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Separable covariance arrays via the Tucker
product, with applications to multivariate

relational data

Peter D. Hoff∗

Abstract. Modern datasets are often in the form of matrices or arrays, potentially
having correlations along each set of data indices. For example, data involving re-
peated measurements of several variables over time may exhibit temporal correla-
tion as well as correlation among the variables. A possible model for matrix-valued
data is the class of matrix normal distributions, which is parametrized by two co-
variance matrices, one for each index set of the data. In this article we discuss
an extension of the matrix normal model to accommodate multidimensional data
arrays, or tensors. We show how a particular array-matrix product can be used
to generate the class of array normal distributions having separable covariance
structure. We derive some properties of these covariance structures and the cor-
responding array normal distributions, and show how the array-matrix product
can be used to define a semi-conjugate prior distribution and calculate the corre-
sponding posterior distribution. We illustrate the methodology in an analysis of
multivariate longitudinal network data which take the form of a four-way array.

Keywords: Gaussian, matrix normal, multiway data, network, tensor, Tucker de-
composition

1 Introduction

This article provides a construction of and estimation methods for a class of covari-
ance models and Gaussian probability distributions for array data consisting of multi-
indexed values Y = {yi1 , . . . , yiK

: ik ∈ {1, . . . , mk}, k = 1, . . . , K}. Such data have
become common in many scientific disciplines, including the social and biological sci-
ences. Researchers often gather relational data measured on pairs of units, where the
population of units may consist of people, genes, websites or some other set of ob-
jects. Data on a single relational variable is often represented by a “sociomatrix”
Y = {yi,j , i ∈ {1, . . . , m}, j ∈ {1, . . . ,m}, i 6= j}, a square matrix with an undefined
diagonal, where yi,j represents the relationship from node i to node j.

Multivariate relational data include multiple relational measurements on a single
node set, with measurements possibly gathered under different conditions or at different
time points. Such data can be represented as a multiway array. For example, in this
article we will analyze data on trade of several commodity classes between a set of
countries over several years. These data can be represented as a four-way array Y =
{yi,j,k,t}, where yi,j,k,t records the volume of exports of commodity k from country i
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to country j in year t. For such data it is often of interest to identify similarities or
correlations among data corresponding to the objects of a given index set. For example,
one may want to identify nodes of a network that behave similarly across levels of
the other factors of the array. For temporal datasets it may be important to describe
correlations among data from adjacent time points. In general, it may be desirable to
estimate or account for dependencies along each index set of the array.

For matrix valued data, such considerations have led to the use of separable covari-
ance structures, whereby the covariance of a population of matrices is modeled as being
Cov[vec(Y)] = Σ2⊗Σ1, where “⊗” is the Kronecker product. In this parameterization,
Σ1 and Σ2 represent covariances among the rows and columns of the matrices, respec-
tively. Such a covariance model may provide a stable and parsimonious alternative to
an unrestricted estimate of Cov[vec(Y)], the latter being unstable or even unavailable
if the dimensions of the sample data matrices are large compared to the sample size.
The family of matrix normal distributions with separable covariance matrices is studied
in Dawid (1981), along with results specific to Bayesian inference. Quintana and West
(1988) introduce the use of matrix normal distributions for multivariate dynamic linear
modeling (see also West and Harrison (1997, chap. 16)). Carvalho and West (2007)
provide methodology for the estimation of sparse separable covariance structure for mul-
tivariate time series data with the use of graphical models. This work is extended in
Wang and West (2009) to accommodate, for example, dynamic matrix-variate data. In
the context of maximum likelihood estimation for the matrix normal model, an iterative
estimation algorithm is given by Dutilleul (1999). Hypothesis testing for the separabil-
ity of the covariance structure or the form of the component matrices is considered in
Lu and Zimmerman (2005); Roy and Khattree (2005) and Mitchell et al. (2006), among
others. Beyond the matrix-variate case, Galecki (1994) considers a separable covariance
model for three-way arrays, but where the component matrices are assumed to have
compound symmetry or an autoregressive structure.

In this article we show that the class of separable covariance models for random ar-
rays of arbitrary dimension can be generated with a type of multilinear transformation
known as the Tucker product (Tucker 1964; Kolda 2006). Just as a zero-mean mul-
tivariate normal vector with a given covariance matrix can be represented as a linear
transformation of a vector of independent, standard normal entries, in Section 2 we
show that a normal array with separable covariance structure can be represented by a
multilinear transformation of an array of independent, standard normal entries. As a
result, construction of conjugate prior distributions and calculation of their correspond-
ing posterior distributions are made straightforward via some basic tools of multilinear
algebra, as is shown in Section 3. Section 4 presents an example data analysis of trade
volume data between pairs of 30 countries in 6 commodity types over 10 years. We show
that a matrix normal model that accommodates covariance along only two of the four
data dimensions shows substantial lack of fit when compared to an array normal model
that accounts for covariance along all four data dimensions. A discussion of model ex-
tensions and directions for further research follow in Section 5. Details of some of the
calculations are given in an Appendix.
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2 Separable covariance via array-matrix multiplication

2.1 Array notation and basic operations

The data structures we consider in this article can be described as tensors, for which sev-
eral notational conventions are available. In this article we follow the notation that often
appears in the applied statistics and psychometrics literature on tensor data (Kroonen-
berg 2008) and in the recent literature on tensor decompositions (De Lathauwer et al.
2000; Kolda 2006). Alternative tensor notation can be found in McCullagh (1987), for
example.

An array of order K, or K-array, is a map from the product space of K index sets
to the real numbers. The different index sets are referred to as the modes of the array.
The dimension vector of an array gives the number of elements in each index set. For
example, for a positive integer m1, a vector in Rm1 is a one-array with dimension m1. A
matrix in Rm1×m2 is a two-array with dimension (m1, m2). A K-array Z with dimension
(m1, . . . ,mK) has elements {zi1,...,iK

: ik ∈ {1, . . . ,mk}, k = 1, . . . , K}.
Array unfolding refers to the representation of an array by an array of lower order

via combinations of various index sets of an array. A useful unfolding is the k-mode
matrix unfolding, or k-mode matricization (De Lathauwer et al. 2000), in which a K-
array Z is reshaped to form a matrix Z(k) with mk rows and

∏
j:j 6=k mj columns. Each

column corresponds to the entries of Z in which the kth index ik varies from 1 to mk

and the remaining indices are fixed. The assignment of the remaining indices {ij : j 6=
k} to columns of Z(k) is determined by the following ordering on index sets: Letting
i = (i1, . . . , iK) and j = (j1, . . . , jK) be two sets of indices, we say i < j if ik < jk for
some k and il ≤ jl for all l > k. In terms of ordering the columns of the matricization,
this means that the index corresponding to a lower-numbered mode “moves faster” than
that of a higher-numbered mode.

De Lathauwer et al. (2000) define an array-matrix product via the usual matrix
product as applied to matricizations. The k-mode product of an m1 × · · · ×mK array
Z and an n×mk matrix A is obtained by forming the m1 × · · · ×mk−1 × n×mk+1 ×
· · · ×mK array from the inversion of the k-mode matricization operation on the matrix
AZ(k). The resulting array is denoted by Z×k A. Letting F and G be matrices of the
appropriate sizes, important properties of this product include the following:

� (Z×j F)×k G = (Z×k G)×j F = Z×j F×k G

� (Z×j F)×j G = Z×j (GF)

� Z×j (F + G) = Z×j F + Z×j G.

(De Lathauwer et al. 2000). A useful extension of the k-mode product is the product of
an array Z with each matrix in a list A = {A1, . . . ,AK} in which Ak ∈ Rnk×mk , given
by

Z×A = Z×1 A1 ×2 · · · ×K AK .
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This has been called the “Tucker operator” or “Tucker product”, (Kolda 2006), named
after the Tucker decomposition for multiway arrays (Tucker 1964, 1966), and is used for
a type of multiway singular value decomposition (De Lathauwer et al. 2000). A useful
calculation involving the Tucker operator is that if Y = Z×A, then

Y(k) = AkZ(k)(AK ⊗ · · · ⊗Ak+1 ⊗Ak−1 ⊗ · · · ⊗A1)T .

Other properties of the Tucker product can be found in De Lathauwer et al. (2000) and
Kolda (2006).

2.2 Separable covariance via the Tucker product

Recall that the general linear group GLm of nonsingular real matrices A acts transitively
on the space Sm of positive definite m×m matrices Σ via the transformation AΣAT .
It is convenient to think of Sm as the set of covariance matrices {Cov[Az] : A ∈ GLm}
where z is an m-variate mean-zero random vector with identity covariance matrix.
Additionally, if z is a vector of independent standard normal random variables, then
the distributions of y = Az as A ranges over GLm constitute the family of mean-zero
vector-valued multivariate normal distributions, which we write as y ∼ vnorm(0,Σ).

Analogously, let A = {A1,A2} ∈ GLm1,m2 ≡ GLm1 ×GLm2 , and let Z be an m1 ×
m2 random matrix with uncorrelated mean-zero variance-one entries. The covariance
structure of the random matrix Y = A1ZAT

2 can be described by the m1×m1×m2×m2

covariance array Cov[Y] for which the (i1, i2, j1, j2) entry is equal to Cov[yi1,j1 , yi2,j2 ].
It is straightforward to show that Cov[Y] = Σ1 ◦Σ2, where Σj = AjAT

j , j = 1, 2 and
“◦” denotes the outer product. This is referred to as a “separable” covariance structure,
in which the covariance among elements of Y can be described by the row covariance
Σ1 and the column covariance Σ2. Letting “tr()” be the matrix trace, well-known
alternative ways to describe the covariance structure are as follows:

E[YYT ] = Σ1×tr(Σ2)
E[YT Y] = Σ2×tr(Σ1)

Cov[vec(Y)] = Σ2⊗Σ1 .

As {A1,A2} ranges over GLm1,m2 the covariance array of Y = A1ZAT
2 ranges

over the space of separable covariance arrays Sm1,m2 = {Σ1 ◦Σ2 : Σ1 ∈ Sm1 ,Σ2 ∈
Sm2} (Browne and Shapiro 1991). If we additionally assume that the elements of Z
are independent standard normal random variables, then the distributions of {Y =
A1ZAT

2 : {A1,A2} ∈ GLm1,m2} constitute what are known as the mean-zero matrix
normal distributions (Dawid 1981), which we write as Y ∼ mnorm(0,Σ1 ◦Σ2).

Thinking of the matrices Y and Z as two-way arrays, the bilinear transformation
Y = A1ZAT

2 can alternatively be expressed using array-matrix multiplication as Y =
Z×1A1×2A2 = Z×A. Extending this idea further, let Z be an m1×· · ·×mK random
array with uncorrelated mean-zero variance-one entries, and define GLm1,...,mK to be
the set of lists of matrices A = {A1, . . . ,AK} with Ak ∈ GLmk

. The Tucker product
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Z × A induces a transformation on the covariance structure of Z which shares many
features of the analogous bilinear transformation for matrices:

Proposition 2.1. Let Y = Z×A, where Z and A are as above, and let Σk = AkAT
k .

Then

1. Cov[Y] = Σ1 ◦ · · · ◦ΣK ,

2. Cov[vec(Y)] = ΣK ⊗ · · · ⊗Σ1,

3. E[Y(k)Y
T
(k)] = Σk ×

∏
j:j 6=k tr(Σj).

Calculation details for these identities are given in the Appendix.

The following result highlights the relationship between array-matrix multiplication
and separable covariance structure:

Proposition 2.2. If Cov[Y] = Σ1 ◦ · · · ◦ΣK and X = Y×k G, then

Cov[X] = Σ1 ◦ · · · ◦Σk−1 ◦(GΣk GT ) ◦Σk+1 ◦ · · · ◦ΣK .

This indicates that the class of separable covariance arrays can be obtained by re-
peated single-mode array-matrix multiplications starting with an array Z of uncorrelated
entries, i.e. for which Cov[Z] = Im1 ◦ · · · ◦ ImK

. The class of separable covariance arrays
is therefore closed under this group of transformations.

2.3 Construction of an array normal class of distributions

Normal probability distributions are useful statistical modeling tools that can represent
mean and covariance structure. A family of normal distributions for random arrays
with separable covariance structure can be generated as in the vector and matrix cases:
Let Z be an array of independent standard normal entries, and let Y = M + Z × A
with M ∈ Rm1×···×mK and A ∈ GLm1,...,mK

. We say that Y has an array normal
distribution, denoted Y ∼ anorm(M,Σ1 ◦ · · · ◦ΣK), where Σk = AkAT

k .

Proposition 2.3. The probability density of Y = M + Z×A is given by

p(Y|M,Σ1, . . . ,ΣK) = (2π)−m/2

(
K∏

k=1

|Σk |−m/(2mk)

)
×exp(−||(Y−M)×Σ−1/2 ||2/2),

where m =
∏K

1 mk, Σ−1/2 = {A−1
1 , . . . ,A−1

K } and the array norm ||Z||2 = 〈Z,Z〉 is
derived from the inner product 〈X,Y〉 =

∑
i1
· · ·∑iK

xi1,...,iK
yi1,...,iK

.

Also important for statistical modeling is the idea of replication. If Y1, . . . ,Yn
iid∼

anorm(M,Σ1 ◦ · · ·◦ΣK), then the array m1×· · ·×mK×n array formed by stacking the
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Yi’s together also has an array normal distribution: If Y1, . . . ,Yn
iid∼ anorm(M,Σ1 ◦ · · ·◦

ΣK), then

Y = (Y1, . . . ,YmK
) ∼ anorm(M ◦ 1n,Σ1 ◦ · · · ◦ΣK ◦In).

This can be shown by computing the joint density of Y1, . . . ,Yn and comparing it to
the array normal density.

An important feature of the multivariate normal distribution is that it provides a
conditional model of one set of variables given another. Recall, if y ∼ vnorm(µ,Σ)
then the conditional distribution of one subset of elements yb of y given another ya is
vnorm(µb|a,Σb|a), where

µb|a = µ[b] + Σ[b,a](Σ[a,a])−1(ya − µ[a])

Σb|a = Σ[b,b]−Σ[b,a](Σ[a,a])−1 Σ[a,b],

with Σ[b,a], for example, being the matrix made up of the entries in the rows of Σ
corresponding to b and columns corresponding to a.

A similar result holds for the array normal distribution: Let a and b be non-
overlapping subsets of {1, . . . , m1}. Let Yb = {yi1,...,iK

: i1 ∈ b} and Ya = {yi1,...,iK
:

i1 ∈ a} be arrays of dimension m1b ×m2 × · · · ×mK and m1a ×m2 × · · · ×mK , where
m1a and m1b are the lengths of a and b respectively. The arrays Ya and Yb are made
up of non-overlapping “slices” of the array Y along the first mode.

Proposition 2.4. Let Y ∼ anorm(M,Σ1 ◦ · · · ◦ΣK). The conditional distribution of
Yb given Ya is array normal with mean Mb|a and covariance Σ1,b|a ◦Σ2 ◦ · · · ◦ ΣK ,
where

Mb|a = Mb + (Ya −Ma)×1 (Σ1[b,a](Σ1[a,a])−1)

Σ1,b|a = Σ1[b,b]−Σ1[b,a](Σ1[a,a])−1 Σ1[a,b] .

Since the conditional distribution is also in the array normal class, successive ap-
plications of Proposition 2.4 can be used to obtain the conditional distribution of any
subset of the elements of Y of the form {yi1,...,iK

: ik ∈ bk}, conditional upon the other
elements of the array.

3 Estimation and inference for the array normal model

In this section we consider parameter estimation and inference for the array normal
model. When a maximum likelihood estimate exists, it can be found via a simple it-
erative block coordinate descent algorithm described below. However, existence issues
and the large number of parameters involved may make a Bayesian approach attrac-
tive. As an alternative to maximum likelihood estimation, we develop a semiconjugate
prior distribution and posterior approximation scheme for the model parameters. This
Bayesian approach provides parameter estimates and confidence intervals, a means to
incorporate prior information if available, and regularized, equivariant estimators using
default prior distributions if prior information is absent.
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3.1 Maximum likelihood estimation:

Let Y1, . . . ,Yn
iid∼ anorm(M,Σ1 ◦ · · · ◦ ΣK), or equivalently, Y = {Y1, . . . ,Yn} ∼

anorm(M ◦ 1,Σ1 ◦ · · · ◦ΣK ◦In). For any value of Σ = {Σ1, . . . ,ΣK}, the value of M
that maximizes p(Y|M,Σ) is the value that minimizes the residual mean squared error:

1
n

n∑

i=1

||(Yi −M)×Σ−1/2 ||2 =
1
n

n∑

i=1

〈Yi −M, (Yi −M)×Σ−1〉

= 〈M,M×Σ−1〉 − 2〈M, Ȳ×Σ−1〉+ c1(Y,Σ)
= 〈M− Ȳ, (M− Ȳ)×Σ−1〉+ c2(Y,Σ)

= ||(M− Ȳ)×Σ−1/2 ||2 + c2(Y,Σ).

This is uniquely minimized in M by Ȳ =
∑

Yi/n, and so M̂ = Ȳ is the MLE of
M. The MLE of Σ does not have a closed form expression. However, it is possible
to maximize p(Y|M,Σ) in Σk, given values of the other covariance matrices. Letting
E = Y−M ◦ 1n, the likelihood as a function of Σk can be expressed as p(Y|M,Σ) ∝
|Σk |−nm/(2mk) exp{−||E × {Σ−1/2

1 , . . . ,Σ−1/2
K , In}||2/2}. Since for any array Z and

mode k we have ||Z||2 = ||Z(k)||2 = tr(Z(k)Z
T
(k)), the norm in the likelihood can be

written as

||E×Σ−1/2 ||2 = ||Ẽ×k Σ−1/2
k ||2

= tr(Σ−1/2
k Ẽ(k)Ẽ

T

(k) Σ
−1/2
k )

= tr(Σ−1
k Ẽ(k)Ẽ

T

(k)),

where Ẽ = E× {Σ−1/2
1 , . . . ,Σ−1/2

k−1 , Ik,Σ−1/2
k+1 , . . . ,Σ−1/2

K , In} is the residual array stan-

dardized along each dimension except k. Writing Sk = Ẽ(k)Ẽ
T

(k), we have

p(Y|M,Σ) ∝ |Σk |−nm/(2mk)etr{−Σ−1
k Sk/2}

as a function of Σk, and so if Sk is of full rank then the unique maximizer in Σk is given
by Σ̂k = Sk/nk, where nk = nm/mk = n×∏

j 6=k mj is the number of columns of Y(k),
i.e. the “sample size” for the kth mode. This suggests the following iterative algorithm
for obtaining the MLE of Σ: Letting E = Y − Ȳ ◦ 1n and given an initial value of Σ,
for each k ∈ {1, . . . , K}

1. compute Ẽ = E×{Σ−1/2
1 , . . . ,Σ−1/2

k−1 , Ik,Σ−1/2
k+1 , . . . ,Σ−1/2

K , In} and Sk = Ẽ(k)Ẽ
T

(k);

2. set Σk = Sk/nk, where nk = n×∏
j 6=k mj .

Each iteration increases the likelihood, and so the procedure can be seen as a type
of block coordinate descent algorithm (Tseng 2001). For the matrix normal case, this
algorithm was proposed by Dutilleul (1999) and is sometimes called the “flip-flop” al-
gorithm. Note that the scales of {Σ1, . . . ,ΣK} are not separately identifiable from
the likelihood: Replacing Σ1 and Σ2 with cΣ1 and Σ2 /c yield the same probability
distribution for Y, and so the scales of the MLEs will depend on the initial values.
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3.2 Bayesian estimation

While easy to implement, the above-described maximum likelihood estimation algorithm
may be of limited applicability in practice. Of primary concern is that the likelihood may
be unbounded and the MLE may fail to exist if the sample size n is not sufficiently large.
In the matrix normal case for example, it is straightforward to find examples where the
likelihood is unbounded even though each step of the “flip-flop” algorithm described
above is well defined, i.e. n ≥ max{m1/m2, m2/m1} + 1. Even if the MLE exists,
estimation of high-dimensional parameters often benefits from regularization, either in
the form of prior information on the parameters or a penalty on their complexity or
magnitude. With this in mind, we consider semiconjugate prior distributions for the
array normal model, and their associated posterior distributions.

A conjugate prior distribution for the vector normal model y1 . . .yn
iid∼ vnorm(µ,Σ)

is given by p(µ,Σ) = p(µ|Σ)p(Σ), where p(Σ) is an inverse-Wishart density and
p(µ|Σ) is multivariate normal density with prior mean µ0 and prior (conditional) co-
variance Σ /κ0. The parameter κ0 can be thought of as a “prior sample size,” as the
the prior covariance Σ /κ0 for µ is the same as that of a sample average based on κ0

observations. Under this prior distribution, the conditional distribution of µ given the
data and Σ is multivariate normal, and the conditional distribution of Σ given the data
is inverse-Wishart. An analogous result holds for the array normal model: If

M|Σ ∼ anorm(M0,Σ1 ◦ · · · ◦ΣK /κ0)
Σk ∼ inverse-Wishart(S−1

0k , ν0k)

and Σ1, . . . ,ΣK are independent, then straightforward calculations show that

M|Y,Σ ∼ anorm([κ0M0 + nȲ]/[κ0 + n],Σ1 ◦ · · · ◦ΣK /[κ0 + n])
Σk |Y,Σ−k ∼ inverse-Wishart([S0k + Sk + R(k)R

T
(k)]

−1, ν0k + nk),

where Sk and nk are as in the coordinate descent algorithm for maximum likelihood
estimation, and R =

√
κ0n

κ0+n (Ȳ−M0)× {Σ−1/2
1 , . . . ,Σ−1/2

k−1 , I,Σ−1/2
k+1 , . . . ,Σ−1/2

K }.

As noted above, the scales of {Σ1, . . . ,ΣK} are not separately identifiable from the
likelihood. This makes the prior and posterior distributions of the scales of the Σk’s
difficult to specify or interpret. As a remedy, we consider reparameterizing the prior
distribution for Σ1, . . . ,ΣK to include a parameter representing the total variance in
the data. Parameterizing S0k = γ Σ0k for each k ∈ {1, . . . ,K}, the prior expected total
variation of Yi, tr(Cov[vec(Yi)]), is

E[tr(Cov[vec(Y)])] = E[tr(ΣK ⊗ · · · ⊗Σ1)]

= E[
K∏

k=1

tr(Σk)]

=
K∏

k=1

tr(E[Σk]) = γK
K∏

k=1

tr(Σ0k)/(ν0k −mk − 1).
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A simple default choice for Σ0k and ν0k would be Σ0k = Imk
/mk and ν0,k = mk + 2,

for which E[tr(Σk)] = γ and the expected value for the total variation is γK . Given
prior expectations about the total variance, the value of γ could be set accordingly.
Alternatively, a prior distribution could be placed on γ: If γ ∼ gamma(a, b) with prior
mean a/b, then conditional on Σ1, . . . ,ΣK , we have

γ|Σ1, . . .ΣK ∼ gamma
(
a +

∑
ν0kmk/2, b +

∑
tr(Σ−1

k Σ0k)/2
)

.

The full conditional distributions of {M,Σ1, . . . ,ΣK , γ} can be used to implement a
Gibbs sampler, in which each parameter is sampled in turn from its full conditional dis-
tribution, given the current values of the other parameters. This algorithm generates a
Markov chain having a stationary density equal to p(M,Σ1, . . . ,ΣK , γ|Y), samples from
which can be used to approximate posterior quantities of interest. Such an algorithm is
implemented in the data analysis example in the next section.

In the absence of specific prior information it may be desirable to select the form
of the prior distribution for some of the parameters based on symmetry considerations.
If each Σ0k is proportional to an identity matrix as described above and the prior
mean M0 is set to zero, then the resulting posterior mean estimates of M and Σ are
equivariant with respect to orthogonal transformations of the coordinate axes:

Proposition 3.1. Let Ỹ = {Ỹ1, . . . , Ỹn} = {Y1 × U, . . . ,Yn × U}, where U =
{U1, . . . ,UK} with each Uk an mk ×mk orthogonal matrix. Then

E[M|Ỹ] = E[M|Y]×U

E[Σk |Ỹ] = UkE[Σk|Y]UT
k

In other words, the Bayes estimates based on observing data from a transformed
population are equal to transformed estimates based on observing data from the original
population.

4 Example: International trade

The United Nations gathers yearly trade data between countries of the world and dis-
seminates this information at the UN Comtrade website http://comtrade.un.org/.
In this section we analyze trade among pairs of countries over several years and in sev-
eral different commodity categories. Specifically, the data take the form of a four-mode
array Y = {yi,j,k,t} where

� i ∈ {1, . . . , 30 = m} indexes the exporting nation;

� j ∈ {1, . . . , 30 = m} indexes the importing nation;

� k ∈ {1, . . . , 6 = p} indexes the commodity type;

� t ∈ {1, . . . , 10 = n} indexes the year.

http://comtrade.un.org/�
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The thirty countries were selected to make the data as complete as possible, resulting in
a set of mostly large or developed countries with high gross domestic products and trade
volumes. The six commodity types include (1) chemicals, (2) inedible crude materials
not including fuel, (3) food and live animals, (4) machinery and transport equipment, (5)
textiles and (6) manufactured goods. The years represented in the dataset include 1996
through 2005. As trade between countries is relatively stable across years, we analyze
the yearly change in log trade values, measured in 2000 US dollars. For example, y1,2,1,1

is the log-dollar increase in the value of chemicals exported from Australia to Austria
from 1995 to 1996. We note that exports of a country to itself are not defined, so yi,i,j,t

is “not available” and can be treated as missing at random.

We model these data as Y = M ◦1n +E , where M is an m×m× p array of means
specific to exporter-importer-commodity combinations, and E is an m×m×p×n array
of residuals. Of interest here is how the deviations E of the data from the mean may
be correlated across exporters, importers and commodities. One possible model for this
residual variation would be to treat the p-dimensional residual vectors corresponding to
each of the m×(m−1)×n = 8700 exporter-importer-year combinations as independent
samples from a p-variate multivariate normal distribution. However, to accommodate
potential temporal correlation (beyond that already accounted for by taking Y to be
the lagged log trade values), the p × n residual matrices corresponding to each of the
m × (m − 1) = 870 exporter-importer pairs could be modeled as independent samples
from a matrix normal distribution, with two separate covariance matrices representing
commodity and temporal correlation. This latter model can be described by an array
normal model as

Y ∼ anorm(M ◦ 1n, Im ◦ Im ◦Σ3 ◦Σ4), (1)

where Σ3 and Σ4 describe covariance among commodities and time points, respectively.
However, it is natural to consider the possibility that there will be correlation of residuals
attributable to exporters and importers. For example, countries with similar economies
may exhibit correlations in their trade patterns. With this in mind, we will also fit the
following model:

Y ∼ anorm(M ◦ 1n,Σ1 ◦Σ2 ◦Σ3 ◦Σ4). (2)

We obtain posterior distributions for parameters in both of these models, based on the
prior distributions described at the end of the last section. The prior distribution for
each Σk matrix being estimated is given by Σk ∼ inverse-Wishart(mkImk

/γ,mk + 2),
with the hyperparameter γ set so that γK = ||Y − Ȳ ◦ 1n||2. As described in the
previous section, this weakly centers the total variation of Y under the model around the
empirically observed value, similar to an empirical Bayes approach or unit information
prior distribution (Kass and Wasserman 1995). The prior distribution for M conditional
on Σ is M ∼ anorm(0,Σ1 ◦Σ2 ◦Σ3), where Σ1 = Σ2 = Im for model (1).

Posterior distributions of parameters for both model (1) and (2) can be obtained
using the results of the previous section with minor modifications. Under both models
the m × m × p arrays Y1, . . . ,Yn corresponding to the n = 10 time-points are not
independent, but correlated according to Σ4. The full conditional distribution of M
is still given by an array normal distribution, but the mean and variance are now as
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follows:

E[M|Y,Σ] =
κ0M0 +

∑n
i=1 ciỸi

κ0 +
∑

c2
i

Var[M|Y,Σ] = Σ1 ◦Σ2 ◦Σ3 ◦Σ4 /(κ0 +
∑

c2
i )

where Ỹ1, . . . , Ỹn are the m×m× p arrays obtained from the first three modes of the
transformed array Ỹ = Y ×4 Σ−1/2

4 , and c1, . . . , cn are the elements of the vector c =
Σ−1/2

4 1. Additionally, the time dependence makes it difficult to integrate p(M,Σ |Y) as
was possible in the independent case. As a result, we use a Gibbs sampler that proceeds
by sampling Σk from its full conditional distribution p(Σk |Y,M,Σ−k) as opposed to
the p(Σk |Y,Σ−k) as before. This full conditional distribution is still a member of the
inverse-Wishart family:

Σk |Y,M,Σ−k ∼ inverse-Wishart([S0k + E(k)E
T
(k) + R(k)R

T
(k)]

−1, ν0k + nk × [1 + 1/n]),

where E(1), for example, is the k-mode matricization of (Y −M ◦ 1n) × {Im, Σ−1/2
2 ,

Σ−1/2
3 , Σ−1/2

4 } and R(1) is the k-mode matricization of (M−M0)×{I,Σ−1/2
2 ,Σ−1/2

3 }.
Separate Markov chains for each of the two models were generated using 205,000

iterations of the Gibbs sampler discussed above. The first 5,000 iterations were dropped
from each chain to allow for convergence to the stationary distribution, and parameter
values were saved every 40th iteration thereafter, resulting in 5,000 parameter values
with which to approximate the posterior distributions. Mixing of the Markov chain was
assessed by computing the “effective sample size”, or equivalent number of independent
simulations, of several summary parameters. For the full model, effective sample sizes
of γ0 = tr(Σ1⊗ · · ·⊗Σ4), γ1 = tr(Σ1), . . . , γ4 = tr(Σ4) were computed to be 2,545, 904,
960, 548 and 1,734. Note that γ1, . . . , γ4 are not separately identifiable from the data,
resulting in poorer mixing than γ0, which is identifiable. For the reduced model, the
effective sample sizes of γ0, γ3 and γ4 were 4,281, 1,194 and 1,136.

A Bayes factor for model comparison is not available in closed form, and obtaining
a reliable numerical approximation would be quite challenging. As an alternative, the
fits of the two models can be compared using posterior predictive evaluations (Rubin
1984): To evaluate the fit of a model, the observed value of a summary statistic t(Y)
can be compared to values t(Ỹ) for which Ỹ is simulated from the posterior predictive
distribution. A discrepancy between t(Y) and the distribution of t(Ỹ) indicates that
the model is not capturing the aspect of the data represented by t(·). For illustration,
we use such checks here to evaluate evidence that Σ1 and Σ2 are not equal to the
identity, or equivalently, that model (1) exhibits lack of fit as compared to model (2).
To obtain a summary statistic evaluating evidence of a non-identity covariance matrix
for Σ1, we first subtract the sample mean from the data array to obtain E = Y − Ȳ,
and then compute S1 = (E(1)E

T
(1)). The m × m matrix S1 is a sample measure of

covariance among exporting countries. We then obtain a scaled version S̃1 = S1/tr(S1),
and compare it to a scaled version of the identity matrix:

t1(Y) = log |S̃1| − log |I/m| = log |S̃1|+ m log m.
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Figure 1: Posterior predictive distributions for summary statistics. The gray and black
densities represent the reduced and full models, respectively. The vertical dashed line
is the observed value of the statistic.

Note that the minimum value of this statistic occurs when S̃1 = I/m, and so in some
sense it provides a simple scalar measure of how the sample covariance among exporters
differs from a scaled identity matrix. Similarly, we construct t2(Y) and t3(Y) measuring
sample covariance along the second and third modes of the data array. We include t3
to contrast with t1 and t2, as both the full and reduced models include covariance
parameters for the third dimension of the array.

Figure 1 plots posterior predictive densities for t1(Ỹ), t2(Ỹ) and t3(Ỹ) under both
the full and reduced models, and compares these densities to the observed values of the
statistics. The reduced model exhibits substantial lack of fit in terms of its inability
to predict data that resemble the observed data in terms of t1 and t2. In other words,
a model that assumes i.i.d. structure along the first two modes of the array does not
fit the data. In terms of covariance among commodities along the third mode, neither
model exhibits substantial lack of fit as measured by t3.

Figure 2 describes posterior mean estimates of the correlation matrices correspond-
ing to Σ1, Σ2 and Σ3. The two panels in each column plot the eigenvalues and the
first two eigenvectors of each of the three correlation matrices. The eigenvalues for all
three suggest the possibility of modeling the covariance matrices with factor analytic
structure, i.e. letting Σk = AAT + diag(b2

1, . . . , b
2
mk

), where A is an mk × r matrix
with r < mk. This possibility is described further in the Discussion. The second row
of Figure 2 describes correlations among exporters, importers and commodities. The
first two plots show that much of the correlation among exporters and among importers
is related to geography, as countries with similar eigenvector values are typically near
each other geographically as well. The third plot in the row indicates correlation among
commodities of a similar type: Moving up and to the right from “crude materials,” the
commodities are essentially in order of the extent to which they are finished goods.
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Figure 2: Estimates of correlation matrices corresponding to Σ1, Σ2 and Σ3. The first
panel in each column plots the eigenvalues of each correlation matrix, the second plots
the first two eigenvectors.

5 Discussion

This article has shown how to construct a class of array normal distributions with
separable covariance structure using the Tucker product. The Tucker product and
other related array operations also facilitate Bayesian inference for the array normal
model, both in the construction of prior distributions and in the approximation of
the corresponding posterior distributions. The array normal model can be useful for
describing covariance within the index sets of an array, such as a multivariate relational
dataset. In an example involving longitudinal trade data, we used an array normal
model to describe covariation among the four index sets of the data, and showed that
this four-way model provides a better fit than a two-way matrix normal model, which
includes a covariance matrix for only two of the four modes of the data array.

A potentially useful model variation would be to impose simplifying structure on the
component matrices. For example, a normal factor analysis model for a random vector
y ∈ Rp posits that y = µ + Bz + Dε where z ∈ Rr, r < p and ε ∈ Rp are uncorrelated
standard normal vectors and D is a diagonal matrix. The resulting covariance matrix
is given by Cov[y] = BBT +D2, in which the “interesting” part BBT is of rank r. The
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natural extension to random arrays is Yi = M+Z×{B1, . . . ,BK}+E×{D1, . . . ,DK}
where Z ∈ Rr1×···×rK and E ∈ Rp1×···×pK are uncorrelated standard normal arrays.
This induces the covariance matrix Cov[vec(Y)] = (BKBT

K) ⊗ · · · ⊗ (B1BT
1 ) + D2

K ⊗
· · · ⊗ D2

1. This is essentially the model-based analogue of the higher-order SVD of
De Lathauwer et al. (2000), in the same way that the usual factor analysis model for
vector-valued data is analogous to the matrix SVD. Semiconjugate prior distributions
for the Bk’s and Dk’s include normal and inverse-gamma distributions, respectively.

Alternatively, in some cases it may be desirable to fit a factor-analytic structure for
the covariances of some modes of the array while estimating others as unstructured.
This can be achieved with a model of the following form:

Y = M + Z× {Σ1/2
1 , . . . ,Σ1/2

k ,Bk+1, . . . ,BK}+ E× {Σ1/2
1 , . . . ,Σ1/2

k ,Dk+1, . . . ,DK}
where Z ∈ Rp1×···pk×rk+1×···rK , and E ∈ Rp1×···×pK . The covariance for Y is then

Cov[vec(Y)] = [(BKBT
K)⊗ · · · ⊗ (Bk+1BT

k+1) + D2
K ⊗ · · · ⊗D2

k+1]⊗Σk ⊗ · · · ⊗Σ1

for which

E[Y(j)Y
T
(j)] =

{
aj Σj for j ∈ {1, . . . , k}
bjBjBT

j + cjD2
j for j ∈ {k + 1, . . . ,K},

where aj , bj and cj are scalars that depend on parameters for modes other than j.
Again, semiconjugate prior distributions for the Bk’s and Dk’s include normal and
inverse-gamma distributions. Such a factor model may be useful if some modes of
the array have very high dimensions, and rank-reduced estimates of the corresponding
covariance matrices are desired.

An additional model extension would be to accommodate non-normal data, such as
positive data with skewed errors or discrete data, such as a dynamic binary network.
One straightforward approach to modeling such data would be to embed the array
normal model within a generalized linear model, or within an ordered probit model for
ordinal response data. For example, if Y is a three-way binary array, an array normal
probit model would posit a latent array Z ∼ anorm(M,Σ1 ◦Σ2 ◦Σ3) which determines
Y via yi,j,k = δ(0,∞)(zi,j,k).

Computer code and data for the example in Section 5 is available at my website:
http://www.stat.washington.edu/~hoff.

Appendix

Proof of Proposition 2.1: Let Y = Z×A where the elements of Z are uncorrelated,
have expectation zero and variance one. Using the fact that Y(1) = A1Z(1)B

T where
B = (AK ⊗ · · · ⊗A2) (Kolda 2006, Proposition 4.3), we have

vec(Y) = vec(Y(1)) = vec(A1Z(1)B
T )

= (B⊗A1)vec(Z(1)) = (B⊗A1)vec(Z).

http://www.stat.washington.edu/~hoff�
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The covariance of vec(Y) is then

E[vec(Y)vec(Y)T ] = (B⊗A1)E[vec(Z)vec(Z)T ](B⊗A1)T

= (AK ⊗ · · · ⊗A1)I(AK ⊗ · · · ⊗A1)T

= (AKAT
K)⊗ · · · ⊗ (A1AT

1 )
= ΣK ⊗ · · · ⊗Σ1,

where Σk = AkAT
k . This proves the second statement in the proposition. The first

statement follows from how the “vec” operation is applied to arrays. For the third
statement, consider the calculation of E[Y(1)Y

T
(1)], again using the fact that Y(1) =

A1Z(1)B
T :

E[Y(1)Y
T
(1)] = A1E[Z(1)B

T BZT
(1)]A

T
1

= A1E[XXT ]AT
1 , (3)

where X = Z(1)B
T . Because the elements of Z are all independent, mean zero and

variance one, the rows of X are independent with mean zero and variance BBT . Thus
E[XXT ] = tr(BBT )I. Combining this with (3) gives

E[Y(1)Y
T
(1)] = A1AT

1 tr(BBT )

= A1AT
1 tr([AK ⊗ · · · ⊗A2][AT

K ⊗ · · · ⊗AT
2 ]

= Σ1 tr(ΣK ⊗ · · · ⊗Σ1)

= Σ1

K∏

k=2

tr(Σk).

Calculation of E[Y(k)Y
T
(k)] for other values of k is similar. 2

Proof of Proposition 2.2: We calculate E[vec(X)vec(X)T ] for the case that X =
Y×1 G:

vec(X) = vec(X(1)) = vec(GY(1))
= vec(GY(1)I)
= (I⊗G)vec(Y) , so

E[vec(X)vec(X)T ] = (I⊗G)E[vec(Y)vec(Y)T ](I⊗G)T

= (I⊗G)(ΣK ⊗ · · · ⊗Σ1)(I⊗GT )
= [(ΣK ⊗ · · · ⊗Σ2)⊗ (GΣ1)][I⊗GT ]
= (ΣK ⊗ · · · ⊗Σ2)⊗ (GΣ1 GT ).

Calculation for the covariance of X = Y×kG for other values of k proceeds analogously.
2

Proof of Proposition 2.3: The density can be obtained as a re-expression of the
density of e = vec(E) = vec(Y − M), which has a multivariate normal distribution
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with mean zero and covariance ΣK ⊗ · · · ⊗Σ1. The re-expression is obtained using the
following identities,

||(Y−M)×Σ−1/2 ||2 = 〈E,E×Σ−1〉
= vec(E)T vec(E×Σ−1)
= eT (ΣK ⊗ · · · ⊗Σ1)−1e , and

|ΣK ⊗ · · · ⊗Σ1 | =
K∏

k=1

|Σk |nk ,

where nk =
∏

j:j 6=k mj is the number of columns of Y(k), i.e. the “sample size” for Σk.
2

Proof of Proposition 2.4: We first obtain the full conditional distributions for
the matrix normal case. Let Y ∼ anorm(0,Σ⊗Ω) and Σ−1 = Ψ. Let (a,b) form a
partition of the row indices of Y, and assume the rows of Y are ordered according to
this partition. The quadratic term in the exponent of the density can then be written
as

tr(Ω−1YT ΨY) = tr
(
Ω−1(YT

a YT
b )

(
Ψaa Ψab

Ψba Ψbb

)(
Ya

Yb

))

= tr(Ω−1YT
a ΨaaYa) + 2tr(Ω−1YT

b ΨbaYa) + tr(Ω−1YT
b ΨbbYb).

As a function of Yb, this is equal to a constant plus the quadratic term of the ma-
trix normal density with row and column covariance matrices of Ψ−1

bb and Ω , and a
mean of −Ω−1

bb ΩbaYa. Standard results on inverses of partitioned matrices give the
row variance as Ψ−1

bb = Σbb−Σba(Σaa)−1 Σab = Σb|a and the mean as −Ω−1
bb ΩbaYa =

Σb|a(Σaa)−1Yb. To obtain the result for the array case, note that if Y ∼ anorm(0,Σ1 ◦ · · ·◦
ΣK) then the distribution of Y(1) is matrix normal with row covariance Σ1 and column
covariance ΣK ⊗ · · ·⊗Σ2. The conditional distribution can then be obtained by apply-
ing the result for the matrix normal case to Y(1) with Σ = Σ1 and Ω = ΣK ⊗ · · ·⊗Σ2.
2

Proof of Proposition 3.1: Let Ma and Σa be particular values of M and Σ, and
let Mb = Ma × {UT

1 , . . . ,UT
K} and Σb = {UT

1 Σa,1 U1, . . . ,UT
K Σa,K UK}. Then

||(Ỹi −Ma)×Σ−1/2
a ||2 = 〈Ỹi −Ma, (Ỹi −Ma)×Σ−1

a 〉
= 〈(Yi −Ma ×UT )×U, (Yi −Ma ×UT )×U×Σ−1

a 〉
= 〈(Yi −Ma ×UT ), (Yi −Ma ×UT )×U×Σ−1

a ×UT 〉
= 〈Yi −Mb, (Yi −Mb)×Σ−1

b 〉 = ||(Yi −Mb)×Σ−1/2
b ||2.

From this and the form of the array normal density it follows that p(Ỹi|Ma,Σa) =
p(Yi|Mb,Σb). Under the assumed prior distribution, we have p(Ma,Σa) = p(Mb,Σb)
and so p(Ma,Σa |Ỹ) = p(Mb,Σb |Y). The Bayes estimate of M given observed data
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Ỹ is given by

E[M|Ỹ] =
∫

Ma p(Ma,Σa |Ỹ) dMadΣa

=
∫

Ma p(Mb,Σb |Y) dMadΣa

=
∫

(Mb ×U) p(Mb,Σb |Y) dMbdΣb, as |dMa/dMb| = |dΣa /dΣb | = 1,

=
(∫

Mb p(Mb,Σb |Y) dMbdΣb

)
×U

= E[M|Y]×U.

A similar calculation shows that E[Σk |Ỹ] = UkE[Σk|Y]UT
k . 2
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