Þ

where δ̂S is a unit vector in the direction of ~δS. In the case where the manifold has

an isotropic shape, DM ¼ δ T
!�

�
�

�
�
�

2
� �

¼ D (for detailed derivation see Section 4-D

of ref. 36).
Importantly, the theory provides a precise connection between of manifold

capacity and the effective manifold dimensionality and radius, which can be
concisely summarized as:

αc � αBall RM;DMð Þ ð5Þ
where αBall(R, D) is the expression for the capacity of L2 balls with radius R and
dimension D (see ref. 60 and Supplementary Eq. (4)). This relation holds for DM≫

1 and is an excellent approximation for all cases considered here. For a general
manifold we interpret the radius as maximal variation per dimension (in units of
the manifold’s center norm) while the dimension as the number of effective axes of
variation, with the manifold’s total extent given by RM

ffiffiffiffiffiffiffi

DM

p
.

Capacity of manifolds with low-rank centers correlation structure. A theore-
tical analysis of classification capacity for manifolds with correlated centers is
possible using the same tools as in ref. 36, and is provided in Supplementary
Note 3.1. Denoting xμ the center of mass of manifold Mμ, assuming the P × P
dimensional correlation matrix between manifold centers Cμν ¼ xμxνh i satisfies a
low-rank off-diagonal structure

C ¼ Λþ CK ð6Þ

where Λ is diagonal and CK is of rank K, i.e., can be written as CK ¼ PK
1 ck u

!
k u
!T

k .

In this case u!k

	 
K

k¼1
are ‘common components, shared across all manifolds’, while

Λμμ describe the μ-th manifold’s center norm in their null-space. The theory then
predicts that for K≪ P, the capacity depends on the structure of the manifolds
projected to the null-space of the common components (see Supplementary
Note 3.1). Thus calculation of capacity in the presence of center correlations
requires knowledge of their common components.

Recovering low-rank centers correlations structure. In order to take into
account the correlations between centers of manifolds that may exist in realistic
data, before computing the effective radius and dimension we first recover the

common components of the centers by finding an orthonormal set U 2 RN ´K

such that the centers projected to its null-space have approximately diagonal
correlation structure. Then the entire manifolds are projected into the null-space of
the common components. As the residual manifolds have uncorrelated centers,
classification capacity is predicted from the theory for uncorrelated manifolds
(Eq. (1)).

The validity of this prediction is demonstrated numerically for smooth
manifolds in Supplementary Fig. 12. Furthermore, the manifolds geometric
properties RM, DM from Eqs. (3) and (4) are calculated from the residual manifolds
using the procedure from ref. 36. Those are expected to approximate capacity using
Eq. (5) when the dimension is substantial; the validity of this approximation for
smooth manifolds is demonstrated numerically in Supplementary Fig. 15. The full
procedure is described in Supplementary Methods 2.1.

Inhomogeneous ensemble of manifolds. The object manifolds considered above
may each have a unique shape and size. For a mixture of heterogeneous mani-
folds36, classification capacity for the ensemble of object manifolds is given by
averaging the inverse of the object manifold capacity estimated from each manifold
separately: α�1 ¼ hα�1

μ i
μ
. Reported capacity value αc are calculated by evaluating

the mean-field estimate from individual manifolds and averaging their inverse over
the entire set of P manifolds. Similarly, the displayed radius and dimensions are
averages over the manifolds (using a regular averaging). An example of distribution
of geometric metrics over the different manifolds is shown in Supplementary
Figs. 5 and 6.

Manifold properties for random manifolds. A theoretical analysis of classification
capacity and geometric properties for a manifold composed of M random points
provides a useful baseline for comparison when analysing manifold properties for
real-world data. As derived in Supplementary Note 3.2, for this case we expect
dimension to scale linearly with the number of random samples (per manifold)

DM ¼ π
2 π�1ð ÞM while the radius is expected to be independent of it RM ¼

ffiffiffiffiffiffiffiffiffiffiffi

π � 1
p

.

Finally, capacity in this case is expected to be αc ¼ 2
M
, as predicted by other

methods37,39.

Measuring capacity numerically from samples. Classification capacity can be
measured numerically by directly performing linear classification of the manifolds.
Consider a population of N neurons which represents P objects through their
population responses to samples of those objects. Assuming the objects are linearly
separable using the entire population of N neurons, we seek the typical sub-
population size n where those P objects are no longer separable. For a given sub-
population size n we first project the N dimensional response to the lower
dimension n using random projections; using sub-sampling rather than random
projections provide very similar results but breaks down for very sparse population
responses (Supplementary Fig. 16). Second, we estimate the fraction of linearly
separable dichotomies by randomly sampling binary labels for the object manifolds
and checking if the sub-population data is linearly separable using those labels.
Testing for linearly separability of manifold can be done using regular optimization
procedures (i.e., using quadratic optimization), or using efficient algorithms
developed specifically for the task of manifold classification41. As n increase the
fraction of separable dichotomies goes from 0 to 1 and we numerically measure
classification capacity as αc= P∕nc where the fraction surpasses 50%; a binary
search for the exact value nc is used to find this transition. The full procedure is
described in Supplementary Methods 2.2.

When numerically measuring the capacity of balls with geometric properties
derived from the data (as in Fig. 10d) the centers of the balls (and thus their center
correlation structure) is taken from the data, as well as the direction of the
manifold axes. The number of axes is set by rounding DM to the nearest integer and
manifold radius is RM in units of the corresponding center norm. Then a
specialized method the for measuring linear separability of balls is used41.

Generating point-cloud and smooth manifolds. The pixel-level representation of
each point-cloud manifold is generated using samples from a single class from
ImageNet data-set42. We have chosen P= 50 classes (the names and identifiers of
the first set of classes used are provided in Supplementary Methods 2.3). For the
generation of confidence intervals 5 sets of P= 50 classes, sampled with different
seeds, were used. The extent of point-clouds can be varied by utilizing the scores
assigned to each image by a network trained to classify this data-set, essentially
indicating how template-like an image is. Thus we consider here two types of
manifolds: (1) “full class” manifolds, where all exemplars from the given class are
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used, or (2) “top 10%” manifolds, where just the 10% of the exemplars with large
confidence in class-membership, as measured by the score achieved in the soft-max
layer, at the node corresponding to the ground-truth class of the exemplar image in
ImageNet (a pretrained AlexNet model from PyTorch implementation was used
for the score throughout).

The pixel-level representation of each smooth manifold is generated from a
single ImageNet image. Only images with an object bounding-box annotation42

were used; at the base image the object occupied the middle 75% of a 64 × 64
image. Manifolds samples are then generated by warping the base image using an
affine transformation with either 1 or 2 degrees of freedom. Here we have used 1-d
manifolds with horizontal or vertical translation, horizontal or vertical shear; and
2-d manifolds with horizontal and vertical translation or horizontal and vertical
shear. The amount of variation in the manifold is controlled for by limiting the
maximal displacement of the object corners, thus allowing for generating manifolds
with different amount of variability. Manifolds with maximal displacement of up to
16 pixels where used; the resultant amount of variability is quantified by the value
of input variability, the amount of variation around manifold center at the pixel
layer, in units of the center norm (shown in Fig. 5, Supplementary Figs. 4, 8,
measured using Supplementary Eq. (3)). Here P= 128 base images were used to
generate 1-d manifolds and P= 64 to generate 2-d manifolds, both without using
images of the same ImageNet class. For the generation of confidence intervals 4 sets
of P= 64 base images, sampled with different seeds, were used. The number of
samples for each of those manifolds is chosen such that capacity would
approximately saturate, thus allowing to extrapolate to the case of infinite number
of samples (Supplementary Fig. 3).

For both point-cloud and smooth manifolds, representations for all the layers
along the different deep hierarchies considered are generated from the pixel-level
representation by propagating the images along the hierarchies. Both PyTorch61

and MatConvNet62 implementations of the DCNNs were used. At each layer a
fixed population of N= 4096 neurons was randomly sampled once and used in the
analysis, both when numerically calculating capacity and when measuring capacity
and manifold properties using the mean-field theory. The first layer of each
network is defined as the pixel layer; the last is the feature layer (i.e., before a fully
connected operation and a soft-max nonlinearity). Throughout the analysis
convolutional and fully connected layers are analyzed after applying local ReLU
nonlinearity (unless referring explicitly to the isolated operations as in Fig. 8,
Supplementary Fig. 11).

Image contents. Images in Figs. 1, 2, 3, and 5 are not the actual ImageNet images
used in our experiments. The original images are replaced with images with similar
content for display purposes.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study are available from the

corresponding author on reasonable request.

Code availability
The code used during the current study is publically available in github (see https://

github.com/sompolinsky-lab/dnn-object-manifolds).
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