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A comparison is made between the various extrema of the Landau expansion of liquid 3He 

derived in a previous paper. As an application the phase diagram is investigated in the presence of 

an external magnetic field assuming that the Hubbard interaction is small as compared to the 

pairing interaction of the BCS-type, and also in zero magnetic field for arbitrary strength of the 

Hubbard interaction. 

1. Introduction 

1.1. Landau expansion 

In the preceding paper 1) we have investigated the Landau expansion for 

liquid 3He in terms of 3 complex vectors ml,  m 2 and m 3 describing the ordering 

of spin pairs with ~t, 1~ and t~, ~t, respectively, for the various orientations of 

the wave vector k. Assuming that the fourth order terms in the Landau 

expansion can be taken to be independent of the magnetic field b and therefore 

can be identified with those at b = 0, the fourth order part can be obtained 

from the generalized Landau expansion that follows from symmetry considera- 

tions and that has been expressed in terms of a 3 x 3 complex ordering matrix 
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A in ref. 2, see also refs. 3, 4 for a review on the theoretical aspects of liquid 

3He. The vectors m 1, m 2 and m 3 are given by their components 

m { = - A l j + i A z j ,  mJ2=Al j+ iA2 j ,  m~=A3j  ( j = 1 , 2 , 3 ) ,  (1.1) 

cf. also eq. (5.2) of ref. 5. 

The free energy per unit volume is given by 

f =  min q~(ml, m2, m3) 
{mi} 

(1.2) 

in which 4)(ml, mz, m3) is expanded up to 4th order terms in the ordering 

parameters ml,  m2, m 3. Decomposing q~ into a part 4)0(ml, m2, m3) depending 

only on the lengths 

mi =_ (~rli . ,,,--*'1/2i ) (1.3) 

of the vectors and a part ~ l (ml ,  m2, m3) depending also on the directions, 

i.e. 

~ (ml ,  m2, m 3 ) ~ o ( m l ,  m2, m 3 ) + ~ l ( m 1 ,  mz, m3), (1.4) 

we have 

2 2 2 4 + 2m 4) q~o(ml, m 2, m3) = ulm I + Uzm 2 + 2u3m 3 + 2v(m~ + m 2 
2 2 2 z 2m2)2 +4vm3(m 1 + m E) + wl(m 1 + m 2 + 

2 2 2 2 2m 4) +Wz(m 2 + m3)(m 2 + m~) + w3(mlm 2 + (1.5) 

q~l(ml, m2, m3) = v{Iml" rail z + Ira2-reel z} + (2v + w;)lm 3 •/'/'/3[ 2 

+4v(Iml-m3l z + Ira=" m3l 2) 
+ (4v - wz)(lm 1.m~l 2 + Im2.m~l 2) 

+ 2 ( 2 o -  w;) Re(m 1-m 2 m ~ . m ~ )  

+ 2 ( 4 o ,  w 2 -  2w3)Re(m 1-m~ m 2 .m~)  

+ w;I . ,1-m=l  2 + w, lml" ., 12 , (1.6) 

cf. eqs. (1.6)-(1.9) of ref. 1. The coefficients Ul,//2, u3 of the second-degree 

part in (1.5) depend on the magnetic field b, and up to quadratic terms ~ b  2 

they are given by 

Ul=~( t+Ac~Tb) ,  u 2 = l ( t - A c r l b ) ,  u3=½(t+2b2B~),  (1.7) 
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where 

t=  ½N(O) T -  T¢ Ac 
L ' 

= 1N(0) ln(1.14/3¢hoJ), 

~2 
7 

B c = 1N(0) 
8 77" ' 

(1.8) 

cf. eqs. (1.10) and (1.11) of ref. 1. In eq. (1.8) Tc is the critical temperature  in 

zero magnetic field, /3 c = 1/(kT¢), N(O) is the density of states at the Fermi 

energy, and ~7 is an asymmetry parameter  in the density of states N(e), i.e. 

N ( E ) = N ( 0 ) ( I + r / e ) ,  for I l<h  ( r i b < 0 ) ,  

which has been introduced in ref. 6 to explain the splitting of the A phase in an 

external magnetic field. The coefficient v = 1 B  c in (1.5) and (1.6) arises from a 

pairing-interaction of the BCS-type and may also contain a shift due to 

strong-coupling effects, the contributions with the coefficients Wl, w2, w3, w~ 

are extra terms arising from a Hubbard  interaction and will be specified later 

on in (1.19) and (1.20). 

In contrast to previous papers1'6-9), we do not take into account a possible 

b-dependence in the coefficients of the 4th order  terms in the Landau 

expansion, such as e.g. in eqs. (1.9) and (1.12) of ref. 1. In ref. 8, in which we 

treated the phase diagram in the absence of spin fluctuations, it was argued 

that this b-dependence may be important  for determining the occurrence of 

certain phases. In fact, in the absence of spin fluctuations there is a big 

symmetry in the problem leading to a large degeneracy of phases. The 

b-dependence in the 4th order  terms provides the symmetry breaking that is 

necessary to distinguish between the various phases. In the present paper,  

however,  due to the spin fluctuation terms with w1, w2, w3, W~ a large part of 

the degeneracy at b = 0 is lifted and neglecting the b-dependence in the 4th 

order  terms does not give rise to problems. 

1.2. One- and two-dimensional solutions of the gap equations 

In ref. 1 we analysed the possible extrema S with order  parameters 

mls , m2s , m3s that are determined by the gap equations 

- -  (mls , mzs , m3s ) = O, (1.9) 
O m  i 

together with the value 

fs ~ (P(mlS mzs, m3s) = ' 2 2 2 (1.10) , 2UlmlS + lu2m2s  + u3m3s 
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TABLE I 

O n e - d i m e n s i o n a l  s o l u t i o n s  S. 

259  

S V e c t o r  ~ 0 I n n e r  p r o d u c t  fs  C o n d i t i o n s  o f  ex i s t ence  

1 2 Wl i U l < 0  ' 2 0 + W l >  0 A 1  m 1 m l -  m~ = 0 -- 4 u~/(2v + 
A 3  m 3 m 3 . m 3 = 0  -u2/(4v+4w1+w2+2w3) u 3 < 0 ,  40+4wl+w2+2w3>O 

2 2 / ( 6 0  + 4w~ + w 2 + w) u 3 < 0,  6 v  + 4 w  I + w 2 + w > 0 R 3  m 3 m 3 • m 3 = m 3 - u 3 

of  the  func t ion  • at  the  e x t r e m a ,  as a func t ion  of  the  ex te rna l  p a r a m e t e r s  of  the  

sys tem such as u 1, u 2, u 3. T h e  va lue  of  the  f ree  ene rgy  f in (1.2)  is d e t e r m i n e d  

by  min imiz ing  fs ove r  the  d i f fe ren t  so lu t ions  S. 

W e  have  c o n s i d e r e d  o n e - d i m e n s i o n a l  so lu t ions  wi th  on ly  one  o f  the  vec to rs  

m l ,  m2, m 3 d i f fe ren t  f rom zero ,  t w o - d i m e n s i o n a l  so lu t ions  wi th  two of  the  

vec to r s  m l ,  m 2, m 3 d i f fe ren t  f rom ze ro  and  t h r e e - d i m e n s i o n a l  so lu t ions  wi th  

m l m z m 3  ~ O. T h e  o n e - d i m e n s i o n a l  so lu t ions  a re  p r e s e n t e d  in t ab le  I ,  in which  

we have  used  the  a b b r e v i a t i o n  w --- 2w 3 + w~. A p a r t  f rom A 1  t h e r e  is a n o t h e r  

so lu t ion  A I '  wi th  m 2 ¢ 0 ,  m 2 " m  2 = 0 and  f A l '  = - ¼ u ~ ( 2 v  + W l )  , which does  

no t  occur  as f A r  > fA1 for  ~/b < 0. F u r t h e r m o r e ,  t he re  a re  two " r e a l "  so lu t ions  

R I '  and  R I '  wi th  

[ m l . m l l  = m~ = -u~/(6o +2wl) (1.11) 

for  R1,  and  a s imi la r  r e l a t ion  wi th  m 1 and  Ul r e p l a c e d  by  m 2 and u 2 for  R I ' .  

T h e s e  so lu t ions  d o  no t  occur  in the  phase  d i a g r a m ,  s ince fRp > lap for  p = 1, 1'. 

In  ref .  1 we have  also t r e a t e d  the  t w o - d i m e n s i o n a l  so lu t ions  wi th  m 3 = 0. F o r  

these  so lu t ions  fs ~ f s ( U l ,  u2) has  the  gene ra l  va lue  

fs(U,, u2) 

- ( 2 v  + W 1 -[- all)uZ2 + (2W 1 + W 2 + W 3 + a12)UlU 2 -- (2v + w 1 + azz)uZa 

4(2v + W 1 + a11)(20 + W 1 + azz ) -- (2w 1 + w z + w 3 + a12) 2 

(1.12) 

and  we have  the  gene ra l  cond i t ions  of  s tabi l i ty  and  ex i s tence  

2 V + W l + a l ~ > O ,  2 v + w l + a z z > O ,  

4(2v + w 1 + a H ) ( 2 v  + w 1 + az2 ) -  (2w I + w z + w 3 + alz )  z > 0 ,  

(1 .13)  

(2w 1 + w E + w 3 + a~2)u 2 - 2(2v  + w I + a22)u 1 > 0 ,  

( 2 W  1 + W z + W 3 + a l 2 ) U  1 - -  2(2v + W 1 "1- a l l ) U  2 > 0 ,  
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TABLE II 

Five two-dimensional solutions S with m 3 = 0. 

s Im~'r,,~l Im:'m~l Im~'m2l I"~'m~l a .  a~ a,~ 

I 0 m 2 0 0 0 v 0 

II 0 0 m a m  2 0 0 0 w'3 

III  0 0 0 rn~m 2 0 0 w 3 

IV m21 m22 0 0 v v 0 

V m~ m22 m l m  ~ m i r a  2 o o w 3 + w ;  

TABLE III 
The two-dimensional solution VI. 

Inner  products 

m l  " rl l  1 r l l  2 • m 2 w 3 m  I • m 2 ~ - - w 3 m  I • r'[l~ 

2 2 
2 v m  2 - ym~  2 v m  1 - y m  2 

Y 4 v 2 _ y 2  Y 4 v 2 _ y 2  + 2 v { I m , ' m , l l r n 2 " m 2 ] }  ~'2 

Parameters 

a n  a22 a12 Y 

y 2v yz v 4v2y  w3w'  3 

4v 2 _ yz 402 _ )2 4v 2 _ ),2 w~ + w~ 

in which the coefficients al l  , a12 and a22 depend on the solution S. The values 

of ax~, al :  and a22, as well as the inner products involving m 1 and m2, are 

presented in tables I I  and III .  

Apar t  f rom these solutions there is a solution I '  with ]ml"m~[ =m~, 
Im2" m2l -- 0, m l  ° m 2 = m l .  m ~  = 0 ,  a l l  = V, a22 : a12 = 0. F o r  r/b < 0  w e  h a v e  

fv > fi, so that I '  does not occur in the phase diagram. Other  solutions which 

occur only under  the condition w 3 + w; = 0 and which have been used in ref. 1 

for the construction of three-dimensional  solutions are not taken into conside- 

rat ion here. Solution I is a solution with a spontaneous magnetization,  as f 

contains a term ~r /b ,  I I  is the so-called two-dimensional solution for the first 

t ime given in ref. 10 in the special case b = 0 (m~ = m2,  u I = u2),  and I I I  is the 

A B M  solutionll) .  In the special case b = 0, solution IV has been referred to as 

the bipolar phaseX°), solution V as the polar  phase and solution VI may be 

regarded as belonging to the so-called axiplanar phase first considered by 

Mermin and Stare as cited in ref. 12. 

For the two-dimensional solutions with m 2 = 0, f s (U~,  u3) has the general 

value 

- ( 4 0  + 4w I + w z + 2 w 3 ) u  2 + 2(40 + 4 w ,  + w a + aa3)uau 3 - 4 ( 2 0  + w,  + a,1)ua3 
fs (Ul ,  u3) = 

4(40 + 4w 1 + w 2 + 2w3)(20 + w 1 + a n ) -  (40 + 4 w  I + w 2 + a13) 2 

( 1 . 1 4 )  
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TABLE IV 

Two-dimensional  solutions S with m 2 = 0. 
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s I,,,, ",,,11 I,.3",-31 I,-1",.31 I-,1.,,,;I a .  ~ .  

V I I  m2t 0 0 0 v 0 

V I I I  0 0 m l m  3 0 0 4v  

and here  we have the condit ions o f  stability and existence 

2v + w 1 + a l l  > 0 ,  4v + 4w~ + w 2 + 2w 3 > 0 ,  

4(4v + 4W 1 + W 2 + 2W3)(2V + W 1 + ala ) -- (4v + 4w I + w 2 + a13) 2 > 0 ,  

(1.15) 

(40 + 4w 1 + w 2 "[- a l 3 ) U  3 - -  (4v + 4w I + w 2 + 2w3)u 1 > 0 ,  

(4v + 4w 1 + w 2 + a13)u I - 4(2v + w I + al l )u  3 > O, 

in which al l  and a13 depend  on the solut ion S. The  values o f  a l l  and a13 , as well 

as the inner  products  involving ma and m3, are presented  in table IV. 

In  the special case b = 0 phase  V I I  reduces  to the so-called e-solut ion 

in t roduced  in ref. 12, and both  solutions V I I  and V I I I  have a spon taneous  

magnet izat ion.  A p a r t  f rom V I I  and V I I I  there  are two solutions with m~ = 0, 

namely  V I I '  with Ira2 m21 2 • = m z , m 3 • m 3 = 17112 • I!13 = I/I 2 • ]g l~ = 0 ,  and V I I I '  

w i t h  [m 2 • m 3 1  = m 2 m 3 ,  m 2 Ill 2 Fn3 • n l  3 I n 2 .  Fig 3 

1.3. Three-dimensional solutions 

In  ref. 1 we have also invest igated the three-dimensional  solutions with 

m l m 2 m  3 ~ 0 under  the two following assumptions  which we believe to cover  

the physically interest ing cases: 

i) The  inner  products  m p . m q  and rap. mq * ( p ,  q = 1, 2, 3) o f  the vectors  

m 1, m2, m 3 can be chosen  to be real. 

ii) The  or ienta t ion o f  the vectors  ma, m2, m 3 satisfy an inertia condi t ion  

expressing a certain rigidity with respect  to variat ions o f  the external  pa rame-  

ters. M o r e  specifically we have assumed that  the Landau  expansion can be 

minimized under  the condi t ions  

mr . m3 mrm3Ar3(m 2, 2 = m 2 ,  

m r • m 3 * = m r m 3 t ~ r 3 ( m z l ,  m 2 ,  m 

(r  = 1, 2 ) .  (1.16) 

Using (1.16) and (1.10) we have de te rmined  the various possibilities S for  the 
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geometrical configuration, i.e. the directions of the vectors m~, m 2, m 3 that 

minimize q~(ml, m2, m3) at fixed values of the lengths ml,  m2, m 3 of the 

vectors. For each geometrical configuration S one can then insert the values of 

the linear products mp.  mq, mp • mq in @(ml,  m2, n13) to obtain a 3-parameter 

function CrPs(ml,m2, m3)  depending on the lengths. The values fs = 

fs(Ul, u 2, u3) for the various solutions can in principle be obtained by minimiz- 

ing • s(ma, m2, m3) with respect to ml,  m2, m 3. Due to the presence of terms 

like Re(m 1 • m 2 m 3 m~) and Re(m I • m 3 m 2 • m~) in eq. (1.6), it is not always 

easy to do this analytically. 

Using the procedure sketched above we have obtained 8 three-dimensional 

solutions I X - X V I  and the absolute values of the inner products are presented 

in table V, which yields in particular the following conditions of existence: 

2 ~ W3 + W; m l m z  f o r  s o l u t i o n  X I  
m3 "~ 20 w 3 

2 2V -- W; mam2 
m3/> -----7 - - - 7 2 v  w 3 , for solution X V I .  

(1.17) 

In table V we presented only the absolute values of the inner products, in table 

VI we present some further details on the signs as they may be relevant for the 

evaluation of the free energy. 

As it is not so easy to evaluate the corresponding values of fs = 

f s (Ul ,  u2, u3), we shall restrict ourselves to the three-parameter functions 

• s(ml, m2, m3) that are obtained inserting the values of the inner products as 

given in table V and table VI into eqs. (1.4)-(1.6).  The three parameter 

functions are then given by 

q~s(ml, m2, m3) = u,m~ + Uzm ~ + 2u3 m2 + (2v + w 1 + ba)m 4 

+(20 + w 1 + b z ) m  ~ + (4v + 4 w  1 + w 2 + 2w 3 + b 3 ) m  4 

2 2 
+(4v + 4w x + w 2 + b 4 ) m l m  3 

2 2 
+(4v  + 4w I + w 2 + b s ) m 2 m  3 

2 2 2 
+(2w I + w 2 + w 3 + b 6 ) m l m  2 - 2 b 7 m 3 m l m  2 , (1.18) 

in which the values of the coefficients bl, b 2 , . . . ,  b 7 depend on the solution S. 

The values are presented in table VII. 

From the solutions presented in tables V-VII ,  solution X for 2v > w~ is the 

BW solution as presented in ref. 8. In the special case b = 0 one has the 

relation m~ = m 2 = 2m~ which indeed is characteristic for an isotropic super- 

fluid13), but for b ~ 0  the values of ml,  m 2, m 3 can be quite different. For 



S E P A R A B L E  INTERACTIONS A N D  LIQUID 3He V 263 

_= 

.e 

.o 

>'2  

o 
e .~  

_= 

o 
_= 
o 

m 

E 

m 

m 

I + 

e q e q  ~ ~ ~ q ~  r a ~  



264  H . W .  C A P E L  e t  al .  

TABLE V I  

S i g n s  o f  i n n e r  p r o d u c t s  f o r  t h r e e - d i m e n s i o n a l  s o l u t i o n s  S. 

S I n n e r  p r o d u c t s  

I X  w i t h  m 3 • m 3 = m32 m 1 • m 2 = - m l m  2 s g n [ 6 o  - w 2 - 2 w  3 - w~] 

X w i t h  m 3 • m 3 = m23 m 1 • m 2 = - m l m  2 s g n [ 2 v  - w~] 

2v - w; 
X I  w i t h i n  3 . m  3=rn23 .... m 1 . m  2 = - m ~  w 3 + w 3  

X I I  w i t h  m 3 • m a = m~ m 1 • m 2 = - r n l m  2 s g n [ 2 v  - w;]  

2 v  - w 3 
X V I  w i t h  m 1 • m 2 = m l m  2 m 3 "  m 3  = - m l m 2  2 v  + w'3 

i 2 2 2 
2v < w 3 the special case b - - 0  leads to m 1 - - m  2 < 2 m  3 which describes an 

anisotropic superfluid. The solutions XI I I  and X I V  can be regarded as three- 

dimensional extensions with m 3 # 0 of the A B M  solution, and solution X I V  

has already been considered in ref. 8. Solution XVI  which has also been 

t reated in ref. 8 can be considered as a three-dimensional extension of the 

solution VII12). For  a more  complete  description of the bifurcations of 

three-dimensional  solutions at lower-dimensional solutions, see fig. 1 at the end 

of ref. 1. Finally, it should be noted that none o f  the solutions I X - X V I  has a 

spontaneous magnetization.  This is clear f rom the apparent  symmetry  in table 

VI  between m I and m 2 corresponding to the ordering of ti' and J,~ spin pairs, 

except for the solutions XV and XV'.  A more  detailed calculation, cf. appendix 

C, shows that the corresponding fxv and fxv, do not contain terms - ~ b .  

1.4. Spin fluctuation parameters 

Due to the large number  of phases it is a very hard task to study the 

complete  phase diagram as a function of external parameters  for arbitrary 

values of the coefficients Wl, w2, w3, w~. In order to get some insight in the 

values of these coefficients we considered in ref. 5 a model  hamiltonian 

consisting of a kinetic energy term, a Z e e m a n  term, a pairing interaction of the 

BCS-type,  and a contact te rm of the Hubba rd  type, cf. eqs. (1 .1) - (1 .4)  of ref. 

1. As a consequence of a theorem due to Bogolubov J r .  14-16), the free energy 

of the model  can be expressed as the minimum of the free energy of a 

reference system taken with respect to the order  parmeters  of the system. The 

reference system is descibed by a hamiltonian containing the kinetic energy, 

the Z e e m a n  term, and the complete  Hubba rd  term, but a bilinear approxima- 

tion to the pairing hamiltonian. Using a per turbat ion calculation for the 

Hubba rd  term in the hamiltonian of the reference system, one can evaluate the 

coefficients Wx, w2, w3, W3 exactly up to a certain order  in the coupling 

constant I of the Hubba rd  hamiltonian. 
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In ref. 5 we evaluated these coefficients up to the order  12. The results are 

given by, cf. eq. (1.13) of ref. 1, 

w 1 = (3.4) ~/3(27rI)Zkv3(½N(0)) 4 , 

w 2 = ( -  13.6) 4 /3(2  ~rI)Zkv3( ½ N ( 0 ) )  4 , (1.19) 

w 3 = w~ = (25.4) 4/3(2~.i)2kF3( ½ N ( 0 ) ) 4  . 

The relation w 3 = w 3 in eq. (1.19) is a consequence of the second order  

perturbation calculation and cannot be expected to hold when (higher) odd 

orders of perturbation are taken into account. In the investigations on the 

phase diagram which will be reported in this paper we shall not insist on the 

precise values of the coefficients w l, w 2, w 3, w~, but we shall assume only 

some global characteristics, such as that the signs of w 1, w 2, w 3, w~ are 

correctly given by (1.19), i.e. 

W I > 0 ,  W 2 < 0 ,  W 3 > 0 ,  W~ > 0 .  (1.20) 

Eq. (1.20) may be plausible in view of the usual considerations about enhance- 

ment which suggest the results obtained in non-vanishing lowest order  should be 

multiplied by appropriate (positive) enhancement  factors. In connection with 

this it can be noted that the spin fluctuation model,  in which the contributions 

from the Hubbard  term are expressed in terms of dynamical susceptibilities 

with the use of certain statistical approximations, leads to the values w I = 

( - 0 . 2 5 ) 2 B c  6, w 2 = (0 .5 )2Bc6 ,  2w 3 = ( - 1 . 2 5 ) ~ B c 6 ,  2w~= ( - 0 . 2 5 ) ~ B c 6 ,  

where 6 is a (positive) parameter  depending on the coupling constant I. The  

signs of these values, which have been derived in ref. 17 for unitary states, do 

not agree with (1.20), and the signs are not affected by considering only terms 

up to the order  I 2. 

In the present paper we shall work out two specific applications with regard 

to the phase diagrams of liquid 3He in the presence of a magnetic field. In 

section 2 we shall address ourselves to the problem of the stability of the phase 

diagram in the absence of spin fluctuations as considered in ref. 8, i.e. we 

consider the problem of determining to which extent this phase diagram will 

undergo qualitative changes, in the presence of a small Hubbard  interaction. In 

this limit it is safe to assume that the signs of w 1, w z ,  w 3 ,  w ~  are correctly given 

by (1.20), and wl, w 2, w 3, w~ can be taken to be small as compared to v. 

Under  these conditions it is shown that the ABM phase does not occur in the 

phase diagram, in contrast to the situation described in refs. 6 and 8. In fact, in 

this case the ABM phase is less favourable than phase VI, as given in table III, 
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which in the absence of spin fluctuations, (w 3 = w~ = 0), is degenerate with the 

A BM  phase. A second problem which is t reated in detail is the case that b = 0, 

also for larger values of the coupling constant I of the Hubbard  interaction. 

This will be done in section 3, where we also assume that the signs of 

Wl, w2, w3, w~ are correctly given by (1.20). Finally, in section 4 we give some 

concluding remarks and we pay also some attention to the so-called profound 

effect18). We also discuss the case that  the coefficients w 3 and w 3 are negative, 

as suggested by the spin fluctuation results of ref. 17, and show that the ABM 

phase can indeed occur under such conditions. 

2. Phase diagram under small perturbations of the Hubbard type 

2.1. Non-occurring phases 

In the introduction we have presented a large collection of solutions of the 

gap equations (1.9), namely A 1 - A 3 ,  I -XVI ,  which, apart from all one- and 

two-dimensional solutions, with one of the vectors ml,  m2, m 3 equal to zero, 

include all three-dimensional solutions with real inner products satisfying the 

inertia condition (1.16). In this section we investigate the possibility of changes 

in the phase diagram as obtained in ref. 8 in the absence of spin fluctuation 

effects, under  a small perturbation of the Hubbard  type. For sufficiently small 

Hubbard  interaction many of these solutions can be ruled out as possible 

candidates for the phase diagram. More  specifically, the following remarks can 

be made: 

i) Considering the case that ~Tb < 0, we have fAl' > fA1, and f r  > fi, as stated 

in section 1, implying that the phases 

AI ' ,  I' 

do not occur for ~b < 0. 

ii) The phases 

A3, R3, IV, XIII,  XIV 

can never lead to an absolute minimum of the Landau expansion. This will be 

proved in appendix A. 

iii) Under  the conditions w 3 > - 2 v  , w ~ > - 2 v ,  which include the 

inequalities (1.20) as a special case, the phases 

V, IX, XI, XlI  

do not occur, as will be shown in appendix B. 
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iv) Finally,  for  sufficiently small values o f  w1, w2, w3, W; satisfying (1.20) 

one  can rule ou t  the phases  

VI I ,  VI I ' ,  VI I I ,  V I I I ' ,  XV, XV' ,  X V I .  

This is shown in appendix  C. 

2.2. Phase  d iagram f o r  one-  a n d  t w o - d i m e n s i o n a l  phases  

Taking  into account  the remarks  ( i ) - ( iv )  we are left with the phases  

A1,  I, I I ,  I I I ,  VI ,  X (2.1) 

and in the r emainder  of  this section we shall compare  the fs for  these solutions 

S. F r o m  table I, we have 

2 
- - U l  (2.2) 

fa~ = 4(2v + w 1 )  " 

Fur the rmore ,  f rom (1.11) and tables I I  and I I I  we have 

( u l  + u 2 )  2 

fI  = - i  5v  + 4 w  l + w 2 + w 3 - v2 / (5v  - w2 - w3) 

(U 1 -1- U2) (U 1 --  U2) 

--  1 0  ( 5 0  + 4 W  1 + W 2 +  W 3 ) ( 5 0 - -  W 2 -  W 3 ) - - O 2  

_ ! (Ul - u2)2 (2.3) 

4 51.) - -  W 2 -- W 3 --  /32/(5 I/ -[- 4 W  1 ql- W2 ..~ W3 ) ' 

f l I  ~" - - 1  (U l  -]- U2)2 1 (Ul -- U2)2 ( 2 . 4 )  

t 4 4 v  - w 2 - w 3 - w ;  ' 4u + 4w I + w 2 + w3 + w3 

1 (ul  + u2) 2 1 (u l  - u2)Z (2.5) 

f / I I  = 4 4V + 4W 1 + W 2 + 2W 3 4 4V -- W 2 -- 2W 3 ' 

1 ( U l  q'- u2)2  

fvi  - 4 4 v  + 4 w  I + w 2 + w 3 + 2 7 0 / ( 2 0  + 3') 

--1_ (Ul -- UZ)2 (3' = W3W;/(W3 + W;)) . (2.6) 
4 4 V - - W  z - w  3 - 2 3 ' v / ( 2 v - 3 ' )  ' 

2 
The  cor respond ing  values of  m~ and m 2 at the min imum can be inferred f rom 

2 Ofs/OUl, 2 = Ofs/OU 2 for  the solutions S = A1,  I, I I ,  I I I  and the relat ions m 1 = m2 

VI.  
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From the conditions (1.13) the first three inequalities are trivially satisfied 

for sufficiently small w~, w2,  w 3, w~,  the fourth inequality yields u I ~< 0 and 

f rom the last one we obtain 

U 1 - -  /g 2 4v - -  W 2 - -  W 3 - -  a12  q- 2 a 1 ~  
- -  ( 2 . 7 )  
u I + u 2 4v + 4w I + w 2 + w 3 + a~2 + 2all  

in which the equality sign corresponds to a possible bifurcation of solution S 

with the A1 phase. Compar ing the values of all  , a12 , as given in tables II ,  I I I ,  

it is easily seen that the right-hand side of  (2.7) is largest for the bifurcation of 

phase I and A1, so that one may anticipate a second-order  transition A1 ~ I at 

the value 

u I - u 2 _ 4 v -  w e -  w 3 (2.8) 

/'/1 -~- U2 4v q- 4 W  1 + W 2 + W 3 

Fur thermore ,  we may have a second order  transition f rom phase VI  to phase I, 

when m 2 • m 2 = - m  2 for phase VI  as ment ioned in eq. (2.20) of ref. 1. Using 
2 

the values of  m 2 • m 2 given in table I I I  we obtain the condition 2vm22 = "Ymx, 

2 0 f v i / O U l  ' 2 0 f v i / O U 2  that are obtained f rom and inserting the values m I m 2 

eq. (2.6), or equivalently f rom (2.3), we find for the second order  transition 

VI---~ I 

2 v [ - 2 ( 2 v  + w l ) u  2 + (2w I + w z + w3)u~] 

= y [ - 2 ( 3 v  + Wl)U a + (2W 1 + W 2 + W 3 ) U 2 ]  . (2.9) 

Compar ing  (2.9) and (2.8) it is easy to show that the transition I---~VI takes 

place at a larger value of u 2 / u l ,  i.e. a smaller value of b, than the transition 

I---~ A1. Hence,  we get the following picture, as given in table VI I I ,  when only 

the phases A1, I and VI and the normal  liquid phase N with ml = m 2 = m 3 = 0 

are taken into account. 

Finally, it can be shown that for sufficiently small values of Wl, w2, w3, w~ 

satisfying (1.20) the phases I I  and I I I  do not occur. In fact, f rom eq. (1.18) with 

m 3 = 0 and b 1 = all  , b 2 = a22 , b 6 = a12 , as given by tables I I  and I I I ,  we have 

~i~, ~ i  = z 2 2 / m 2  ] (2.10) 
- -  m l m 2 [ w  3 - -  v m  2 , 

v y  2 [ 2 y v  '~ z 2 
%1 , vi 4v2 _ y z  ( m2 - mZ)  z + \ w 3  2 v - ~ - y ] m l m 2 .  (2.11) 

Evaluating the right-hand side of  (2.10) at the minimum of solution I I I ,  we 

have 
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TABLE VIII 
Phase diagram for one- and two-dimensional solutions in the presence 

of a small Hubbard interaction. 

Phase Conditions of existence 

ul - u2 < B VI u l < 0  , 0< 
u 1 4- u 2 

u] - u 2 40 - w 2 -  w3 
I u l < 0  , B <  < 

u 1 + u 2 4v +4wl + w 2 + w 3 

4 v - w  E - w  3 < u ~ - u  2 
A1 u~<0, 4o+4w~+w2+w 3 u l + u  2 

(2v - 3'] 4v - -  W 2 - -  W 3 - -  23'0/(20 - 3') 
N u~>0, B=-\2v+3" / 4v+4w1+w2+w3+27v/(2v+3")  

2 2 [  
(I)111 - 41 = m l m  2 

2v - 2w 3 + _ _  

2v + 2w 3 

u~ - u 2 4v + 4w I + W 2 -~- 2W 3 ] 

(2.12) 

as fo l lows f rom the  inequa l i t i e s  2 v y /  ( 2v  - 3') <<- w3, B <<- ( u 1 - Uz) / (u  1 + u2), of  

which  the  first one  is sat isf ied for  w 3, w; > 0, w; < 2v,  and  the  second  one  is the  

ex i s tence  of  cond i t i on  of  p h a s e  I ,  as can be  seen  f rom tab le  VI I I .  

F u r t h e r m o r e ,  us ing the  inequa l i t i e s  2 0 7 / ( 2 v  + 7 )  <~ w3, 2v >i y of  which  the  

first one  is iden t i ca l ly  sat isf ied for  w 3, w; > 0, and  the  s econd  one  fol lows f rom 

tab le  V I I I  for  phase  VI ,  in c o m b i n a t i o n  wi th  the  second  l ine o f  (1.13)  and  the  

fact  t ha t  (u  1 - u 2 ) / ( u l  + u2) mus t  be  pos i t ive ,  we also ob t a in  f m > f w ,  imply ing  

tha t  phase  I I I  does  no t  occur .  By a c o m p l e t e l y  ana logous  l ine of  r ea son ing ,  i .e .  

r ep lac ing  s o m e  of  the  w 3 at  a p p r o p r i a t e  p laces  by  w; ,  one  can also ru le  ou t  

phase  I I .  This  m e a n s  tha t  for  suff icient ly smal l  Wl, w 2, w 3, w 3 sat isfying (1 .20) ,  

the  phase  d i a g r a m  of  the  one -  and  t w o - d i m e n s i o n a l  phases  is c o m p l e t e l y  

d e t e r m i n e d  by  t ab le  V I I I .  

2.3. The B W  phase  

T o  c o m p l e t e  the  phase  d i a g r a m  u n d e r  the  inf luence of  a smal l  H u b b a r d  t e r m  

we mus t  also t ake  in to  accoun t  the  B W  so lu t ion  X given by  (1.18)  and  t ab le  

VI I .  W e  have  

2 2 2 4 4 2 2 (2 .13)  
t/~ X = (u 1 + A u2)m 1 + 2u3m 3 + C l l m l  + C33m3 + C13mlm3 , 

in which  we  have  i n t r o d u c e d  
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Ell = (2v + Wl)(1 + A 4) "~- (2W 1 + W 2 + W 3 + W~)A 2 , 

C13 = (4v + 4w 1 + WE)(1 + h 2) - 212v - w ; l X ,  (2.14) 

C33 = 6v + 4w I + w 2 71- 2W 3 + W~ , A ~ m 2 / m  I . 

The free energy value fx can be expressed as 

fx = rain f ( h ) ,  f(A) = min ~x(m, ,  m3) ,  (2.15) 
ml,m 3 

and the gap equations for solution X are equivalent to O ~ x / O m  ~ =0 ,  0q~x/ 

Om 3 = 0 ,  d f / d h = 0 .  The condition that these equations have a solution 

m l m  3 ~ 0 is given by 

½(1+ A2)+ ½ ( 1 - A  2) U l - - U 2  2u3 All  f u~-u_~--I 

ul ~ u 2 u l  + u2 u~ ¥ 
dCll  

2Cli C13 dA 

dC13 
C13 2633  dA 

= 0 ,  

(2.16) 

from which A may be solved at given values of ul,  u2, u3, /3, Wl, w2, w3, W3, 

To study the first order phase transitions between phase X and the other 

phases VI, I, A1, we have to use the relation fx -- fs with S = A1, I, VI. Here 

fx is given by (1.10), in which m 2 , m~ and A can be solved from the gap 

equations for m 1 and m 3 and (2.16). Furthermore, from (2.2), (2.3) and (2.6) 

we have 

1 2 
f s  = ~ L l U  1 ½ L 2 U l U  2 __ I 2 __ __ ~ f22u2 (2.17) 

in which the constants f11, f l z ,  f22 for the phases S = A1, I, and VI are given by 

1 
phase AI:  f~l = 4 v + 2 w l  , f 1 2 = f 2 2 = 0 ;  

phase I: -x4(f11 +f12 + f 2 z ) =  1[ 5v + 4 w l  + w2 + w3 - v2/(  5 v  - w 2 -  w3)] -1 , 

l ( f l l  q-f22 - - f 2 e )  = 1[  5 v  -- Wz -- w3 -- V2/( 5v  + 4 W l  -1- W2 -1- W3)] -1 , 

1(f l i  - fz2)  = ½v[(5v + 4w I + w z + w3 ) ( 5 v -  w z -  w 3 ) -  vZ] -1 ; 
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phase V I :  I ( L 1  +f12 +f22) = ½14v + 4 w  1 + w 2 + w 3 + 2 y v / ( 2 v  + ,}/)]-1 , 

1 ( f l l  "~ f 2 2 -  f12) = ½14v - w 2 - w 3 - 2 y v / ( 2 v  - y ) ] - l ,  

f l l  = f22- (2.18) 

Using (2.17) and (2.18) we have another  linear relation in m~ and m~ and 

combining it with the gap equations for m 1 and m3, we obtain the condition 

(L, +L2 +LO 
+ ~,(L, + L~ - L2)(u,  - u~)2/(u, + u~) ~ 

+ ½(L~ - LO(u~ - u~ ) / ( , ,  + u2) 

t t  1 - -  b l  2 

½(l+AZ)+ ½(1-)t 2) u , + u  2 

2 u  3 

U 1 + U 2 

u I - u z 2u 3 
½(l+)t z)+ ½(1-A 2) ul"~u  z u l + u ~  

2 C l l  C13 

C13 2C3 3 

(2.19) 

Using (2.16) and (2.19) the first-order transition between BW and S = 

A1, I,  VI  at fixed v, w 1, w 2, w 3, w~ can be determined by solving for each 

A-value with 0 < ,~ < 1, ( u  I - u 2 ) / ( u  1 + u2) and 2U3/(U 1 + U2) f rom (2.16) and 

(2.19). In doing so, the phase S should be chosen such that the value of 

(u 1 - u2) / (u  1 + u2)  is in agreement  with the condition for phase S as specified 

by table VI I I ,  i.e. ( u  I - u z ) / ( u  I + u2)  should lie in the region of the phase 

diagram where S occurs. In the limiting case ,~ 1' 1 we have f rom (2.16) 

(U 1 --  U2)/(U 1 + U 2 ) " ' ~ 0  and 2U3/(U 1 + U2) can be solved f rom (2.19). 

The phase transition between BW and S = VI,  I is a first-order transition, but 

the transition between BW and A1 may be of second order.  At  such a second 

order  transition A and m 3 tend simultaneously to zero,  and f rom the gap 

equations for m~ and m 3 one has the bifurcation condition 

2 u--2 = 4v + 4wa + w 2 (2.20) 

u~ 4v + 2W 1 

Apar t  f rom (2.20) one has the condition d2f/d)t2 > 0 at A = 0, which ensures 

that the BW solution with A---~ 0, m 3 ~ 0 corresponds to a minimum. Consider- 

ing the gap equations at very small values of A and using the condition 

d Z f / d ) t Z >  0 at )t = 0, it can be shown that the BW solution occurs at lower b 

values, for which 2u3 /u  I is larger than the r.h.s, of (2.20). 

Using the derivative 

d a + 0 dm I + 0 dm 3 (2.21) 

d)t  O A Om I d A  O m  3 dl t  

=0 
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and solving dml /dA and dm3/dA from the equations d/dA(Oqb/Om~)= 0 and 

d/dA(O~b/Oma) = 0 one obtains the relations 

d A  2 

02~ + 

0A 2 

o26 a26  24, (  24, ]2  24, ]2  24, 
OmlOA Om30h OmlOm3 \-~ma-O-£/ Om 2 (Om3-~!  Om~ 

OmElOm 2 \OmlOm 3 

(2.22) 

in which ~b = ~x.  Evaluating the second derivatives in (2.22) with (2.14) and 

(2.19) one obtains the condition 

1 -4  d2f u2 2(2wx "]- W2 -]- W3 "[- W;)  

4v + 2 W  1 m l  ~ = --2 - -  + -- C~>0 ,  (2.23) u~ 4v + 2w I 

with 

4(2v - w;) 2 (2.24) 

C - -  4(2v + Wl)(6v +4Wl + w 2 + 2 w  3 + w ~ ) -  (4v + 4 w l  + w2) z " 

On the basis of  (2.23) one can investigate the order  of the transition in the 

limit b ~ 0, and also at the second-order  line between I and A1. In the limit 

b $ 0 we have 2u 3 $ u 1 + u z and with the bifurcation condition (2.20) we 

obtain 2(w 3 + w~) i> C as the condition to have a second-order  transition in the 

limit b $ 0. A t  the second-order  line between I and A1, we have u2/u I = 

(2w~ + w 2 -[- w3)/(40 + 2wx) leading to the condition 2w~ I> C in order  that the 

BW---~ A1 transition is of  second order. Combining the results stated above we 

obtain table IX. 

TABLE IX 

Order  of BW--~ A1 transition. 

Condition for w3, w~ Order  of transition 

2(w 3 + w~) ~< C first order  

2w~ ~< C ~< 2(w 3 + w~) second order  for b ~< bt, 

first order  for b/> b t 

2w~ ~> C second order  
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2.4. Phase  d iagrams  

We now present some phase diagrams in the case of a small Hubba rd  

interaction. The phase diagrams are plotted in the xy-plane,  in which x and y 

are defined by 

- t B  c - b B  c u 1 - u 2 _ Y 2u3 2y 2 
-~ - -  - -  - 1 - - -  (2.25) x ~  2 2 , Y-= 

Ac~ / Ac~ 7 U 1 -~- U 2 X ' U l  -I- U2 X 

In figs. 1 -4  we present  the phase diagrams for the values w I = 0, w 1 = 0.03v, 

w 1 = 0.050, w I = 0.10v, taking w 2 / w  I = - 4  and w 3 / w  ~ = w~/w 1 = (25.4) /(3.4) ,  

in accordance with the second-order  results of (1.19). The second-order  phase 

transitions have been indicated by solid curves and the first-order transitions by 

dashed curves. The second-order  lines between VI and I and between I and A1 

have been obtained from table VI I I ,  the second-order  line between BW and 

A1 as far as it occurs has been found from (2.20), and the first-order lines 

between BW and S = V I ,  I, A1 have been evaluated from (2.16) and (2.19). In 

terms of normal  tempera ture  and magnetic field variables, i.e. t and b, the 

phase transition lines have much larger slopes, as the y coordinates have to be 

multiplied by - ( A c r l ) / B  c and the x coordinates by the much smaller factor 

( A~rl)Z/ B c. 

Fig. 1 is the phase diagram in the absence of spin fluctuations which has been  

presented in ref. 8. In this case there is no phase I, and phase VI  is degenerate  

with other  two-dimensional phases such as I I  or III .  When one considers phase 

II ,  the transition between BW and II  is of second-order  at sufficiently large x 

and there is a tricritical point6'8), with y / x  = 0.922, y2/x  = 0.092, )t = 0.202, at 

which the transition becomes first-order. When one chooses another  (degener- 

ate) two-dimensional phase the transition between BW and this phase is always 

first-order, and the point y / x  = 0.922, yZ/x = 0.092 separates a regime of 

first-order transitions without latent heat  f rom a regime of first-order transi- 

tions with latent heat. Fur thermore  for y values smaller than the one at the 

critical point,  the value of A remains constant along the first-order line. Apar t  

f rom the critical point,  there is a critical endpoint  of y -  0.05, x -  0.05, where 

the second order  line between A1 and the two-dimensional phase mee t s  the 

first order  lines between BW and the two-dimensional phase and between BW 

and A1. On the first-order line between BW and A1, the A value decreases 

f rom 0.202 at the critical end point to A -  0.14 in the limit y ~ 0. 

In fig. 2 we have plot ted the phase diagram for a relatively small value 

w~ =0 .03v .  In this case phase VI  is no longer degenerate  with the two- 

dimensional phase II  and the A B M  phase I I I ,  but the difference between these 

phases may be rather  small and not so easy to detect. Apar t  f rom this, phase I 

has appeared  in a rather  limited area of the phase diagram. There  is a critical 
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', A1 

'\" 01~ 

o'.~ 02 ~i  o -oi~ 

Fig. 1. Phase diagram in the xy-plane in the absence of  a Hubbard interaction. The solid curves 

are second-order transitions, the dashed curves first-order transitions. 

, \ \  , A, 

O, tS / 

_ " 
0.5 0.2 0,t 

Fig. 2. Phase diagram in the case that w 1 = 0.03v, w2/w I = - 4 ,  w3/w I = w~/wl = (25 .4) / (3 .4) .  The 

solid curves are second-order transitions, the dashed curves first-order transitions. 
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end point at y - 0.11, x ~ 0.14 at which the second order line between VI and I 

meets the first order lines between BW and VI, and between BW and I. There 

is another critical end point at y - 0.04, x - 0.05 at which the second order line 

I---~ A1 meets the first order lines BW---> I and BW---> A1. 

In fig. 3 we have given the phase diagram for a slightly larger value 

w~ = 0.05v. The phase diagram is analogous to the one for w~ = 0.03v, apart 

from the fact that at small values of y the transition between BW and A1 is of 

second order. There is a tricritical point at y -  0.03, x -  0.03, at which the 

second-order line BW---~ A1 changes into a first-order line. Apart from that 

there are two critical end points, one at y - 0.05, x = 0.06 with regard to the 

phases BW, I and A1, and another one at y -0 .13 ,  x - 0 . 2 0  with regard to the 

phases BW, VI and I. 

In fig. 4 we have presented the phase diagram at w~ =0.10v. Here the 

transition between BW and A1 is always of second order and at y~0 .10 ,  

x ~ 0.13 there is a bicritical point at which the two second-order lines between 

I and A1, and between BW and A1, meet the first-order line between BW and 

I. Finally at y - 0 . 1 7 ,  x~0 .40 ,  there is a critical end point at which the 

second-order line VI---~ I meets the first-order lines BW---~VI, and BW---~ I. 

As a conclusion one may state that the phase diagram obtained in ref. 8 with 

phase VI as the two-dimensional phase remains qualitatively the same under 

small perturbations of the Hubbard type, apart from the occurrence of phase I 

in a very small region of the phase diagram. For slightly larger values of the 

~ ~ / ~ "  \I ,  3/ 

15 W ' ?  L 

o'-5 d.z o'.i o -d.~ " 

Fig. 3. P h a s e  d i a g r a m  in the  case tha t  w 1 = 0 .050,  w 2 / w  1 = - 4 ,  w 3 / w  1 = w '3 /w ~ = ( 2 5 . 4 ) / ( 3 . 4 ) .  The  

so l id  curves  a re  s e c o n d - o r d e r  t r ans i t ions ,  the  d a s h e d  curves  f i r s t -order  t rans i t ions .  
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Fig. 4. Phase diagram in the case that wl = 0.10v, w2/w 1 = -4, w3/w ~ = w'3/w ~ = (25.4)/(3.4). The 
solid curves are second-order transitions, the dashed curves first-order transitions. 

Hubba rd  interaction the first-order BW---> A1 transition changes into a second- 

order  transition. On the other  hand,  considering small negative values of 

w3, w~, the phase diagram with phase I I I  for w~ > w 3 and with phase I I  for 

w~ < w 3 will remain qualitatively the same as the one presented in ref. 8, see 

also the discussion at the end of section 4, but negative values of w 3, w~ are not 

in agreement  with the signs in (1.20) obtained by second-order  per turbat ion 

t rea tment  of  the Hubba rd  interaction. 

3. Phase diagram for b = 0 

In the previous section we have shown that in the presence of a sufficiently 

small Hubba rd  interaction many  of the solutions A 1 - A 3 ,  I - X V I  do not occur. 

In fact, we showed that  one only needs to take into account the phases A1, I, 

VI  and X for a qualitative description of the phase diagram. For b = 0, 

however,  there are many  simplifying features. In this section we study the 

phase diagram for b = 0 also for larger values of  Wl, w2, w3, w~ under  the 

restrictions 

w 2 < 0 ,  w 3 > 0 ,  w ~ > 0 ,  q = - - - w 2 / w 3 < l .  (3.1) 
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The first three inequalities in (3.1) express the assumption that the signs of 

w2, w3, w~ are correctly given by (1.20) and q < 1 is well obeyed in a large 

range of parameter values including the ones in (1.19). 

3.1. Free energy of  phases at b = 0 

We now present a list of the free energies of the possible phases at b = 0 

together with their regions of existence in the space of spin fluctuation 

parameters satisfying (3.1). In section 2 we mentioned that the phases 

AI' ,  I' 

cannot occur for ,/b < 0. For ,/b = 0 these phases are degenerate with the 

phases A1 and I respectively. Here we only consider the phases that pertain for 

infinitesimal ~b < 0. Furthermore it was shown in appendices A and B that the 

phases 

A3, R3, IV, IV' V, IX, XI-XIV 

do not lead to an absolute minimum of the Landau expansion under the 

condition (1.20) or (3.1). This is so for b ~ 0 ,  but for b = 0  phase XI is 

degenerate with phase X at 2v < w~, and phase XIV is degenerate with A1 for 

40 .< w 2 + 2w 3. From the remaining phases, phase VII is degenerate with VII' 

and phase VIII is degenerate with VIII' at b = 0; cf. also eqs. (C.8) and 

(C.10). When both phases XV and XV' exist, phase XV is favorable with 

respect to XV' for r /b<0 ,  cf. eq. (C.13), but for b = 0  both phases are 

degenerate, and phase XVI is degenerate with VI at b = 0. Finally, comparing 

eqs. (2.4) and (2.5) with (2.6), it is clear that for 7/b = 0 (u 1 = u2) 

f ,  > fvi ,  > fvi.  (3.2) 

Hence, we are left with the phases 

A1, I, VI, VII, VIII, X, XV . (3.3) 

All these phases S exist under the condition u < 0 ( U  1 = U 2 ~---U 3 ~ U ,  b = 0), 

together with (3.1) and some additional conditions which we denote by C s > 0 

depending on the type of solution. The free energy of the different phases can 

be expressed as 

2 

- u  (N s > 0) ,  (3.4) fs= us 
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and in table X we present N s and C s for the phases (3.3), and also for the 

phases which are degenerate at b = 0, but will not occur for ~b < 0. NA1 has 

been given in eq. (2.2), and N I and Nvt follow from (2.3) and (2.6). C I = 0 

describes the bifurcation at b = 0  between the phases I and A1, the first 

condition Cvi = 0 decribes the bifurcation at b = 0 between the phases VI and 

I, cf. table VIII ,  and the second condition C w = 0 the bifurcation at b = 0 

between the phases XVI and VII,  cf. eq. (C.17). Nwi and Nvm can be inferred 

from (1.14) and table IV. Cvn = 0  is the bifurcation at b = 0  between the 

phases XVI  and VII  and C v i i i  = 0 is the bifurcation condition at b = 0 between 

VII I  and A3, which, however, does not occur in practice. N x and Nxi can be 

found taking the minimum of (1.18) with u~ = u 2 = u 3 = u, and b 1 . . . . .  b 7 as 

given by table VII  for the solutions X and XI. The condition C x = 0 for 

2v < w~ follows from the requirement that m ] > 0, whereas solution XI exists 

under the condition 2w 3 -t- 3w~ - 20 > 0 which is automatically satisfied when 

C x > 0 and w~ > 2v. Finally, Nxv follows directly from eq. (C.13) of appendix 

C, and Cxv = 0 turns out to be important for determining the phase diagram at 

b = 0 .  

Remark. For the sake of completeness we also list the denominators Ns, 

together with the degenerate solutions at b = 0 for the solutions which do not 

occur under the condition (3.1), cf. table XI. For these (degenerate) solutions 

TABLE X 

P o s s i b l e  p h a s e s  S u n d e r  t h e  c o n d i t i o n  ( 3 . 1 )  a t  b = 0,  t o g e t h e r  w i t h  t h e  d e g e n e r a t e  p h a s e s ,  t h e  

d e n o m i n a t o r s  N s a n d  a d d i t i o n a l  c o n d i t i o n s  o f  e x i s t e n c e  C s > 0. 

S Degenerate phase N s C s 

A I  AI ' ,  X I V  1) 8v + 4w 1 

I I '  5 v  + 4 w  1 + W 2 ~- W 3 -- U2/(5U -- W 2 -- W3) 

VI  X V I  

V I I  

V I I I  

X 

X V  

2 y v  
4v + 4w I + w 2 + w 3 + 2v + 

8v -- w 2 -- 2v¢ 3 
V I I '  4 v + 4 w  l + w  2 + w  3 +  8 v - w  2 - 2 w  3 

v n I '  8 v  + 4 w  1 + w ~  1 ( 4 v  + w 2 - 2wa) 

XI  2) 4v  + 4 w  I + w 2 + w 3 + w~ 

(w 3 + w~ + 12o - w;I) 2 

X V '  

W 3 

2v + 3w 3 + 2w;  + 14v - 2w;I  

~ v  + 4 w  1 + w 2 + ~w 3 

4v - w 2 - W 3 

2 y v  
4 v  - w 2 - -  W 3 2V -- 

8w~v 
S v - w  2 - w  3 2 o + w ~  

8 w ~ v  } 
-{Sv - w 2 - w 3 - 2v--'-C~w~ j 

w 3 - 2v 

2w 3 + 2 w ~ -  v 2) 

( w 3  - v ) ( g v  - w 2 - w 3 )  - 3 v  2 

1) under  the  condi t ion 4v < w 2 + 2w 3. 

2) under  the  condi t ion 2v  < w~. 
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TABLE XI 
The remaining solutions S at b = 0, together with the degenerate 

solutions and the denominators N s for the free energies 

S Degenerate solutions N s 

R1 RI', IX (6v < w 2 +2w 3 + w~) 12v +4w 1 
II XII (w~<2v) 40+4Wl+W2+W3+W~3 
III A3, XIII (w 3 < 20), 4v + 4w 1 + w 2 + 2w 3 

XIV (w2 + w3 < 4v) 
IV IV', XII (w~>2v) 6u + 4w 1 + w 2 + w 3 
V R3, IX (60 > w 2 + 2W 3 + W~) 6v + 4W 1 + W z + 2W3 + W; 

we have  no t  i nves t iga t ed ,  h o w e v e r ,  which  so lu t ion  will be  the  mos t  f a v o r a b l e  

one  for  ~Tb < 0. 

T h e  t ab les  X and  X I  con ta in  the  c o m p l e t e  i n f o r m a t i o n  on  the  d e n o m i n a t o r s  

N s for  all so lu t ions  S at  b = 0, i n d e p e n d e n t  o f  the  va lues  of  the  spin  f luc tua t ion  

p a r a m e t e r s .  F r o m  the  so lu t ions  p r e s e n t e d  in t ab le  XI ,  the  so lu t ions  R1,  R I ' ,  

A3 ,  R3,  IV, X I I I  and  X I V  can neve r  occur ,  see  also a p p e n d i x  A .  

3.2. ,  Phase diagram at b = 0 

In  o r d e r  to  desc r ibe  the  p h a s e  d i a g r a m  we i n t r o d u c e  the  quan t i t i e s  

Z ~- 1 W 3 1 V  Z t ~ 1 ¢ , ~w3/v, -qz=--½w2/v, (3.5)  

w h e r e  we  t ake  z > 0 ,  z '  > 0 ,  0 <  q < 1, in a g r e e m e n t  wi th  (3 .1) .  W e  first show 

tha t  phase  A1  will no t  occur  u n d e r  these  cond i t ions .  Nex t  we inves t iga te  the  

phases  I ,  V I I ,  V I I I  and  XV, for  which  N s does  no t  d e p e n d  on  z ' ,  and  finally the  

two phases  V I  and  X wi th  d e n o m i n a t o r s  N s d e p e n d i n g  on  z, z '  and  q will be  

s tud ied .  

Phase A1. C o m p a r i n g  A 1  with  V I I I  and  XV, we have  

fA1 < fvIII ----~ 40 "t- W 2 -- 2W 3 > 0-'-'~ 2: < (1 + l q ) - 1  < 1 ,  (3 .6)  

2 
fA1 < f x v  ' ' '~ 8 v  --  W2 --  3W3 < 0 - - - 2 < ( 1  - 3q)z .  (3.7)  

Eq.  (3 .6)  impl ies  tha t  for  z > 1, w h e r e  V I I I  exis ts ,  we canno t  have  A1 .  Eq.  

(3 .7)  c anno t  be  sat isf ied for  0 < z < 1, and  if  X V  does  no t  exist  for  z < 1, we 

have  f x v  > f v n ,  so tha t  A1  does  no t  occur  at  b = 0. 

Phases I, VII, VIII, XV. Using  the  resul ts  of  t ab le  X it is s t r a igh t fo rward  to  

show tha t  
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I (N  I -  Nxv)/V = -½F(z) / (5  + ( q _  1)z ) ,  (3.8) 

½ (Nvi I - Nxv ) / v = - 4 F(z) / (4 + ( q + 2) z ) ,  (3.9) 

21- ( N v i i i  - -  N X v ) / V  = -- ]F(z) / ( (q  + 2)z - 2 ) ,  (3.10) 

where 

F(z) = ( 1 -  q)z z -  ½ ( 6 -  q)z + 2 .  (3.11) 

For  every q with 0 < q < 1, F(z) has two zeros z_ and z+ which are explicitly 

given by 

_ { 1 ( 6 - q ~  2 2 }l/z 
1 6 - q  +_ \ ~ - q /  1 qJ 

z+ 4 i ~ q - , (3.12) 
r 

so that in particular - 1  + X / 3 < z _  < 1 ,  z+ > 2 / ( 1 -  q). It is clear that the 

condition Cxv > 0 is equivalent to F(z) < 0. F(z) < 0, together  with the condi- 

tions C I > 0 and Cvm > 0, implies that N I > Nxv , Nvi I > Nxv , Nvn I > N x in 

eqs. (3 .8)- (3 .10) ,  so that phase XV will be favorable in comparison with the 

phases I, VI I  and VI I I  for z < z < z+. For  z > z+ the conditions C I > 0 and 

Cxv > 0 do not hold and we can only have the solutions VI I  and VIII .  It  is easy 

to see that Nwn  < Nvi I f rom eqs. (3.9) and (3.10), so that phase VI I I  will be 

more  favorable for z > z+. For 0 < z < z_ only the solutions I and VII  exist, 

and f rom (3.8) and (3.9) we have Nvi I < N I for z < 1, so that phase VII  will be 

more  favorable for 0 < z < z_.  

As far as the phases I, VII ,  V i l l i ,  XV are concerned,  we have the following 

picture. Phase I does not occur, phase VII  occurs for 0 < z < z_,  phase XV for 

z < z < z+ and phase VI I I  for z > z+. 

Phases VI and X. From table X it is straightforward to derive the following 

expressions: 

½(Nx-N×v) /V  = z ' -  1, 

½(N x - Nvni) lv  = z' - 1 + 
4 F(z) 

3 ( 2 +  q)z - 2 
-= z ' ) ,  

1 z'((z + 1) 2 -  3) + z ( z -  2) _ 1 a(z,  z') 
½ ( N v I  - N x v ) / V  = 3 z + z ' +  z z '  3 z + z ' +  z z ' '  

(3.13) 

(3.14) 

(3.15) 
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½ ( U v i  - N x ) / V  - z + 1 [(z '  + 1)(z + 1) - 3z '2 - -  1] 
Z + Z' + ZZ' 

_~ (z  + 1)/3(z,  z ' )  

Z + Z'  + ZZ'  ' 
(3.16) 

z[2 - (1 - l q ) z ( z '  + 1)] 2 y ( z ,  z ' )  (3.17) 
I ( N v I  --  N v I I ) / O  = (2(1 + ½q)z ) ( z  + z '  + z z ' )  = z + z '  + z z '  " 

From (3.13) we see that X can only occur for z '  < 1, and XV only for z '  > 1. 

Using (3.15) and (3.16) it is clear that we may have phase VI  under  the 

condition /3(z, z ' )  < 0 for 0 < z '  < 1, and a ( z ,  z ' )  < 0 for z '  > 1. Both condi- 

tions imply that z ~< 1, so that there cannot  be a phase transition between VI 

and VII I .  F rom eq. (3.17) and z < z_ we find that phase VI I  may only occur 

for z '  > 1, so that there is no phase transition between X and VII .  

We can now discuss the possible phase transitions. For 0 < z < 1, 0 < z '  < 1, 

the only possible phases are X and VI  and there is a first-order transition which 

is given by / 3 ( z , z ' ) = 0 ,  0 < z ' < l .  For 0 < z < l ,  z ' > l ,  we can have the 

phases VI,  VI I  and XV. Phase VI  is most  favorable for a region containing 

z ' > ½ ,  z = 0  and z ' = 1 ,  z < l ,  and XV is most  favorable for a region 

containing 1 < z < z + , z '  > 1. Phase VI I  will actually occur, since a ( z ,  z ' )  > 0 

for z = z_ at sufficiently large z' .  There  is a second-order  transition between 

VII  and X V  at z = z_,  a first-order transition between VI and VII  at 

y(z,  z ' )  = 0, and a first-order transition between VI and XV for a ( z ,  z ' )  = O. 

Note  that y(z,  z ' ) =  0 corresponds to C v .  = 0, so that y(z,  z ' ) =  0 describes 

also the second-order  transition between XVI  and VII .  For  z > 1, z ' >  1 the 

only possible phases are XV and VI I I  and there is a second-order  transition at 

z = z+. Finally, for z > 1, 0 <  z '  < 1, we have only X and VII I ,  and there is a 

first-order transition at 6(z, z ' )  = 0. 

On the basis of the considerations given above we have obtained the phase 

diagram at b = 0 under  the condition (3.1), as given in fig. 5. The phase 

transition lines ~/= 0, a = 0, /3 = 0, 6 = 0, z = z+, z -- z_ have been indicated 

in this figure. The transition line z ' =  1 between X and XV is a first-order 

transition, since the vector  m 3 changes discontinuously f rom a real vector  to a 

vector  with m 3 • m 3 = 0 ,  although the lengths m 1, m 2, m 3 of the order vectors 

are continuous at this transition. Fig. 5 contains also the special points P, Q, R. 

At  the critical end point P, the second-order  line between XV and VII  meets  

the first-order lines between XV and VI  and between VI  and VII .  When  phase 

VI,  however ,  is replaced by the degenerate  phase XVI ,  P becomes a bicriti- 

cal point,  at which the first-order line between X V I  and XV meets  the second- 

order  lines between XV and VII  and between XVI  and VII .  Q is always a 
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Fig. 5. Phase diagrams at b = 0 for fixed q = -  ½wz/v, 0< q < 1, and positive z = ½w3/v, z '= 
½ w'3/v. The dashed lines are second-order transitions and the solid lines are first-order transitions, 
P and Q are critical end points and R is a triple point. The dotted lines are the continuations of 

a =0 and 3,=0. 

critical end  poin t  at which the second-order  l ine be tween  VI I I  and  X V  meets  

the f irst-order l ines be tween  X and  X V  and  be tw e e n  X and  VI I I ,  and  R is a 

tr iple po in t  at which three  f irst-order l ines be tween  X and  VI,  VI  and  XV, and  

X V  and  X come together .  

3.3. Phase diagram f o r  b ~ 0 at the triple po in t  z = z '  = 1 

W h e n  an  ex te rna l  magne t i c  field is t aken  in to  account ,  the s i tua t ion is more  

compl ica ted  and  o the r  phases  such as I and  A1 may  appear  in the phase  

d iagram.  As  an example  we shall t reat  the phase d iagram as a func t ion  of 
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t empera ture  and magnetic field at the triple point R (z = z ' =  1), where the 

phases X, XV and VII  are in equilibrium at b = 0. 

In the case that z = z '  = 1, it can be shown that only the phases X, I, VI  and 

A1 can occur in the phase diagram for b ~ 0, see appendix D for some details. 

We now first consider the BW solution X. From the explicit expression for ~x  

that follows f rom (1.18) and table VII ,  one obtains the following gap equa- 

tions: 

2 
ml{U 1 + (4V + 2 w l ) m  ~ + (2w 1 + w 2 + w 3 + w3)m 2 + (4v + 4w 1 + Wz)m~} 

2 i 2 
m 2 { u  2 + (4v + 2 w 1 ) m  2 -t- (2w I + w 2 + w 3 --t- w 3 ) m  1 + (4v  + 4 w  I + w2)m23} 

= 0 ,  (3.18) 

2 i 2 
m 3 { 2 u  3 + (4v + 4w 1 + w 2 ) ( m  ~ + m2)  + 2(6v + 4 w  I + w 2 + 2 w  3 + w3)m3} 

- - 0 .  

2 
Due to the fact that ~x  does not contain a te rm ~ m a m l m  2 in the special case 

z '  = 1, we must consider a BW phase with m l m 2 m 3  ~ O, and a different phase 

( B W ' )  with m E = 0 ,  m l m  3 ~ O. 

In the case that mlmEm3 ~ 0 we obtain 

2 
-(m21 - m 2 ) v  = y -(m21 + m ~ ) v  1 

U l " ~ U  2 X ' Ul-I-U 2 = 1---0 1 +  , 

2 
- -m3o _ 1 

U 1 -Jr- U 2 40 1 - 4 (3.19) 

and, since 2 m 2 ~ 0, one has the condition 

Y ~ O ( I + Y - ~ )  ' x  (3.20) 

in which the equality sign describes the bifurcation to the phase B W '  with 

m E = 0. Inserting (3.19) in (1.10), we obtain 

 .wo 1 1 l ( y ;  
(u 1 + u 2 )  2 -  80 + 20 x 10 - ~  . (3.21) 

On the other  hand,  for m 2 - - - -0  one finds 
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5 y yZ 
2 - -  - 2  - - 9 - -  

- - m l v  1 ( y y 2 )  2 - m 3 v  2 x x 
- - = 2 - - 3  2 + 3 - + 2 - -  

X X ' U 1 + U 2 U 1 + U 2 9 2  
(3.22) 

leading to the result 

fBw ,V  13 l y 3 { y ' ~  2 5 y2 1 y3 9 / v 2 \ 2  

( u ~ + u 2 )  2 -  368 23 x 92 ~ x ]  + 92 x 23 x 2 92 ~ x }  " 

(3.23) 

For  the other  phases A1, I and VI, one has from (2.1), (2.3) and (2.6) 

y; 
(u 1 + u2)2 - - ~-~ 1 + , (3.24) 

fxv 1 l y 7 ( y )  2 

(u x + u2) 2 - 27 54 x 108 ' (3.25) 

l(y)  
(u 1 + u2) 2 - 80 4 " (3.26) 

From the results (3.21), (3.23)-(3.26)  one can work out table XII of phase- 

transition lines. 

The phase diagram in the special case z = z '  = 1 has been plotted in fig. 6. 

The phase diagram presented in fig. 6 contains a bicritical point at x = 2, y = 1, 

where the two second-order lines between I and A1, and between (BW)'  and 

TABLE XII 

Phase-transi t ion lines in the special case that  z = z '  = 1 

Order  of  

Phase transition transition Transi t ion line 

VI--~ I 

I---~ A1 

BW'--~ A1 

BW-'-~ B W '  

BW---~ I 

BW'---~ I 

2 y= ~x 

2 y=½x, x>Za 

2 5x = 18y 2 +4y, x< 32 

2 ~x =y - ~y2 

(y~)2 1 y2 
_ __ -]- 

1 2 x  

17 62 y 
1 + 

972 243 x 

1 (1-20Y)~=0 

243 \ x ]  9 x 

+~ + =o 
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Fig. 6. Phase diagram in the case that  w l =  iv ,  w 2 = - v ,  w3= w3=2v. The solid curves are 

second-order  transitions, the dashed curves first-order transitions. 

A1 meet  the first-order line between BW'  and I, and a critical end point at 

x - 0 . 9 5 ,  y - 0 . 9 5 ,  where the second-order line BW--->BW' meets the first- 

order  lines BW---> I, BW'  ---> I. This critical end point can only exist for w~ = 2v 

and for all other  values w~ # 2v there is only one BW phase with m l m 2 m  3 v ~ O. 

4. Concluding remarks 

In a sequence of papers, cf. also refs. 7, 8, 5, 1, we have presented a 

systematic study of the phases that can occur in liquid 3He in the presence of a 

magnetic field and taking also into account the contributions from a contact 

term of the Hubbard  type. This has been done on the basis of the Landau 

expansion (1 .4)-(1 .6)  in terms of the 18 real order  parameters,  i.e. the three 

complex vectors ml,  m 2, m 3 describing the ordering of spin pairs ~t, 1~, and 

1'~, $1', respectively, with explicit values of the coefficients. The coefficients 

Ul, u2, u 3 of the second-degree part have been given in eq. (1.7), the coeffici- 

ent o in (1.5), (1.6) arises from a pairing interaction with l =  1 of the 

BCS-type, and the coefficients w 1, w 2,  w 3, w~  are the contributions from spin 

fluctuations. In eq. (1.19) we have presented the explicit results for 

Wl, w2, w3, w~ at b = 0 up to order  12 which have been obtained in ref. 5 on 

the basis of a second-order perturbation calculation of the Hubbard  inter- 

action. 

As the analysis of the 18 order  parameter  problem is a very complicated 
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task, we have assumed that the inner products of the vectors ml, m2, m 3 can be 

chosen to be real and furthermore we have applied a so-called inertia condition 

(1.16) which expresses a certain rigidity of the geometrical configuration of the 

vectors ml, m2, m 3 with respect to changes in external parameters, such as 

temperature, magnetic field and pressure. In this way we have obtained 

one-dimensional solutions R1, RI ' ,A1,  AI',A3, in which only one of the 

vectors ml, m2, m 3 is non-vanishing, two-dimensional solutions I-VIII with two 

non-vanishing vectors, as well as three-dimensional solutions IX-XVI for 

which all three vectors are different from zero. 

As it turned out to be too complicated to investigate the phase diagram on 

the basis of the complete Landau expansion for arbitrary values of the 

coefficients wl, w2, w3, w3, we have used the second-order results for the 

coefficients, as given in (1.19), as a guideline, thereby assuming that higher 

order contributions will not affect the signs of these coefficients, but merely 

change the second-order values by certain (positive) enhancement factors. 

In the present paper we have dealt with two separate problems. The first 

problem is concerned with the stability of the phase diagram in the absence of 

spin fluctuations, as given in ref. 8. For this purpose we have investigated the 

phase diagram in the presence of a magnetic field for small values of the 

coupling constant I of the Hubbard interaction. In this limit it is safe to assume 

that the signs of the coefficients w l ,  w2, w3, w~ are correctly given by (1.20). 

Taking r/b < 0  we have shown that for sufficiently small values of these 

coefficients only the phases A1, I, VI and X can occur. The corresponding 

phase digrams have been presented in figs. 1-4. Here X is the extension of the 

BW phase to finite values of the magnetic field, as already considered in ref. 8, 

and there are two new phases I and VI, which have not been considered before 

as candidates for the phase diagram. In the limit w3, w~--> 0, phase VI becomes 

degenerate with the ABM phase (III) or the planar phase (II), and the region 

in which I occurs shrinks to zero. For small values of the spin fluctuation 

parameters it may not be easy to distinguish the phase diagram from a diagram 

in which the phases VI and I are replaced by the ABM or the planar phase. 

The second problem we have dealt with is the phase diagram at zero 

magnetic field, also for larger values of the  spin fluctuation parameters under 

the restriction that w2, w 3 and w~ satisfy eq. (3.1), in which the signs of 

w 2, w 3, w~ correspond to the ones in (1.20), and the inequality q < 1 is obeyed 

in a large range of coefficient values, including the values (1.19). In that case 

only the phases VI, VII, VIII, X and XV play a role in the phase diagram. 

Phase X is again the BW phase, VII is the so-called e-solution introduced in 

ref. 12, and VI, VIII and XV are new phases. The resulting phase diagram, as 

a function of z =  ½w31v , z ' =  ½w~lv, at a fixed value of q==---W2/W 3 with 

0 < q < 1, has been presented in fig. 5. The phase diagram of fig. 5 contains 
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some special critical points, and in fig. 6 we have presented the phase diagram 

as a function of t empera ture  and magnetic field at the special value z = z '  = 1, 

corresponding to a triple point at b = 0, at which the phases VI,  X and XV are 

in equilibrium. 

On the basis of these considerations one may a tempt  to give some discussion 

of the so-called profound effect, i.e. the effect of a small magnetic field on the 

phase diagram as a function of t empera ture  T and pressure p. When p 

increases, the parameters  w 3 and w~ can be expected to increase as well. 

Starting f rom the BW phase for b = 0 at low pressure,  one could expect,  at a 

certain pressure P0, to have a phase transition to one of the ordered phases VI,  

VI I I  or XV, as displayed in fig. 5. If  we assume that w~/w 3 would be 

independent  of I ~ I ( p ) ,  and therefore  be equal to 1 as in (1.19), this 

transition would take place at the point (z, z ' )  = (1, 1) in fig. 5. However ,  for 

w 3 slightly larger than w 3 , one would cross the line z' = 1 and have a transition 

form X to XV, and, for w 3 slightly smaller than w~, one would cross the curve 

/3(z, z ' )  = 0 in fig. 5 and have a transition f rom X (BW) to VI. At  this stage 

one may speculate that the second possibility could occur in practice, as VI  is a 

two-dimensional phase with only t~ and ~ ordering, but in the presence of a 

magnetic field one may anticipate a more  complicated behaviour.  

Let  us discuss, on the basis of figs. 4 and 6, what may happen at a small 

value of the magnetic field, when w 3 and w~ increase from the values of fig. 4 to 

values of the order  of 2v. Compar ing  fig. 4 and fig. 6 one may anticipate no 

qualitative changes in the second-order  phase transitions between BW and A1 

and between I and A1 and also at the bicritical point where these transition 

lines meet .  Fur thermore  there is a second-order  transition line between VI  and 

I, the slope of which decreases upon increasing w 3 and w 3 , to a finite value i at 

w 3 = w~ = 2v. On the other hand at values of w 3, w~ very close to the transition 

l ine/3(z ,  z ' )  = 0 in fig. 5 one may expect the transition between BW and VI,  

and also the critical end point on the second-order  line between VI  and I to 

occur at very small values of y. These features are displayed in fig. 7, in which 

we have plotted the phase diagram as a function of tempera ture  and magnetic 

field at the values w 1 = l V ,  W 2 = - - O ,  W 3 = 1.90o, w~= 1.94o. (In this case 

again we can only have the ordered phases X, I, VI  and A1, as discussed at the 

end of appendix D.) 

Note  that in this case the transition line between the phases BW and I has a 

rather  complicated behaviour  with a max imum value of x at x - 0.98. Further- 

more ,  the value of A-= mz/m 1, in which m 1 and m 2 denote the order parame-  

ters of the BW phase,  is very small on a large part  of this transition line. This 

feature is reminiscent of what happens at the special value w~ = 2v, for which 

the BW phase is split into a phase with mam2m3 ~ 0 and another  phase BW'  

with m 2 = 0, as shown in fig. 6. 
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Fig. 7. Phase diagram in the case that w 1 = ¼v, w= = -v ,  w 3 = 1.90o, w~ = 1.94o. The solid curves 
are second-order transitions, the dashed curves first-order transitions. The numbers indicate the 
values of A ~ mz/rn ~ in the BW phase at the transition lines. 

Fig, 7 can also give a quali tat ive unders tanding  of  the p ro found  effect,  as the 

transi t ion line be tween  B W  and VI  has a ra ther  low min imum y ~ 0.03 at a 

ra ther  large value o f  x -  0.6. Let  us consider  a small fixed value b '  of  the 

magnet ic  field and  a pressure  Pl  which is slightly smaller than the pressure P0 at 

which transi t ion at b = 0 be tween  B W  and VI  takes place. W h e n  b '  is small 

enough ,  the min imum  of  the transi t ion curve b ( p l )  be tween  VI  and B W  will 

occur  at a value larger  than b ' ,  and on increasing the t empera tu re  f rom a lower  

value to the critical t empera tu re  T c (i.e. x = 0),  one  only observes  a t ransi t ion 

BW---> A1 in the immedia te  n e i g h b o u r h o o d  of  To. H o w e v e r ,  when  p increases,  

the transi t ion line be tween  B W  and VI  will go down,  and at a certain value P2, 

the min imum of  the t ransi t ion curve b ( p 2 )  will coincide with the value b' .  

Hence ,  for  all p values satisfying P2 < P < Po, the min imum b(p2)  will lie be low 

the chosen  value b ' ,  and there  will be a phase  transit ion BW--->VI at a 

relatively large value o f  x,  co r respond ing  to a t empera tu re  well be low T c. 

The  a rguments  given above  can also be justified analytically for  values of  

w3, W; which are  very  close to 2o. In  fact,  taking w 3 = 2 o ( 1 - a ) ,  w~ = 

2 v ( 1 -  a ' ) ,  one  may  evaluate  fBw up to l inear terms in a ,  a ' .  Using the 

relat ion 

fBW 0 0 2 0 2 -- fBw = -- ( 4 a  , o, 
- 4 la  lore 3 m l m 2 ,  + 2 a  ) v m  a - 2 ( a  + a ' ) v r n  I m 2  , o5 o o 

(4.1) 
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in which m ° , m ° , m ° and f °  w refer  to the BW solution at a = or' = 0, as given 

by (3.19) and (3.21), one finds 

(fBw 0 Ot y2 - fBw)V__  6 a - 5 a ' + 4 1 c ~ ' l + _ _ _ _  

(U 1 q- U2) 2 800 100 X 

200 + ½ (a + a ) x 

,o1[(14y2   1 (1 
20 x / l  1 -~  

+ 
y 2 1 2  Y 2 1 / 2  . 

x ,  (x)} 
(4.2) 

Compar ing  (4.2) to the relation 

0 
- f v l ) V  ( a ' +  lOa)  1 Y (4.3) 

( u l + u 2 )  2 - 800 + ( ~ ' + ~ a )  x ' 

in which • o a '  again f v i  refers to the solution VI  at a = = O, one can derive the 

relation 

(~ ' -  ~ ) x = 5  2 ~Y _ { ~ y 4  _ (10y4 + 500t,,y2)(ot, _ ½a)}1/2 

(a"--= a -  l a ' )  (4.4) 

for the transition line between BW and VI  in linear approximation for a and 

O1~ t , 

Eq. (4.4) implies that the transition between BW and VI  at b = 0 will take 

place at the values a ' =  l a ,  and for a '  values slightly larger than ½a, the 

minimum value of y is equal to { 8 a " ( a '  - ½a)} 1/2 and occurs at a relatively 

large value of x ,  i.e. x - 20a". The coordinates of the critical end point at the 

second-order  line between VI  and I are given by x ~ lOa",  y ~ l a "  in this 

approximation.  (For  extremely small values of a '  - Xa,  i.e. a '  - ½a ~ a", it is 

possible that  x has also a minimum value on the transition line between BW 

and VI,  before it reaches the critical end point.) 

Although the features ment ioned above may give a qualitative account,  it 

certainly does not give a detailed understanding. First of all, the precise 

behaviour  of the spin fluctuation coefficients as a function of pressure is not 

known, and in the absence of more  detailed data on the coefficients of the 

Landau  expansion, in the case of a contact interaction of the Hubba rd  type, 

one does not know the point on the curve /3(z, z ' ) =  0 in fig. 5, where the 

phase transition BW---~VI at b = 0 will take place. The precise location of this 

point can be important  for actual estimates of the coordinates of the minimum 
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of the transition curve BW--*VI at finite small values of b. Furthermore, one 

should have rather precise estimates on the relation between the coordinates x 

and y, and the temperature differences and magnetic field values, respectively, 

which occur in practice. In connection with this, it is hard to say to which 

extent other phases such as phase I (and possibly other phases at larger values 

of x and y), may be of importance in a discussion of the profound effect. It 

should be noted that the transition lines in a realistic temperature-magnetic 

field diagram would have a much steeper behaviour than the one displayed in 

figs. 6 and 7, as the y coordinate has to be multiplied by -(Ac~7 )/Bc and the x 

coordinate by a much smaller factor (A~I)2/B~. 
Finally, the phase diagrams presented in figs. 1-7 are based on the assump- 

tion that the signs of the parameters w3, w~ are correctly given by the 

second-order values of (1.19). In particular, this assumption is sufficient to rule 

out the ABM phase as a candidate to occur in the phase diagram. From a 

theoretical point of view, starting from the Hubbard hamiltonian, and consid- 

ering the usual ideas about enhancement, it is not easy to imagine that this 

assumption is not true. But, it may be noted that the ABM phase can occur 

indeed when the parameters w3, w~ are negative, as suggested by the spin 

fluctuation results of ref. 17. Therefore, we shall discuss this case as well. 

First of all it is straightforward to show that at small negative values of w 3 

and w~ only the phases A1, II, III and X can occur in the phase diagram in the 

presence of an external field. From these phases III has always a smaller free 

energy than phase II when w 3 < w~. Considering the case w 3 < w~, one has 

only the phases A1, III and X, implying that the phase diagram in the absence 

of spin fluctuations as presented in fig. 1 is stable under small perturbations 

w 1, w 2, w 3, w~ with w 3 <0 ,  w~ < 0  in the Landau expansion. Of course, 

in such a case the two-dimensional phase has to be identified with the ABM 

phase, i.e. phase VI in fig. 1 must be replaced by III. We shall not present 

explicit results on phase diagrams for negative w3, w~ in the presence of a 

magnetic field. Such phase diagrams have been given in ref. 19 under the 

assumption that only the phases BW, ABM and A1 are important and this 

assumption has been corroborated in the appendices A, B and E of the present 

paper, at least for small (negative) values of w 3 and w~. 

Secondly, it is not hard to extend the phase diagram of fig. 5 at zero 

magnetic field to negative values of w 3 and w~. In fact, one will have the ABM 

phase in the region bounded by the line z ' = - 1 ,  z < - 1 ,  where we have a 

transition to phase VI and the line 1 + 4z - 3z' = 0 for - 1  < z' < 0, where we 

have a transition to phase X. Apart from that there is a phase .transition 

between phase VI and phase V at the curve (1 + z)(1 + z ' ) =  1 for z < - 1 ,  

z '  < - 1 ,  and between phase VI and phase X at the line z = - 1 ,  z '  < -1 .  (The 

solutions VII, VIII, XV, I and II do not occur at b = 0. For the solutions VIII 
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and XV this follows f rom table X, for the solutions I and VII  this has been 

shown in appendix E,  and the phases X, VI and V can be shown to be more  

favourable than phase I I  for z '  < z.) 

The  phase diagram at b = 0 as a function of z and z '  for negative z and z '  is 

presented in fig. 8. 

The spin fluctuation results of  ref. 17 with z ' =  l z would indicate a first- 

order  transition between BW and A B M  at the value z -  5 ,  z ' -  1 1 7 "  

Finally, the profound effect in the case of  negative w 3 and w 3 may be explained 

quite easily by the fact that the transition curve between BW on the one hand, 

and A B M  and A1 on the other  hand in fig. 1 moves  down to the x-axis for z 

and z '  values such that 4z - z '  + ½ is a small positive number ,  so that at zero 

field BW is only slightly more  favourable than ABM. Assuming no other  

phases to occur under  such conditions, this will provide the explanation that 

the phase transition at a small fixed magnetic field may occur at tempera tures  

which are substantially lower than the transition tempera ture  at zero field. 

With regard to the actual situation in 3He one might note that the ex- 

perimental  results for the specific heat  jumps 2°) do not give direct support  to the 

signs of the Landau parameters  as suggested in eq. (1.20), see also ref. 21. One 

even could raise the question whether  the Hubbard  hamiltonian with a contact 

interaction would give rise to an appropr ia te  descriptionee). One should not 

even exclude the possibility that the spin fluctuation model  which is usually 

justified by means of an approximate  diagrammatic analysisa3-26), starting f rom 
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Fig. 8. Phase diagram for negative z = ½w3/v and z '=  ½w'Jv. The dashed lines are first-order 
transitions. 
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a contact interaction of the Hubbard  type, could produce more realistic results 

than a contact interaction itself. Future experiments could give some detailed 

information on the values of the spin fluctuation coefficients so that one can 

make more concrete theoretical predictions on the regions in the phase 

diagram which apply to the situation in liquid 3He. From fig. 8 one can note 

that phase VI may also occur for negative values of z and z' ,  provided that z 

and z '  are large enough. 
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Appendix A 

In this appendix we show that the solutions A3, R3, IV, XIII,  XIV do not 

lead to an absolute minimum of the Landau expansion. 

i) Solutions A 3  and R3. Considering fA3 as given by table I, and taking into 

account that 2u 3/> u 1 + u 2 as follows from (1.7), we immediately have fA3 ~> fin 

(b = 0), implying that A3 does not lead to an absolute minimum. The same 

conclusion applies to R3, since fR3 ~>fv (b = 0). 

ii) Solution IV. Considering (1.18) w i t h  m 3 = 0 ,  b I = a l l  , b 2 = a22 a n d  b 6 = 

a12, it follows from table II that q~iv = q'1 + vm4 at all values of m I and m2, so 

that solution IV does not occur. 

iii) Solution XIII .  From (1.18) and table VII one has the expression 

(J)XIII  = ul m2 + u2 m2 + 2u3m~ + (4v + 4w, + w 2 + 2w3){¼(m ~ + m2) 2 + m 4} 

2 2 m Z ) + 1 ( a v _ w z _ 2 w 3 ) ( m  2 mZ)2 +(8v  + 4w I + Wz)m3(m 1 + - . 

(A.1) 

In order  that IIDXIII at fixed m~ - m 2 has a minimum corresponding to a mixed 
2 2 phase with m 2 + m 2 > 0, 2 2 2 m 3 > 0 ,  the coefficient of m3(m 1 + m 2 )  should not be 

larger than twice the square root of the product  of the coefficients of 
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(m 2 + m2) 2 and  of  4 m3,  l ead ing  to  the  cond i t i on  w 3 t> 2v. In  o r d e r  tha t  ~ x n i  has  

a m i n i m u m  wi th  m ] > 0 the  coeff ic ient  of  (m~ - m])  2 shou ld  be  pos i t ive ,  i .e .  

4 / 3 -  w 2 - 2 w  3 > 0 .  F r o m  the  gap  equa t i ons  c o r r e s p o n d i n g  to  @xm we have  

m~ - m2a = (u 2 - ul) / (4 /3  - w 2 - 2w3),  imply ing  tha t  m21/> m22 . C o m p a r i n g  

so lu t ion  X I I I  wi th  so lu t ion  X V  we have  

2 2 2 2 
(~XII I  - -  ~ X V  = - /3m4 + 40m2m3 + w3mlm2 ( A . 2 )  

which  is n o n - n e g a t i v e  at  w 3 ~ /3 .  H e n c e ,  so lu t ion  X I I I  does  no t  occur .  

iv) Solution XIV .  F r o m  (1.18)  and  t ab le  V I I  one  can  wr i te  down  an expl ic i t  

express ion  for  ~x iv -  F r o m  the  gap  equa t i ons  c o r r e s p o n d i n g  to  ~ x t v  one  can 

show tha t  

u 1 + u z - 2u 3 - (4v - w 2 - 2w3) (m 1 - m 2 sgn(4v - w 2 - w3)) z 

{ 2 1 m3 --2w3) = 0  ( A . 3 )  × 1 +  s g n ( 4 v - w  z 
m l m 2  

imply ing  with  (1 .7)  tha t  4v - w 2 - 2 w  3 < 0. C o n s i d e r i n g  the  e x t r e m a  of  @xiv 

wi th  m l m 2 m  3 = 0 in the  case  tha t  4v - w 2 - 2w 3 < 0, i .e .  

2 ) 
( U l  + u 2 - 2 u 3 ) + ( 4 v - w 2 - 2 w 3 ) (  mm-~ m2 1 (m  1 + m 2 ) 2 = 0 ,  

( m2 ~ ,  2 
(u I - -  /g2) "[- (4V -- W 2 -- 2W3) 1 m - - - ~ 2 J t m l -  m~) = O, 

(u 1 + u 2 + 2u3) + (16v + 8 w l ) ( m  ~ + m 2 + 2m~) 

1 ) ( m  1 - m2)  2 = O. 

2 (m3 
+ ( 4 v  - w 2 - 2w3) m l m 2  

( A . 4 )  

F r o m  the  first eq.  ( A . 4 )  one  finds tha t  m23/(mlm2)  <~ 1, and  the  s econd  and  

th i rd  eqs.  ( A . 4 )  y ie ld  the  inequa l i t i e s  

2 2 2 2 2 ( U l  "q- U2  "q- 2U3) 
ml  - m 2<~0 m 1 + m z + 2 m  s <~ ( A . 5 )  

' 16v + 8w~ 

F r o m  (1.10), (1.7) and (A.5) i t  is easy  to  show tha t  

f m v  ~> - 1 (u l  + Uz)(ul  + u2 + 2u3) 
16v + 8w I 

(A .6 )  
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so that  phase  X I V  at b # 0 is less favorable  than the A1 solution. O n  the o ther  

hand,  for  b -- 0 the equali ty sign in (A.6)  holds so that  in that  case X I V  and A1 

are degenera te .  

Appendix B 

In  this appendix  we show that  the solutions V, IX,  XI  and XI I  do not  occur  

under  the condi t ion  (1.20) for  the signs of  w2, w3, w~. 

i) Solution V. Consider ing (1.18) with m 3 = 0 ,  b 1 = a11, b 2 = a22 , b 6 = a12 , 

and using table I I ,  we have 

2 2 t 2 2 
~V = ~II -~- v(m41 + m4)  + w 3 m l m 2  = I~III "t- v(rn 4 + m 4) + w 3 m l m 2  , 

(B.1)  

implying that  V does  not  occur ,  if w 3 or  w~ is larger than - 2 0 .  

ii) Solut ion IX .  For  6o - w 2 - 2w 3 - w; > 0 one  can compare  IX with solut ion 

XI I .  F r o m  (1.18) and table V I I  we have 

2 2 2 
/ ( 4 v  + 2 w 3 ) m 3 ( m  I + rnz) (w 3 < 2 v ) ,  

~ I X  --  I~XII > [ ( 8 0  2 2 , 2 , 
- -  w 2 ) m 3 ( m  1 - -  m 2 )  + 4 ( w  3 + w 3 ) m 3 m l m  2 

(B.2)  

implying that  IX  does not  occur  unde r  the condit ions 60 - w 2 - -  2W 3 -- w~ > 0, 

W 3 > --2V, 8V -- W 2 > 0. 

For  6 v -  w 2 - 2 w  3 - - w ;  < 0, one  can c om pa re  IX  with solution XIV. This 

leads to 

q0Ix - q~xlv ~> o(m~ - m22) 2 + (2u + w;)(m23 - m l m 2 )  2 + 4 v m ~ ( m  1 + m z )  2 , 

(B.3)  

so that  IX  does no t  occur  when  60 - w 2 - 2 w  3 - w 3 < 0, w~ > - 2 v .  

iii) Solution X I .  For  w~ < 20 we c om pa re  XI  with solut ion X. Using the 

relat ion (w 3 + w ~ ) m  I • m 2 4- (2V , 2 - -  w 3 ) m  3 = 0 ,  given in table VI ,  we have 

- -  , 2 2 3 ) m 3 ( 2 m l m 2  + n l  I • m 2 ) / >  0 .  q~xI q)x = v(m~ + m 4) - w 3 m l m  2 + (2o - w '  2 

(B.4)  
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For w~ > 2/) we can compare XI with solution XV leading to 

,'~--1 4 (B.5) ~ x i  - ~ x v  = v(m~ - 2m32) 2 + ( w ;  - 2 v ) ( w  3 + 2 v ) ( w  3 + % )  m 3 .  

From (B.4) and (B.5) it follows that XI does not occur when w 3 > - 2 v .  

iv) Solution XI I .  Comparing XII with X we have 

__ 2 2 4 
(/)XII (/)X = w3mlm2 + /)( m4 + m2) ,  (B.6) 

so that XII does not occur when w 3 > -2/) .  

Appendix C 

In this appendix we show that the solutions VII, VII' ,  VIII,  VIII ' ,  XV, XV'  

and XVI do not occur at sufficiently small values of Wx, Wz, w3, w~ satisfying 

(1.20). 

i) Solutions VII ,  VII ' .  Using (1.14) with table IV, and also table I, it is 

straightforward to compare VII with the A1 solution. We find that VII can only 

have a lower free energy than A1, i.e. fvn  <fAX, under the condition 

U 3 r e > A ,  
U l  

4A~- 
4v+4w1+w2+{(4v+4w1+w2)2 

3v + w~ 3v + wa 

4 4/)(4/) + 4W 1 + W z + 2 w 3 )  - (4/) + 4W 1 + W2)2} 1/2 
(3/) + W1)(2/) + W1) 

(C.1) 

From 2U 3 > U 1 + U 2 and (C.1) we have (u 1 - u 2 ) / ( u  1 + u2) < - 1  + A -1 which 

for sufficiently small Wl, w2, w3, w~ must be smaller than the value B given in 

table VIII. As a result phase VII can only have a lower free energy than A1 in 

the region where phase VI exists. We therefore compare the solutions VII and 

VI. For this purpose we rewrite fvn as 

-u~(4 / )  - ½w 2 + w 3 )  - l ( u  1 - u3)2(4/) + 4 w  1 + w 2 )  ']- (u~ - u ~ ) w  3 

f V l I  = 
(4/) + 4 w  1 + w z + w3) (4 / ) -  ½w 2 + w3)+ w3(4 / ) -  ½w e -  w3) 

(C.2) 
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Considering VII as the special case m 2 = 0 of solution XVI, we obtain for its 

stability, using also the gap equations for m~ and m3, respectively, 

02¢xvi ,fu2 u~ { 8 v - w 2 -  , 2 -- -- 2W 3 -- (a + 1)w3}m 3 , 
0 < 1 Om~ - [ Ul + u2 2 u  3 + { 2 w 3  , 2 2 + (a + 1)w3}m 1 - 4w3m 3 , 

(C.3) 

with a ~ - 1  + 8v / (2v  + w~). Combining both inequlities (C.3) we find 

u 3 - u  1 1[  2w3 + (a + l )w  3 ] 
- -  < 1 + . ( C . 4 )  
u 2 - u l  ~ 8v _ ~-~2 -- ~ 3  -_ (-~ T 1) w; 

On the other  hand, from the second inequality of (C.3) we have {2w 3 + (a + 

1)w;)m21 >4w3m  2, and inserting the solutions for m~ and m 2 from the gap 

equations for VII we obtain 

U 3 - -  U 1 4(4v + 2w 1 + lw2) - { 2  + (a + 1 ) w ~ / w 3 } ( 4 v  + 4 w  1 + w 2 + w3) 
> 

U 3 + U 1 8 V  - -  W 2 - -  2 W  3 - -  (a + 1)w~ 

(c.5) 

Inserting (C.4) and (C.5) in (C.2) one can derive the inequality 

2 
- - U 3  - -  I ( U  1 - -  U 2 ) 2 A  t 

fVII>4VW4Wl WWz+W3+W3(80_Wz_2W3)/(80_W2+2W3) (C.6) 

with a rather complicated explicit expression for A'. We shall not give this 

expression, but merely mention that A'--~ 1 in the limit that wa, w2, w3, w~ 

tend to zero. 

Using the inequalities 

8v -- w 2 -- 2w 3 
4v + 4w~ + W 2 "~- W 3 -~- 

8 V  + w 2 + 2 w  3 

4v + 4w~ + w 2 + 14) 3 "1- 2yV 
> 2 V + y  ' 

2yv  ] , 
[ A ' ( 4 v  - w2 - w3 ~ =  y /  

w 3 

(C.7) 

both of which are satisfied at sufficiently small values of wl, w2, w3, W~, w e  

immediately obtain from (C.5) and (2.6)fVlI ) f v I ,  SO that phase VII does not 
o c c u r .  

From eq. (C.2) for fwi and a similar expression with u I replaced by u 2 for 

fv i r  we have 
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f VlI' -- f V l I  

(U 2 -- U l ) { ½ ( 2 U  3 -- U 1 -- U 2 ) ( 4 0  + 4 W  1 + W 2 ) - -  W3(U 1 -t- U2) } 
(c.8) 

(4v + 4 w  I + w 2 + w3)(4v - ½w 2 + w3) + w 3 ( 4 v  - ½w 2 - w 3 )  

s o  that fw  v > fv i i  f o r  4 v  + 4 w  I + w 2 ~ > 0  , w 3 > 0  , 4 0  - ½w 2 - w3 ~>0. 

ii) S o l u t i o n s  V I I I ,  V I I I ' .  Eq. (1.18) with m 2 = 0 can only have an absolute 

minimum with m l m  3 ~ 0 under the condition 

(4v + 4 w  I + W 2 -{- b4) 

P -- {(2v + W 1 -]- ba)(4v + 4w 1 + w 2 -~ 2w 3 + b3)} 1/2 < 2 .  (C.9) 

For  solution VIII  we have b I = all = b 3 = 0 ,  b 4 = a 1 3  = 4 0 ,  implying that (C.9) 

cannot be satisfied for small values of wl, w2, w3, w~. 

A similar argument can be applied with regard to solution VIII '  which can 

be obtained from VIII interchanging u 1 and u2, and also rn I and m 2. From the 

explicit expression for fv i i i  which follows from (1.14) and table IV and a 

similar one for fvu i , ,  which can be obtained interchanging u I and u z in the 

expression for f v i n ,  we have 

fwH, -fwH 

(U 2 -- UX){(40  -- 2W3)2U  3 -- (4v + 4 w  I + w 2 + 2 w 3 ) ( u  I + u 2 - 2 u 3 )  } 

4(4v + 4w 1 + w 2 +2w3) (2v  + W l ) -  (8v + 4w 1 + w2) 2 
(C.10) 

implying that VIII '  is less favourable than VIII for w 3 > 2v at all values of b, 

and for w 3 < 2v at sufficiently large values of b, see also (1.7) and the stability 

conditions (1.15). 

iii) S o l u t i o n s  XV, XV'.  Eq. (1.18) a t  m2~>0 can only have a minimum 

m l r n  3 ~ 0 under the condition (C.9). For  solution XV we have b 1 = b 3 = 0, 

b 4 = 40, SO that (C.9) cannot be satisfied at small values of Wl, w 2, w3, w~. 

Therefore ,  solution XV (and also XV' )  cannot lead to an absolute minimum of 

the Landau expansion. 

In order  to investigate the relative stability of the solutions XV and XV' we 

introduce the function 

2 + 2m~) + ~ ( u  1 + U 2 -- 2u3)(m 2 + rn~ - 4m3 z) =  (ul + u2 + u3)(m2l + 

2 +¼(u 1 - u 2 ) ( r n  ~ - m  2 ) + ( 4 v + w  1+ ¼w 2+-~w3)(m 2 + m  2 + 2 m 2 )  2 

- -  2 _ 4 m 2 ) 2  + ¼ (5v - W 2 w3)(ml z - mZ) 2 + ~ ( w 3  v ) ( m  2 + m z 

1 2 _ m 2 ) ( m l  + m z  , + ~ , o ( m  1 2 z 2 - 4 m ~ )  (C.11) 
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such that  • = ~ x v  for ~ = - 1 ,  and  ~ = ~xv , ,  for e = 1. F r o m  the cond i t ion  
2 2 2 2 2 

tha t  q~ at fixed m I + m 2 + 2 m  3 has an absolu te  m i n i m u m  for m I - m  2 5 0 ,  
2 2 2 

m l  + m 2 - 4m 3 ~ 0, we ob ta in  the inequa l i ty  

(W 3 - O ) ( 5 0 -  W 2 -  W 3 ) - - 3 0 2 / > 0 .  (c.12) 

2 2 2 
O n  the o ther  hand ,  f rom the gap equa t ions  for m 2 - m~,  m I + m 2 + 2m 3 and  

2 2 2 
m I + m 2 - 4 m  3 it is easy to show that  the absolute  m i n i m u m  f of • for 

m l m 2 m  3 ~ 0 is given by 

f =  
~(U 1 ~- U 2 +  U3) 2 

16u + 12w~ + 3w 2 + 2W 3 

](w 3 - v)(u, - Uz): + ~(5v - w z - w3)(u , + u 2 - 2u3) 2 - ½~v(u I - -  U2)(U 1 -[- U 2 - -  2u3) 

(W3 -- 0)(50 -- W2 -- W3) -- 302 

(C.13)  

F r o m  (C.13)  it is clear that ,  when  XV with ~ = - 1  and  X V '  with e = 1 bo th  

exist, so lu t ion X V  must  have a lower  free energy.  

iv) So lu t i on  X V I .  F r o m  (1.18) and  table  VII  we have 

2 2 2 4 
@xvI = u , m l  + u z m 2  + 2u3m3 + (30 + w l ) ( m  1 + m 4) 

2 2 
+ ( 4 0  + 4w I + w E + 2w3)m ~ + (40 + 4w 1 + w 2 ) m 3 ( m  1 + mE)  

+ { 2 w  i + w 2 + 2w 3 + (a + 1)w; - 2 2 2 0 } m l m  2 , (C.14)  

in  which a has b e e n  def ined by (C.3) .  F r o m  (1.10) and  the solut ions  with 

m l m 2 m  3 ~ 0 of the gap equa t ions  cor responding  to ~xv i  it is s t ra ightforward to 

show that  

1 (ul + u2) 2 1 ( U  1 - -  U 2 )  2 

f x v l = - ~  4 0 + 4 w l + w  2+w 3 + 2 7 o / ( 2 o + y ) - 4  8 v - w  z - 2 w  3 - ( a + l ) w ;  

1 {2W 3 + ( a  + 1 )W~)(U 1 + u 2 - -  2U3)(U 1 + U 2 + 2 u 3 )  -- ( 4 0  + 4 w  1 + W2)(U 1 "l- U 2 - -  2U3)  2 
+ =  

{4w 3 + (a + 1)w~}{4u + 4W 1 + W 2 + W 3 + 23'V/(20 + 3')) 

(C.15)  

and  the last t e rm on  the r igh t -hand  side of (C.15)  is non -nega t ive ,  as can  be 

2 > 0 .  shown using the so lu t ion  of the gap equa t ions  for ~xv l  in the condi t ion  m 3 

D e n o t i n g  the first two te rms  on  the r igh t -hand  side by f ' ,  we have fxvi  > f '  and  

we shall now show that  f '  can neve r  be  smal ler  than  the absolu te  m i n i m u m  of 

the L a n d a u  expans ion .  
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Comparing f '  and fa l  we find that f '  < f M ,  only under the condition that 

(ul - u2) / (u  I + u2) < A", in which A" is a rather complicated expression. We 

shall not give this expression here,  but only use the fact that A"---~ ½ in the limit 

that w~, w2, w 3, w; tend to zero. For  sufficiently small w~, w2, w 3, w; we 

therefore have A" < B, in which B has been given in table VIII, so that we can 

have f '  < fM,  only in the region where phase VI exists. Using the inequlity 

8 V - W z - 2 W 3 - ( a +  l ) w ; > 4 v - w 2 - w 3 - 2 y v / ( 2 o - ' g )  , (C.16) 

we find that fXVI ~ f '  >~ f v i ,  and phase XVI does not occur at sufficiently small 

Wl, w2, w3, w~, satisfying (1.20). Note that for b = 0 the equality signs hold, so 

that XVI and VI are degenerate in the absence of a magnetic field. 

m 2/> 0, o r  Finally, for phase XVI one has the condition 2 

- ( u ,  - u2) 

8 U  - -  14' 2 - -  2W 3 -- (a + 1)w~ 

--2W3(U 1 + U2) -- (4V + 4W 1 + w 2 ) ( u  I ']- u 2 - 2U3) 

{4W 3 + (a + 1)w;}{4v + 4W 1 + W 2 ~- W 3 "~ 27V/(2V + 3')} 

(C.17) 

and if (C.17) is not satisfied, phase VII is a more favourable phase. 

Appendix D 

In this appendix we show that the phases VII, VII' ,  VIII,  VIII ' ,  XV, XV' 
P 

and XVI do not occur under  the conditions w I = iv ,  w 2 = - v ,  w 3 w 3 = 2v, 

and w 1 = ~v, w 2 = - v ,  w 3 = 1.90o, w~= 1.94v, assumed in figs. 6 and 7, 

respectively. We first consider the various phases in the case that w 1 = ~v, 

w 2 = - v , w ; = w  3 = 2 v .  

Solutions VII, VII'.  From (C.1) one finds that f v I I  < f A 1  under the condition 

y + 2.538y 2 ~< 0.269x, which can be only satisfied in the region, where solution 

I or solution VI exists. From (1.14) and table IV, and using the condition 

f v I I  <fAl '  we have 

fvnV 13 1 y 1 ( y )  2 9 y2 1 y3 1 3  (y~)2  

(U~ + U2) 2 -  368 46 X 46 + 18~ X 40 X 2 368 

>/ 13 l y l ( y )  2 

368 46 x 46 
(D.1) 
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Comparing the right-hand side of (D.1) with (3.25) and (3.26) it is easy to 

show that fw~ > f i  and also that fvn > f v l  under the condition y/x <- ~ ,  which 

is the condition for VI to exist. Phase VII '  does not occur, since f v i r  > f v n ,  as 

follows from (C.8). 

Solution VIII. From (1.14) and table IV, we have, taking into account the last 

inequality of (1.15), i.e. ~x I> 8y + 2y2, 

f v t i i  v _ 1 l / y ]  2 1 y2 1 y3 9 ( y 2 ~ 2  

(U 1 + U2) 2 32 4 \ X ]  16 X 2 x 2 32 \ x l  

9 1 y2 271  2 3 
- ~ x ]  1 > - - - ,  (D.2) t> 2--~ + 64 x 64 80 

implying that T V I I I  is larger than fvl at b = O. 

Solution XV. From the gap equation corresponding to q~xv, i.e. (C.11) with 
2 2 2 2 2 2 2 4m~. The • = - 1 ,  one can solve m 1 - m 2 , m 1 + m 2 + 2m 3 and m 1 + rn 2 + 

2 2 2 
inequality m~ + m~ - 4m32 < m I + m 2 + 2m 3 leads to the condition 

- 4 ( u  1 + U 2 -~- U3) 

32v + 24w 1 + 3w 2 + 4w 3 

--30(U 1 -- US) -- (5V - -  W 2 - -  W 3 ) ( U  1 + U 2 - -  2U3) 

(w3 - v ) ( 5 v  - w2 - w3) - 3 v  2 
(D.3) 

in which the equality sign describes the bifurcation to phase I. In the special 

27.2 / i x ,  so that phase case under  consideration here (D.3) reduces to y + i~y ~- 

XV can only occur in the region where VI exists. From (C.13) we have 

fxv v 3 1 ( y )  2 1 y2 27(y212 y3 

(u 1 + u 2 )  2 -  80 4 + 2 0  x 2 0 \ x !  x 2 ,  (D.4) 

27 2 
and using y + i~Y <- i x  and (3.26) it follows that fxv >fvI" 

Solution XVI. From the 

Y _  ~ y2< aX, implying 

phase X exists. Working 

bifurcation with VII as given in table X we obtain 

that XVI can occur only in the region where the BW 

out (C.15) we have 

fxvtV 3 1 

(U 1 "~ U2) 2 80 4 

( y ) 2  1 y2 3 (y~)2  

+ 10 x 20 ' (D.5) 

so that fxvl >f~w,  as follows from (3.21). 
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S o l u t i o n s  V I I I '  a n d  X V ' .  T h e  so lu t ions  X V '  and  V I I I '  can be  in fe r r ed  f rom 

(C .11)  wi th  • = 1 as the  m i n i m a  wi th  m l m 2 m  3 # 0 and  with  m 2 = 0, r espec t ive -  

ly. F r o m  (C.11)  for  • = 1 it is c lear  tha t  one  on ly  can have  an abso lu t e  

m i n i m u m  of  the  L a n d a u  e x p a n s i o n  u n d e r  the  cond i t i on  m21-  m 2/> 0, m2~ + 
2 2 2 2 2 2 2 

m 2 - 4m 3 ~< 0. ( In  fact ,  when  m I - m 2 and  m I + m 2 - 4 m  3 have  the  s a m e  sign, 

the  r i gh t -hand  side o f  (C.  12) wi th  • = - 1  has  a l ower  va lue  t han  the  r i gh t -hand  

2 2 2 2 _  4 m  2 > 0  one  can find a s ide  wi th  • = 1, and  if m ~ -  m 2 < 0  and  m~ + m 2 
2 2 

l ower  va lue  of  the  r igh t -hand  s ide  of  (C .11)  wi th  • = - 1  rep lac ing  m 2 , m2,  m 3 
2 2 

by m22, m l ,  m3,  respec t ive ly . )  
2 > 0  , 2 2 2 2 2 2 

A s s u m i n g  tha t  m~ - m 2 m I + m 2 - 4 m  3 < 0, m 1 + m 2 - m 3 > 0 at  the  

m i n i m u m  of  (C.11)  wi th  • = 1, one  can i n t roduce  

- 2  4 2 2 2 8 2 
m 1 = ~m~ - 5 m 2 +  5 m  3 , 

- 2  1 2 2 
m 3 =  ~(m l + m  2 - m ~ ) ,  

- 2  4 2 2 2 
m 2 = ~m 2 -- 2ml  + } m 3 ,  

(D .6 )  

- 2  - 2  2 2 - 2  - 2  - 2  2 2 2 - 2  - 2  
so tha t  m ~ - m 2 = m l - m  2, m l  + m 2 + 2 m 3 = m ~  + m z + 2 m 3 ,  m l  + m  2 -  

4th ~ = 4m~ - m~ - m~,  l ead ing  to  

- 2  + 2rfi~) + ~2 (Ul + U2 -- 2u3)(rh~ + rh~ - 4 the )  (j~ ~ 1 ( / / 1  -~- U 2 "l" U 3 ) ( / ~  ~ "4- m 2 

- -  - 2  1 - 2  - 2 + 2 m 3  ) + X ( u  1 u 2 ) ( f f l 2 _ m 2 ) + ( 4 v + w , +  l w 2 + g w 3 ) , ( m l + m 2  - 2 2  

+ 1 ( 5 0 - w 2  - 2 2  -2  
__ - -  m 2 )  + I ( W  3 - -  v)(m 1 + m 2 

1 - 2  2 - 2  - 2  2 
2)(m1 + - 4 r h 3 ) .  (D .7 )  - ~ • v ( m  1 - if, m 2 

C o m p a r i n g  (D .7 )  and  (C.11)  it is c lear  tha t  the  r igh t -hand  side of  ( D . 7 )  for  

• = 1 c a n n o t  be  sma l l e r  t han  the  abso lu t e  m i n i m u m  of  (C.11)  for  • = - 1 ,  

imply ing  tha t  so lu t ion  X V '  is less f avo rab l e  than  so lu t ion  X V  in this  case.  

F ina l ly  in the  case  tha t  m23 I> m~ + m~,  we have  the  fo l lowing inequa l i ty  for  

wi th  • = 1: 

2 2 2 4 4 
Uam 1 + u 2 m  2 + 2u3m 3 + (30 + w l ) m  1 + (6v + w l ) m  2 

2 2 2 
+ ( 4 v  + 4W 1 + W 2 + 2 w 3 ) m  ~ + (4v + 4W 1 + w 2 ) m 3 ( m  I + m2) 

2 2 
+ ( 2 w  1 + w 2 + w 3 + 4 v ) m l m  2 , (D.8) 

imply ing  tha t  • ~ ~ x w  u n d e r  the  cond i t i on  

(12v 2 - 2w3t) - 2 w ~ o  - w 3 w ~ ) / ( 2 0  + w~) t> 0 .  (D .9 )  

H e n c e ,  p h a s e  X V '  does  no t  occur  when  (D .9 )  is sat isf ied.  This  ho lds  also for  
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some other  solutions with e = 1 such as V I I I '  and I '  that  can be obtained via 

bifurcation with XV' ,  see also fig. 1 at the end of ref. 1. The argument  does not 

apply to phase VII ,  since in the case m 2 = 0 the inequality (D.8) reduces to an 

equality in which the right-hand side is equal to q0vn. 

In the case that w I ~--- 10, W 2 = - - 0 ,  W 3 = 1.90o, w 3 = 1.94o considered in fig. 

7, the phases X V '  and V I I I '  cannot occur because of the same reason. The 

other phases can be ruled out by arguments  which in part  are similar to the 

ones used above. More specifically one can show that: 

i) fvii <fA1, only in the region where phase I or phase VI  exists. It  is 

straightforward to show that fvii>fi, and also that fvIi>fvi, when y / x < ~  

0.0673 which is the condition of existence of phase VI  and y 2 / x  <~ 1. 

ii) Evaluating fvni  and using the last inequality of (1.15), i.e. i x / >  8y + 2y2, 

one has again f v i n  > fvi (b = 0), so that phase VI I I  does not occur. 

iii) Taking into account the bifurcation condition with phase I, cf. (D.3),  we 

obtain y + 2.879y 2 ~< 0.03536x as condition of existence of phase XV, so that 

XV can only exist where VI  exists. Evaluating fxv  and fw ,  and using the 

condition y + 2.879y 2 ~< 0.03536x, it is straightforward to check that fxv  > f v i .  

iv) Using the bifurcation of XVI  with phase VII ,  cf. (C.17), one has the 

condition y ~< 0.0635x + 0.1336y 2, implying that for x < 5 one must have y / x  <~ 

0.0673, so that phase XVI  can exist only where phase VI  exists. Then 

fxvI > f v i ,  because of (C.16) being valid in the case under  consideration here. 

Appendix E 

In this appendix we show that the phases VI I I ,  XV, XVI,  I, VI  and VII  do 

not occur for w3, w~ < 0 at sufficiently small values of  w~, w 2, w 3, w~. First of 

all, for w 3 < 0 it is clear that (C.9) of  appendix C cannot be satisfied, implying 

that VI I I  and XV do not occur. Secondly, f rom (C.14) it follows that  ~xvi  at 
2 2 2 2 2 2 7 ~ m Z  1 _ fixed m~ - m z can only have a minimum with rn~ + m 2 ¢ O, rn~ + m 2 

2 2 
m 2 , rn 3 ¢ 0 under  the condition 

2(40 + 4w 1 + w z )  

P --= ((4v + 4w 1 + w z + 2w3)(4v + 4w I + w 2 + 2w 3 + (a + 1)w~)) a/2 < 0 ,  

(E.1) 

which cannot be satisfied for negative and sufficiently small values of w3, W ~ .  

Thus, phase XVI  does not occur. Thirdly, phase I does not occur, since both 

terms in the right-hand side of  (2.10) are negative for w 3 < 0. For  phase VI  we 
2 

can use the condition x 2 =- m 2 • m 2 / m  2 ~ - 1 .  From eq. (A.21) of  ref. 1 we then 

have 
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2 
m2 - 2 v 7  > - Y  (E.2) 

2 ~ 2 " m I 4v 2 - 31 2v 

Inserting (E.2) into (2.11) we find 

f l i i _ f v i ~ m 4 [  _oZ 2 (1_1_ ~ o ) 2 _  ( w 3  2~/u / . 2-v ~3~/ ~v ] (E.3) 402 _ ,y2 

Using the inequality w 3 < w~, which means that phase III is more favourable 

than phase II, or equivalently that -2w3"y ~< -4"y 2, we find 

4 2 

fin _ fvi ~ rnlY 4v 2 _ , 2  (5'~ 2 -- 4v2}, (E.4) 

which is negative for y2< 402" A similar argument for fn - f v i  can be applied 

in the case that w~ < w 3, implying that phase VI does not occur for w 3, w~ < 0 

at sufficiently small wl, w 2, w 3, w~. 

From the explicit result (C.2) for fvn together with (2.5) one finds 

f vn - - f I I t  -- w3 1 +  + ( 4 0 + 4 W 1 +  W2)(2 X 

(U~ + U2) z (4V + 4Wl + W 2 + 2Wa){4(4V + 4W~ + Wz + 2W3)(3V + Wl) -- (4V + 4W~ + Wz) z} 

1 ( y ) 2  yZ 
4 X (1 - -Y~)  

4 40 - w 2 - 2w 3 + 4v + 4w 1 + w z + 2w 3 ' (E.5) 

in which x and y have been defined by (2.25). 

From the condition m~ t> 0 for phase VII, i.e. the third inequality of (1.15), 

which by the way cannot be satisfied at b = 0, we have 

1 y_+ + w  3 1+  y > 0 .  (4v + 4w 1 + w 2 x (E.6) 

From eq. (C.1), in which A = 2 in the limit Wl, w2, w3, W;' - )  0, o n e  finds 

1 ( y ) 2  y2 ( y@) 4 V _ W 2 _ 2 W  3 
+ - -  1 -  x 4 v  + 4 w  1 + w 2 + 2 w  3 

( l y  y212 /> __ + ( E . 7 )  

x x /  

at sufficiently small Wl, w2, w3, W3. Inserting (E.6) and (E.7) into (E.5) we 

finally have (2w I + w 2 + 2w3 < 0) 

w  0+Y; 
(u 1 + u2) - - - - - - - - 7  I> (4o + 4w 1 + w 2 + 2w3){4(4v + 4wl + W2 q- 2W3)(3V + Wl) -- (4V + 4W 1 + W2) 2} 



SEPARABLE INTERACTIONS AND LIQUID 3He W 305 

l y +  _ y2)2 

x x ,  

4v - w 2 - 2w 3 

J" (4v+ 4w1+ W2)2(4V-- w 2 - 2w3) ] 

1 -  (4v + 4w 1 + w 2 +2w3){4(4v +4w x + w 2 +2w3)(3v + w l ) -  (4v +4w 1 + Wz) 2} J" ' 1 

which is positive at sufficiently small w~, w2, w3, w~, implying that phase VII 

does not occur. 
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