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A comparison is made between the various extrema of the Landau expansion of liquid ’He
derived in a previous paper. As an application the phase diagram is investigated in the presence of
an external magnetic field assuming that the Hubbard interaction is small as compared to the
pairing interaction of the BCS-type, and also in zero magnetic field for arbitrary strength of the
Hubbard interaction.

1. Introduction

1.1. Landau expansion

In the preceding paper') we have investigated the Landau expansion for
liquid *He in terms of 3 complex vectors m,, m, and m, describing the ordering
of spin pairs with 11, |} and 1, I, respectively, for the various orientations of
the wave vector k. Assuming that the fourth order terms in the Landau
expansion can be taken to be independent of the magnetic field b and therefore
can be identified with those at b =0, the fourth order part can be obtained
from the generalized Landau expansion that follows from symmetry considera-
tions and that has been expressed in terms of a 3 X 3 complex ordering matrix
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A in ref. 2, see also refs. 3, 4 for a review on the theoretical aspects of liquid
*He. The vectors m,, m, and m, are given by their components

mi=—-A,+iA,, mj=A;+iA,, mi=A, (j=1,2,3), (1.1)

cf. also eq. (5.2) of ref. 5.
The free energy per unit volume is given by

f= I(I'lnlr)l D(my, my, ms) , (1.2)

in which ®(m,, m,, m;) is expanded up to 4th order terms in the ordering
parameters m,, m,, m,. Decomposing @ into a part &,(m,, m,, m,) depending
only on the lengths

m,=(m;-m?)'"” (1.3)

of the vectors and a part @,(m,, m,, m;) depending also on the directions,
ie.

D(m,, my, my) = & (m,, m,, m;) + &,(m,, my,, my) , (1.4)
we have

Dy(m,, m,, my) = u,m’ + uym; + 2u,m> +2v(m’ + mi +2m3)
+dvmi(m: + m2) + w,(m} + m> +2m3)?

+w2(mf + mg)(mg + m§) + w3(mfm§ + 2m§) , (1.5)

D (m;, my, my)=v{|m, - m1|2 +|m, - m2|2} +(2v + w;)|m, - m3|2

+4v(|m, - m3|2 +|m, - m3|2)

+(4v = w)(|m, - m,§|2 +|m, - m;lz)

+2(2v — wj) Re(m, - m, m% - m%)

+2(4v —w, —2w,) Re(m, - m% m, - m?)

+w;|m1~m2|2+w3|m1-m;‘|2, (1.6)
cf. egs. (1.6)—(1.9) of ref. 1. The coefficients u,, u,, u, of the second-degree
part in (1.5) depend on the magnetic field b, and up to quadratic terms ~b>
they are given by

u=3(@+Anb), u,=3(@—Amnb), u,=1i(t+2b°B), 1.7
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where

1 T-T 1 1
t=3NO) ——, A.=:N(0)In(1.148Aw), B.=3iN(0)

c

e A IEN]
ﬂl‘m
wlo ~

,(1.8)

cf. egs. (1.10) and (1.11) of ref. 1. In eq. (1.8) T, is the critical temperature in
zero magnetic field, B, =1/(kT,), N(0) is the density of states at the Fermi
energy, and 7 is an asymmetry parameter in the density of states N(e), i.e.

N(e) = N(0)(1+ne), for |e|<hw (nb<0),

which has been introduced in ref. 6 to explain the splitting of the A phase in an
external magnetic field. The coefficient v = {5 B, in (1.5) and (1.6) arises from a
pairing-interaction of the BCS-type and may also contain a shift due to
strong-coupling effects, the contributions with the coefficients w,, w,, w,, w}
are extra terms arising from a Hubbard interaction and will be specified later
on in (1.19) and (1.20).

In contrast to previous papers ), we do not take into account a possible
b-dependence in the coefficients of the 4th order terms in the Landau
expansion, such as e.g. in egs. (1.9) and (1.12) of ref. 1. In ref. 8, in which we
treated the phase diagram in the absence of spin fluctuations, it was argued
that this b-dependence may be important for determining the occurrence of
certain phases. In fact, in the absence of spin fluctuations there is a big
symmetry in the problem leading to a large degeneracy of phases. The
b-dependence in the 4th order terms provides the symmetry breaking that is
necessary to distinguish between the various phases. In the present paper,
however, due to the spin fluctuation terms with w,, w,, w,, w; a large part of
the degeneracy at b =0 is lifted and neglecting the b-dependence in the 4th
order terms does not give rise to problems.

1,6-9

1.2. One- and two-dimensional solutions of the gap equations

In ref. 1 we analysed the possible extrema S with order parameters
m,g, m,g, m,s that are determined by the gap equations

o
om. (mg, mys, mys) =0, (1.9)

together with the value

2 2 2
fs=P(m,s, mys, my) = sumis + Fuymog + usmsg (1.10)
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TaABLE I
One-dimensional solutions S.

S Vector #0 Inner product fs Conditions of existence

Al m, moom =0  —3uQu+w,) u, <0, 2v+w,>0

A3 m, myom,=0 —uY(4v+ 4w, + w, +2w,;) u, <0, 4v+4w,+w,+2w,>0
R3 m, myem,=ml —ui/(6v+Aw +w,+w) u;<0, 6v+dw +w,+w>0

of the function @ at the extrema, as a function of the external parameters of the
system such as u,, u,, u,. The value of the free energy fin (1.2) is determined
by minimizing fg over the different solutions S.

We have considered one-dimensional solutions with only one of the vectors
m,, m,, m, different from zero, two-dimensional solutions with two of the
vectors m,, m,, m, different from zero and three-dimensional solutions with
m,m,m, # 0. The one-dimensional solutions are presented in table I, in which
we have used the abbreviation w =2w, + wj. Apart from Al there is another
solution A1’ with m,# 0, m,-m,=0 and f,,. = —}uy/(2v + w,), which does
not occur as f,,. > f4, for nb <0. Furthermore, there are two “real” solutions
R1’ and R1' with

|m, - m,|=m>=—ul(6v+2w,) (1.11)

for R1, and a similar relation with m, and u, replaced by m, and u, for R1".
These solutions do not occur in the phase diagram, since fi, > f,, forp =1,1".

In ref. 1 we have also treated the two-dimensional solutions with m, = 0. For
these solutions fg = f;(u,, u,) has the general value

fs(uy, uy)
2
_ —Qutwita)uy+ Cwitwytwytap)uu, — 2o+ w + ay,)u;
4Q2v+w, +a,))2v + w, +ay) — 2w, + wy + wy+ay,)

(1.12)
and we have the general conditions of stability and existence
2v+w, ta,>0, 2v+w, ta,,>0,
4Q2v +wy +a) 20+ w, +ay) - CQw, +w, + wy +a,,) >0,
(1.13)

@Cw,+w,+twy+a,)u, —2Quv+w, +a,)u, >0,

@w,+w,+wy+a)u, —2Q2v+w, +a,;)u,>0,
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TasLE 11
Five two-dimensional solutions S with m, = 0.

S lm -m,|  |m,-m,| |m, -m, |m,-m3|  a, > ay;

I 0 m 0 0 0 v 0

11 0 0 mm, 0 0 0 w;

IiI 0 0 0 mym, 0 0 W,

v m m’ 0 0 v v 0

A\’ m’ ms mm, mm, v v Wi+ w,
TasLE IIT

The two-dimensional solution VI.

Inner products

. . ! . = — . *
m,-m, m,-m, Wi, s m, = —w,m, - m;,

2um; — ym; y 2um? — ym?
4p® ~ 5’ W' —y®

1/2

=2v{|m, - mll Imz -my|}

Parameters
a, ay ay Y
2
YV y’v 4v’y wiw;
2 2 -
4y —y 41)2-—')12 4[}2—72 w3+w§

in which the coefficients a,,, a,, and a,, depend on the solution S. The values
of a,;, a;, and a,,, as well as the inner products involving m, and m,, are
presented in tables II and III.

Apart from these solutions there is a solution I' with |m,-m,|=m?,
|my-m,| =0, m,-my=m,-m%=0, a,, =v, a,,=a, =0. For nb <0 we have
fi > fi, so that I' does not occur in the phase diagram. Other solutions which
occur only under the condition w; + w; =0 and which have been used in ref. 1
for the construction of three-dimensional solutions are not taken into conside-
ration here. Solution I is a solution with a spontaneous magnetization, as f
contains a term ~nb, II is the so-called two-dimensional solution for the first
time given in ref. 10 in the special case b =0 (m, = m,, u, = u,), and Il is the
ABM solution'"). In the special case b =0, solution IV has been referred to as
the bipolar phase'®), solution V as the polar phase and solution VI may be
regarded as belonging to the so-called axiplanar phase first considered by
Mermin and Stare as cited in ref. 12.

For the two-dimensional solutions with m, = 0, f,(u,, u,) has the general
value

(s 1) = —(4v + 4w, + w, +2w,)ul +2(4v + dw, + w, + a)uu, — 420 + wy + a )l
ST T A(dv + 4w, + w, +2w,)2v + w, +a,,) — (dv + 4w, + w, + a,,)’ )
(1.14
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TABLE IV
Two-dimensional solutions S with m, = 0.
S |m, - m,| | - m,| lm, - m;| lm, - m3| ay 813
VI m? 0 0 0 v 0
VIII 0 0 mm, 0 0 4v

and here we have the conditions of stability and existence
2v+w +a,; >0, 4v+4w, +w,+2w,>0,

4(4v +4w + w, +2w,)2v + wy +a) — (v +Aw, + w, + a,,)° >0,
(1.15)
(4v+dw, +w,+a;)u; — (4v+4w, +w, +2w,)u, >0,

(4v+4w +w,+a,)u, —4Qv +w, +a,,)u; >0,

in which a,, and a,, depend on the solution S. The values of 4,, and a,,, as well
as the inner products involving m, and m,, are presented in table IV.

In the special case b =0 phase VII reduces to the so-called e-solution
introduced in ref. 12, and both solutions VII and VIII have a spontaneous
magnetization. Apart from VII and VIII there are two solutions with m, = 0,
namely VII' with |m,m,|=m}, m,-m;=m,-m,=m,-m*=0, and VIII'
with |m, » ms| = m,m;, m,-m,=m,-m,=m,-m*=0.

1.3. Three-dimensional solutions

In ref. 1 we have also investigated the three-dimensional solutions with
m;m,m; # 0 under the two following assumptions which we believe to cover
the physically interesting cases:

i) The inner products m,-m, and m, ‘m} (p,q=1,2,3) of the vectors
m,, m,, m; can be chosen to be real.

ii) The orientation of the vectors m,, m,, m, satisfy an inertia condition
expressing a certain rigidity with respect to variations of the external parame-
ters. More specifically we have assumed that the Landau expansion can be
minimized under the conditions

m, - m3 = mrm3)‘r3(mf ’ m; » mg) b4
(r=1,2). (1.16)

. * 2 2 2
m.-m;= mrm3ﬂr3(ml » My, m3) 4

Using (1.16) and (1.10) we have determined the various possibilities S for the
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geometrical configuration, i.e. the directions of the vectors m,, m,, m, that
minimize P(m;, m,, m;) at fixed values of the lengths m,, m,, m, of the
vectors. For each geometrical configuration S one can then insert the values of
the linear products m,-m,, m,-m} in ®(m,, m,, m,) to obtain a 3-parameter
function &, (m;, m,, m;) depending on the lengths. The values f,=
fs(uy, u,, u,) for the various solutions can in principle be obtained by minimiz-
ing &s(m,, m,, m,) with respect to m,, m,, m,. Due to the presence of terms
like Re(m, - m, m% - m%) and Re(m, - m% m, - m3%) in eq. (1.6), it is not always
easy to do this analytically.

Using the procedure sketched above we have obtained 8 three-dimensional
solutions IX-XVI and the absolute values of the inner products are presented
in table V, which yields in particular the following conditions of existence:

2 _|Wstws .
m; < |z>——|mym,, for solution XI,
20— w,
(1.17)
’= ‘ 2V~ Wy for solution XVI
=z | o——|mm uti .
s 2o+ wy

In table V we presented only the absolute values of the inner products, in table
VI we present some further details on the signs as they may be relevant for the
evaluation of the free energy.

As it is not so easy to ecvaluate the corresponding values of f=
fs(uy, uy, uy), we shall restrict ourselves to the three-parameter functions
@,(m,, m,, m;) that are obtained inserting the values of the inner products as
given in table V and table VI into egs. (1.4)-(1.6). The three parameter
functions are then given by

D(m,, my, my) = u,m’ + u,m} + 2u,m’ + Qv + w, + b,)m;
+(2u + w, + b,)mj + (4v + 4w, + w, + 2w, + by)m;
+(4v + 4w, + w, + b )mim)
+(4v + 4w, + w, + b )mim]
+Q2w, + w, + w, + b )ymim; — 2b,mim,m, (1.18)

in which the values of the coefficients b, b,, . . . , b, depend on the solution S.
The values are presented in table VII.

From the solutions presented in tables V-VII, solution X for 2v > w; is the
BW solution as presented in ref. 8. In the special case b =0 one has the
relation m? = m} = 2m? which indeed is characteristic for an isotropic super-
fluid"), but for b0 the values of m,, m,, m, can be quite different. For
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TaBLE VI
Signs of inner products for three-dimensional solutions S.
S Inner products
IX with m, - m, = m} my+m,=—mm,sgn[6v —w, — 2w, — wj]
X with m, - m, = m} m, m,=—m;m,sgn[2v — wj]
2v ~ w,

. — 2 — 2 3
XI with m, - m,=m; m,-m,=—m; Wt W,
XII with m, - m, = m} m,-m,=—mm,sgn2v — w;]

. 2v—wy
XVI with m,-m, = m m, myem;=—mm, m

2v < wj the special case b =0 leads to m}=m’<2m> which describes an
anisotropic superfluid. The solutions XIII and XIV can be regarded as three-
dimensional extensions with m;# 0 of the ABM solution, and solution XIV
has already been considered in ref. 8. Solution XVI which has also been
treated in ref. 8 can be considered as a three-dimensional extension of the €
solution VII'?). For a more complete description of the bifurcations of
three-dimensional solutions at lower-dimensional solutions, see fig. 1 at the end
of ref. 1. Finally, it should be noted that none of the solutions IX-XVI has a
spontaneous magnetization. This is clear from thc apparent symmetry in table
VI between m; and m, corresponding to the ordering of {1 and || spin pairs,
except for the solutions XV and XV'. A more detailed calculation, cf. appendix
C, shows that the corresponding fy., and fy,,. do not contain terms ~nb.

1.4. Spin fluctuation parameters

Due to the large number of phases it is a very hard task to study the
complete phase diagram as a function of external parameters for arbitrary
values of the coefficients w,, w,, w,, wj. In order to get some insight in the
values of these coefficients we considered in ref. 5 a model hamiltonian
consisting of a kinetic energy term, a Zeeman term, a pairing interaction of the
BCS-type, and a contact term of the Hubbard type, cf. egs. (1.1)—(1.4) of ref.
1. As a consequence of a theorem due to Bogolubov Jr.'*7'), the free energy
of the model can be expressed as the minimum of the free energy of a
reference system taken with respect to the order parmeters of the system. The
reference system is descibed by a hamiltonian containing the kinetic energy,
the Zeeman term, and the complete Hubbard term, but a bilinear approxima-
tion to the pairing hamiltonian. Using a perturbation calculation for the
Hubbard term in the hamiltonian of the reference system, one can evaluate the
coefficients w,, w,, w;, w; exactly up to a certain order in the coupling
constant / of the Hubbard hamiltonian.
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In ref. 5 we evaluated these coefficients up to the order I°. The results are
given by, cf. eq. (1.13) of ref. 1,

w, = (3.4) % BQmI’k: (AN(0)",
w, =(—-13.6) & BQR#wI)’k; (A N(0))*, (1.19)
wy = wi=(25.4) 1 B2wI) ks (3N(0))* .

The relation w, =w; in eq. (1.19) is a consequence of the second order
perturbation calculation and cannot be expected to hold when (higher) odd
orders of perturbation are taken into account. In the investigations on the
phase diagram which will be reported in this paper we shall not insist on the
precise values of the coefficients w,, w,, w,, wj, but we shall assume only
some global characteristics, such as that the signs of w,,w,, w,, w] are
correctly given by (1.19), i.e.

w, >0, w,<0, wy;>0, w;>0. (1.20)

Eq. (1.20) may be plausible in view of the usual considerations about enhance-
ment which suggest the results obtained in non-vanishing lowest order should be
multiplied by appropriate (positive) enhancement factors. In connection with
this it can be noted that the spin fluctuation model, in which the contributions
from the Hubbard term are expressed in terms of dynamical susceptibilities
with the use of certain statistical approximations, leads to the values w, =
(-0.25)%B.6, w,=(0.5)%B.5, 2w,=(—1.25)4B., 2w;=(-0.25)%B.3,
where 8 is a (positive) parameter depending on the coupling constant I. The
signs of these values, which have been derived in ref. 17 for unitary states, do
not agree with (1.20), and the signs are not affected by considering only terms
up to the order / 2

In the present paper we shall work out two specific applications with regard
to the phase diagrams of liquid ’He in the presence of a magnetic field. In
section 2 we shall address ourselves to the problem of the stability of the phase
diagram in the absence of spin fluctuations as considered in ref. 8, i.e. we
consider the problem of determining to which extent this phase diagram will
undergo qualitative changes, in the presence of a small Hubbard interaction. In
this limit it is safe to assume that the signs of w,, w,, w,, w} are correctly given
by (1.20), and w,, w,, w;, w; can be taken to be small as compared to v.
Under these conditions it is shown that the ABM phase does not occur in the
phase diagram, in contrast to the situation described in refs. 6 and 8. In fact, in
this case the ABM phase is less favourable than phase VI, as given in table III,
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which in the absence of spin fluctuations, (w, = w; =0), is degenerate with the
ABM phase. A second problem which is treated in detail is the case that b = 0,
also for larger values of the coupling constant I of the Hubbard interaction.
This will be done in section 3, where we also assume that the signs of
w,, W,, w;, w; are correctly given by (1.20). Finally, in section 4 we give some
concluding remarks and we pay also some attention to the so-called profound
effect'®). We also discuss the case that the coefficients w, and w) are negative,
as suggested by the spin fluctuation results of ref. 17, and show that the ABM
phase can indeed occur under such conditions.

2. Phase diagram under small perturbations of the Hubbard type

2.1. Non-occurring phases

In the introduction we have presented a large collection of solutions of the
gap equations (1.9); namely A1-A3, I-XVI, which, apart from all one- and
two-dimensional solutions, with one of the vectors m,, m,, m, equal to zero,
include all three-dimensional solutions with real inner products satisfying the
inertia condition (1.16). In this section we investigate the possibility of changes
in the phase diagram as obtained in ref. 8 in the absence of spin fluctuation
effects, under a small perturbation of the Hubbard type. For sufficiently small
Hubbard interaction many of these solutions can be ruled out as possible
candidates for the phase diagram. More specifically, the following remarks can
be made:

i) Considering the case that nb <0, we have f,,. > f,,, and f;. > f;, as stated
in section 1, implying that the phases

Al, T
do not occur for nb <0.
ii) The phases
A3, R3, 1V, XIII, XIV

can never lead to an absolute minimum of the Landau expansion. This will be
proved in appendix A.

iii) Under the conditions w,>—2v, w}>—2v, which include the
inequalities (1.20) as a special case, the phases

V, IX, XI, XII

do not occur, as will be shown in appendix B.
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iv) Finally, for sufficiently small values of w,, w,, w,, w; satisfying (1.20)
one can rule out the phases

VII, VII', VIII, VIIT', XV, XV', XVI .
This is shown in appendix C.
2.2. Phase diagram for one- and two-dimensional phases
Taking into account the remarks (i)—(iv) we are left with the phases
Al I, I1, III, VI, X (2.1)

and in the remainder of this section we shall compare the f; for these solutions
S. From table I, we have

2
Uy

fa= 3ot wy - (2.2)
Furthermore, from (1.11) and tables II and III we have
fi=—1 (u, + ”2)2
! “ 5u+4w, + w, + wy — /(50— w, — wy)
1, (uy + uy)(uy — u,)
27 (5u+ 4w, + w, + w)(5v —w, — wy) — v’
1 (u, — u2)2 3
— 3 2 ’ (2 )
S5v—w,—wy,—v/(5v+4w, + w, + w,)
_ 1 (u, + uz)2 1 (u, — uz)z 4
fII - T3 7 4 _ _ o (2 )
4v+4w, +w, + w;+w; 4v —w, — w; — W,
__1 (u, + u,)° (uy - u,)” 2
fIII -4 3 — — ’ ( 5)
4v +4w, + w, + 2w, 4v —w, — 2w,
for=—1 (u, + u2)2
Vi Y Qv +4aw, +w,+ wy+2y0/Qu+y)
(u, — u2)2

(v =wswi/(ws + w3)).  (2.6)

PN

dv—w,—wy—2yv/QRu—1y)’

The corresponding values of m? and m} at the minimum can be inferred from
the relations m> = afy/du,, m? = af,/du, for the solutions S = A1, I, IT, IIT and
VL
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From the conditions (1.13) the first three inequalities are trivially satisfied
for sufficiently small w;, w,, w,, w;, the fourth inequality yields u, <0 and
from the last one we obtain

Uy~ _ 4dv—w,—wy;—a,, +2a, @.7)

u,+u, 4v+dw, +w,+w,+a;,+2a, '
in which the equality sign corresponds to a possible bifurcation of solution S
with the Al phase. Comparing the values of a,,, a,,, as given in tables II, III,
it is easily seen that the right-hand side of (2.7) is largest for the bifurcation of
phase I and A1, so that one may anticipate a second-order transition A1—1I at
the value

u, —u v—w,—w
1 2 2 3

= . 2.
u,tu, 4v+t4w,+w,+w, (2.8)

Furthermore, we may have a second order transition from phase VI to phase I,
when m, - m, = —m. for phase VI as mentioned in eq. (2.20) of ref. 1. Using
the values of m, - m, given in table IIl we obtain the condition 2vm> = ym?,
and inserting the values m? = dfy,/duy, m? = 3f,,/du, that are obtained from
eq. (2.6), or equivalently from (2.3), we find for the second order transition
Vi—1

20[-2Q2v + w)u, + 2w, + w, + wy)u,]

=y[-2Q@v + w)u, + Cw, + w, + wy)u,]. (2.9)

Comparing (2.9) and (2.8) it is easy to show that the transition I— VI takes
place at a larger value of u,/u,, i.e. a smaller value of b, than the transition
I— Al. Hence, we get the following picture, as given in table VIII, when only
the phases Al, I and VI and the normal liquid phase N with m, = m, = m, =0
are taken into account.

Finally, it can be shown that for sufficiently small values of w,, w,, w,, w}
satisfying (1.20) the phases II and III do not occur. In fact, from eq. (1.18) with
m;=0and b, = a,,, b, = a,,, bg = a,,, as given by tables II and III, we have

Dy — D = mimZ[w, — vm? ml, (2.10)
2
vy 2 242 2yv ) 22
Dy — By = —2— (m? — (w, -
111 VIT g7 72 (mi—my)" +\w, 20+ mym, . (2.11)

Evaluating the right-hand side of (2.10) at the minimum of solution III, we
have
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TasLe VIII
Phase diagram for one- and two-dimensional solutions in the presence
of a small Hubbard interaction.

Phase Conditions of existence

VI u, <0, 0< Z—:;r%: <B

I u, <0, B< Zi ; Zz <1 104;1"’; ;ij W3

Al <0, iv4:v1wj v_vzw+3 W, Zi v Zi

N we, pe(Rgy) e i

2v — 2w u, —u, 4dv+4w, +w, +2
d’m_‘px'_‘mfmi[ : : ? e W3:|>0,

_2v+2w3 u, +u, 4v — w, — 2w,
(2.12)

as follows from the inequalities 2v0y/(2v — y) < w,, B<(u; — u,)/(u; + u,), of
which the first one is satisfied for w,, w;> 0, w} <2v, and the second one is the
existence of condition of phase I, as can be seen from table VIII.

Furthermore, using the inequalities 2vy/(2v + v) < w;, 2v = y of which the
first one is identically satisfied for w,, w} >0, and the second one follows from
table VIII for phase VI, in combination with the second line of (1.13) and the
fact that (u, — u,)/(u, + u,) must be positive, we also obtain fi, > fy1, implying
that phase IIT does not occur. By a completely analogous line of reasoning, i.e.
replacing some of the w, at appropriate places by wj, one can also rule out
phase I1. This means that for sufficiently small w,, w,, w5, w}, satisfying (1.20),
the phase diagram of the one- and two-dimensional phases is completely
determined by table VIII.

2.3. The BW phase

To complete the phase diagram under the influence of a small Hubbard term
we must also take into account the BW solution X given by (1.18) and table
VII. We have

D, = (u, + AMuy)mb + 2u,m; + C,mi + Cyymiy + C,,mim3, (2.13)

in which we have introduced
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Ciy = (20 + w)(1+ 2%+ 2w, + wy + wy + wiA?,
Cps=(4v + 4w, + w,)(1+ A% —2]2v — wjA, (2.14)
Cyy=6v+4w, +w, +2w;+wi, A=m,/m,.
The free energy value f; can be expressed as
fe=min f(A), f(A)=min @y(m,, m,), (2.15)
and the gap equations for solution X are equivalent to d®Py/am; =0, 3P/

dm; =0, df/dA=0. The condition that these equations have a solution
m,m, #0 is given by

L+l 2 {_9_—_”}
(1429 +:0 A)u1+u2 u,+u, Al u, +u,
dc
2C, Cis _d_Au =0,
dc
C13 2C33 dA13

(2.16)

from which A may be solved at given values of u,, u,, u;, v, w;, w,, wy, w;.

To study the first order phase transitions between phase X and the other
phases VI, I, Al, we have to use the relation f;; = f; with S = Al, I, VI. Here
fx is given by (1.10), in which m?, m5 and A can be solved from the gap
equations for m, and m, and (2.16). Furthermore, from (2.2), (2.3) and (2.6)
we have

fs= “%fuuf = 3 fioUyty — %fzzui ) (2.17)
in which the constants f,,, f,,, f5, for the phases S = A1, I, and VI are given by

1
phase Al: f,; = P f=fr=0;

phase I: L(fi +fi,+fn)=2[5v+4w, +w,+w,—v/(5v—w,—w,)]",
%(fu t o) = %[SU Wy Wy vz/(5v +4w, +w, + W3)]—1 s

%(fu —fn)= %v[(Sv +a4w, +w, +w)(Sv —w, —w,) — Uz]_l >
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phase VI:  L(f,,+fi,+ f) = L[4v + 4w, + w, + w, + 2y0/2v + v)] ',
(o= fi) =340 —w,—wy = 2y0/Qu—y)] ',
fu=rfn- (2.18)

Using (2.17) and (2.18) we have another linear relation in m’ and m? and
combining it with the gap equations for m, and m;, we obtain the condition

- 2
(fu + o+ fi2) H+A) -
+3(fu o~ fo)u ~ u2)2/(ul + u2)2 ! : ! ?
+ %(fu _fzz)(ul - uz)/(u1 + uz) —
—Uu
%(1+A2)+ %(l_kz)%i 2Cy, Ci
uz-:-‘zu Cis 2Cy,
1 2
(2.19)

Using (2.16) and (2.19) the first-order transition between BW and S=
Al, I, VI at fixed v, w,, w,, w;, w; can be determined by solving for each
A-value with 0 <A <1, (u, — u,)/(u; + u,) and 2u,/(u, + u,) from (2.16) and
(2.19). In doing so, the phase S should be chosen such that the value of
(u; — uy)/(u,; + u,) is in agreement with the condition for phase S as specified
by table VIII, i.e. (4, — u,)/(u, + u,) should lie in the region of the phase
diagram where S occurs. In the limiting case A T 1 we have from (2.16)
(u;, — u,)/(u; + u,)—0 and 2u,/(u, + u,) can be solved from (2.19).

The phase transition between BW and S =VI, L is a first-order transition, but
the transition between BW and Al may be of second order. At such a second
order transition A and m; tend simultaneously to zero, and from the gap
equations for m, and m, one has the bifurcation condition

u, 4v+dw, +w,

= .20
u, 4v + 2w, (2.20)

Apart from (2.20) one has the condition d’f/dA* >0 at A =0, which ensures
that the BW solution with A— 0, m;— 0 corresponds to a minimum. Consider-
ing the gap equations at very small values of A and using the condition
dzf/d)\2 >0 at A =0, it can be shown that the BW solution occurs at lower b
values, for which 2u,/u, is larger than the r.h.s. of (2.20).

Using the derivative

1_14_ 9 dm, o dmy
dA 9r  am, dr  am, dA

(2.21)
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and solving dm,/dA and dm,/dA from the equations d/dA(3¢/dm,) =0 and
d/dA(d¢/am,) =0 one obtains the relations

&f
da?

62¢ 62¢ 62¢ ( 82¢ )2 62¢_( 62¢ )2 62¢
LK) N am, dA dm, 04 am, om;  \om,dA/ omi \omydr/ om?
2
oA 62¢ 62¢_< 6242 )2

am; om> \om, om,

(2.22)

in which ¢ = @,. Evaluating the second derivatives in (2.22) with (2.14) and
(2.19) one obtains the condition

1 _s dF u, 202w, + w, + wy + wh)
L —5=-2-24 -C=0, (22
wraw, ™M o T, 40+ 2w, €=0. @22)
with
20 - wy)’
c= 42— w3) (2.24)

42 + w )6V + 4w, + w, + 2w, + wh) — (4v + 4w, + w,)?

On the basis of (2.23) one can investigate the order of the transition in the
limit 5 | 0, and also at the second-order line between I and Al. In the limit
b | 0 we have 2u, | u, +u, and with the bifurcation condition (2.20) we
obtain 2(w; + w3) = C as the condition to have a second-order transition in the
limit b | 0. At the second-order line between I and Al, we have u,lu, =
(2w, + w, + w3)/(4v + 2w,) leading to the condition 2w} = C in order that the
BW— Al transition is of second order. Combining the results stated above we
obtain table IX.

TasLE IX
Order of BW— Al transition.
Condition for w,, w} Order of transition
Aw, +wy)<C first order
2wy C<2(w, + wy) second order for b<b,,

first order for b = b,
2wy= C second order
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2.4. Phase diagrams

We now present some phase diagrams in the case of a small Hubbard
interaction. The phase diagrams are plotted in the xy-plane, in which x and y
are defined by

2

—tB, ~-bB, u,—u 2u 2
x=-—5—, y= e A = (2.25)
A A u,+u, x’ u tu, x

In figs. 1-4 we present the phase diagrams for the values w, =0, w, =0.03v,
w, =0.05v, w, = 0.10v, taking w,/w, = —4 and w,/w, = wi/w, =(25.4)/(3.4),
in accordance with the second-order results of (1.19). The second-order phase
transitions have been indicated by solid curves and the first-order transitions by
dashed curves. The second-order lines between VI and I and between I and Al
have been obtained from table VIII, the second-order line between BW and
Al as far as it occurs has been found from (2.20), and the first-order lines
between BW and S =VI, 1, Al have been evaluated from (2.16) and (2.19). In
terms of normal temperature and magnetic field variables, i.e. ¢ and b, the
phase transition lines have much larger slopes, as the y coordinates have to be
multiplied by —(A_7m)/B, and the x coordinates by the much smaller factor
(A.m)%B..

Fig. 1 is the phase diagram in the absence of spin fluctuations which has been
presented in ref. 8. In this case there is no phase I, and phase VI is degenerate
with other two-dimensional phases such as II or III. When one considers phase
I, the transition between BW and II is of second-order at sufficiently large x
and there is a tricritical point6’8), with y/x =0.922, yz/x =0.092, A=0.202, at
which the transition becomes first-order. When one chooses another (degener-
ate) two-dimensional phase the transition between BW and this phase is always
first-order, and the point y/x =0.922, y*x =0.092 separates a regime of
first-order transitions without latent heat from a regime of first-order transi-
tions with latent heat. Furthermore for y values smaller than the one at the
critical point, the value of A remains constant along the first-order line. Apart
from the critical point, there is a critical endpoint of y ~0.05, x ~0.05, where
the second order line between Al and the two-dimensional phase meets the
first order lines between BW and the two-dimensional phase and between BW
and Al. On the first-order line between BW and Al, the A value decreases
from 0.202 at the critical end point to A ~0.14 in the limit y | 0.

In fig. 2 we have plotted the phase diagram for a relatively small value
w, =0.03v. In this case phase VI is no longer degenerate with the two-
dimensional phase II and the ABM phase III, but the difference between these
phases may be rather small and not so easy to detect. Apart from this, phase I
has appeared in a rather limited area of the phase diagram. There is a critical
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BW

03 02 o1

Fig. 1. Phase diagram in the xy-plane in the absence of a Hubbard interaction. The solid curves
are second-order transitions, the dashed curves first-order transitions.

03 02 01 O -ot

Fig. 2. Phase diagram in the case that w, = 0.03v, w,/w, = —4, w,/w, = wi/w, = (25.4)/(3.4). The
solid curves are second-order transitions, the dashed curves first-order transitions.
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end point at y ~0.11, x ~ 0.14 at which the second order line between VI and I
meets the first order lines between BW and VI, and between BW and I. There
is another critical end point at y ~0.04, x ~ 0.05 at which the second order line
I— Al meets the first order lines BW-->1 and BW— Al.

In fig. 3 we have given the phase diagram for a slightly larger value
w, =0.05v. The phase diagram is analogous to the one for w, = 0.03v, apart
from the fact that at small values of y the transition between BW and Al is of
second order. There is a tricritical point at y ~0.03, x ~0.03, at which the
second-order line BW-—> Al changes into a first-order line. Apart from that
there are two critical end points, one at y ~0.05, x = 0.06 with regard to the
phases BW, I and A1, and another one at y ~0.13, x ~0.20 with regard to the
phases BW, VI and 1.

In fig. 4 we have presented the phase diagram at w, =0.10v. Here the
transition between BW and Al is always of second order and at y ~0.10,
x ~0.13 there is a bicritical point at which the two second-order lines between
I and A1, and between BW and Al, meet the first-order line between BW and
I. Finally at y ~0.17, x ~0.40, there is a critical end point at which the
second-order line VI— I meets the first-order lines BW—VI, and BW— 1.

As a conclusion one may state that the phase diagram obtained in ref. 8 with
phase VI as the two-dimensional phase remains qualitatively the same under
small perturbations of the Hubbard type, apart from the occurrence of phase 1
in a very small region of the phase diagram. For slightly larger values of the

015

o1

035 01 ot O -oif

Fig. 3. Phase diagram in the case that w, = 0.05v, w,/w, = —4, wy/w, = wi/w, = (25.4)/(3.4). The
solid curves are second-order transitions, the dashed curves first-order transitions.
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BwW

oy 03 02 01 O -of

Fig. 4. Phase diagram in the case that w, =0.10v, w,/w, = —4, w,/w, = wi/w, = (25.4)/(3.4). The
solid curves are second-order transitions, the dashed curves first-order transitions.

Hubbard interaction the first-order BW— Al transition changes into a second-
order transition. On the other hand, considering small negative values of
w;, w;, the phase diagram with phase III for w;> w; and with phase II for
wj; < w, will remain qualitatively the same as the one presented in ref. 8, see
also the discussion at the end of section 4, but negative values of w,, w; are not
in agreement with the signs in (1.20) obtained by second-order perturbation
treatment of the Hubbard interaction.

3. Phase diagram for » =0

In the previous section we have shown that in the presence of a sufficiently
small Hubbard interaction many of the solutions A1-A3, I-XVI do not occur.
In fact, we showed that one only needs to take into account the phases Al, I,
VI and X for a qualitative description of the phase diagram. For b =0,
however, there are many simplifying features. In this section we study the
phase diagram for b =0 also for larger values of w,, w,, w;, w; under the
restrictions

w,<0, w;>0, wi;>0, g=-w,/w,<1. (3.1)
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The first three inequalities in (3.1) express the assumption that the signs of
w,, w,, wj are correctly given by (1.20) and g <1 is well obeyed in a large
range of parameter values including the ones in (1.19).

3.1. Free energy of phases at b=0

We now present a list of the free energies of the possible phases at b =0
together with their regions of existence in the space of spin fluctuation
parameters satisfying (3.1). In section 2 we mentioned that the phases

Al T

cannot occur for nb <0. For nb =0 these phases are degenerate with the
phases A1 and I respectively. Here we only consider the phases that pertain for
infinitesimal nb < 0. Furthermore it was shown in appendices A and B that the
phases

A3, R3, IV, IV' V, IX, XI-XIV

do not lead to an absolute minimum of the Landau expansion under the
condition (1.20) or (3.1). This is so for b0, but for b =0 phase XI is
degenerate with phase X at 2v < w}, and phase XIV is degenerate with A1 for
4v < w, + 2w,. From the remaining phases, phase VII is degenerate with VII'
and phase VIII is degenerate with VIII' at b=0; cf. also egs. (C.8) and
(C.10). When both phases XV and XV’ exist, phase XV is favorable with
respect to XV’ for nb <0, cf. eq. (C.13), but for b =0 both phases are
degenerate, and phase XVI is degenerate with VI at b = 0. Finally, comparing
eqs. (2.4) and (2.5) with (2.6), it is clear that for nb =0 (4, = u,)

fu>fs fu>fae (3.2)

Hence, we are left with the phases
Al, 1, VI, VII, VIII, X, XV . (3.3)

All these phases S exist under the condition u <0 (u; =u,=u,=u,b=0),
together with (3.1) and some additional conditions which we denote by Cg >0
depending on the type of solution. The free energy of the different phases can
be expressed as

2

fi= = (Ns>0), (3.4)
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and in table X we present Ny and Cg for the phases (3.3), and also for the
phases which are degenerate at b =0, but will not occur for nb <0. N,, has
been given in eq. (2.2), and N; and N, follow from (2.3) and (2.6). C,=0
describes the bifurcation at b =0 between the phases I and Al, the first
condition Cy,; = 0 decribes the bifurcation at b = 0 between the phases VI and
I, cf. table VIII, and the second condition C,,; =0 the bifurcation at b =0
between the phases XVI and VII, cf. eq. (C.17). Ny, and Ny, can be inferred
from (1.14) and table IV. C,; =0 is the bifurcation at b =0 between the
phases XVI and VII and Cy;; = 0 is the bifurcation condition at b = ) between
VIII and A3, which, however, does not occur in practice. Ny and Ny, can be
found taking the minimum of (1.18) with 4, =u,=u,=u, and b,,..., b, as
given by table VII for the solutions X and XI. The condition Cy =0 for
2v < w; follows from the requirement that m3 >0, whereas solution XI exists
under the condition 2w, + 3w; — 2v >0 which is automatically satisfied when
Cx >0 and wj > 2v. Finally, Ny, follows directly from eq. (C.13) of appendix
C, and Cy,, = 0 turns out to be important for determining the phase diagram at
b=0.

Remark. For the sake of completeness we also list the denominators N,
together with the degenerate solutions at b = 0 for the solutions which do not
occur under the condition (3.1), cf. table XI. For these (degenerate) solutions

TaBLE X
Possible phases S under the condition (3.1) at b =0, together with the degenerate phases, the
denominators N and additional conditions of existence Cg > 0.

S Degenerate phase . Ng Cs
Al All, X1V 8v + 4w, -
I I 50 +4w, + w, + wy — v(50 — w, — w;) dv—w,—wy
5 4v—w2—w3—227_0
YU v-y
VI XVI dv+4w, +w, + w, +
2v+y 8wl
8v_wz_w3—2u+w;
8v —w, —2w. Swiu
viI vir 4v+4w +wy+wy+ —2 3 -{ —w,— ___3_}
M T T R T, — 2w, 3 By —wy = wy 2v+ w)
VIII VIIr 8u + 4w, + w /(4v + w, — 2w,) wy — 20
X X1%) 4o +4w, + w, + wy + W 2wy + 2wy — v ?)
_ {wstwit 2o - wyl)’
20 + 3w, +2w; + [4v — 2wy
XV XV Ko +dw, +w,+ w, (w3 = 0) (50— wy — w;) 30’

') under the condition 4v < Wy + 2w,
?) under the condition 2o < wy.
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TabLE XI
The remaining solutions S at b =0, together with the degenerate
solutions and the denominators N for the free energies

S Degenerate solutions Ny

Rl RU,IX (6v<w,+2w,+w;) 12v+4w,

II XIT (w;<2v) 4v+4w, +wy+ wyt+wy

I A3, XIII (w, <2v), 4v +4w, +w, + 2w,
X1V (w, + w, <4v)

IV IV, XII (w3 >2v) 6v+4w, +w, + w,y

v R3, IX (6v>w,+2w, +w))  6v+dw, +w,+ 2w, + w,

we have not investigated, however, which solution will be the most favorable
one for nb <0.

The tables X and XI contain the complete information on the denominators
N for all solutions S at b =0, independent of the values of the spin fluctuation
parameters. From the solutions presented in table XI, the solutions R1, RY’,
A3, R3, IV, XIII and XIV can never occur, see also appendix A.

3.2.. Phase diagram at b =0

In order to describe the phase diagram we introduce the quantities

!

z=3iw,lv, z'=3iwilv, —qz=iw,lv, (3.5)

where we take z >0, z' >0, 0 < g <1, in agreement with (3.1). We first show
that phase Al will not occur under these conditions. Next we investigate the
phases I, VII, VIII and XV, for which Ng does not depend on z’, and finally the
two phases VI and X with denominators Ny depending on z, z’ and g will be
studied.

Phase Al. Comparing Al with VIII and XV, we have
Far <fomn—4v+w, —2w,>0—>z<(1+ q)7' <1, (3.6)
far<fav—3v—w,— 3w, <0->2<(1-39)z. (3.7
Eq. (3.6) implies that for z >1, where VIII exists, we cannot have Al. Eq.
(3.7) cannot be satisfied for 0< z <1, and if XV does not exist for z <1, we

have fyy > fyn, so that Al does not occur at b =0.

Phases I, VII, VIII, XV. Using the results of table X it is straightforward to
show that
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2(Ny— Nyy) /v =-3F(2)/(5 + (g - 1)2), (3.8)

3(Nyn — Nxy)/v==3F(2)[(4+ (g +2)2), (3.9)

2 (Nym = Nxy)/v = —3F(2) (¢ +2)2 - 2), (3.10)
where

F2)=(1—-q)z2* - {(6—q)z+2. (3.11)

For every g with 0 < g <1, F(z) has two zeros z_ and z, which are explicitly
given by

_16-¢g {i(ﬁ:_‘l)z_i}m
22T31-¢g  \16\1=¢q/ " 1-¢J ° (3.12)

so that in particular —1+V3<z_<1, z,>2/(1—gq). It is clear that the
condition Cy, >0 is equivalent to F(z) <0. F(z) <0, together with the condi-
tions C; >0 and Cy;; >0, implies that N; > Ny, Nyy > Nyy, Ny > Ny in
egs. (3.8)—(3.10), so that phase XV will be favorable in comparison with the
phases I, VII and VIII for z_ <z<z,. For z> z_ the conditions C, >0 and
Cxy >0 do not hold and we can only have the solutions VII and VIIL. It is easy
to see that Ny, < Ny from egs. (3.9) and (3.10), so that phase VIII will be
more favorable for z >z, . For 0<z <z_ only the solutions I and VII exist,
and from (3.8) and (3.9) we have N;; < N, for z <1, so that phase VII will be
more favorable for 0 <z <z_.

As far as the phases I, VII, VIIII, XV are concerned, we have the following
picture. Phase I does not occur, phase VII occurs for 0 < z < z_, phase XV for
z_<z<z, and phase VIII for z>z,.

Phases VI and X. From table X it is straightforward to derive the following
expressions:

YNy~ Ny v=2"—1, (3.13)
4 F(z)
1 —_ = r__ R — A ’
i(Nx = Nyy)/v=2z"—1+ 32t q)z—2 8(z, z'), (3.14)
12(z+1=N+2z-2) 1 a(z,2)
1 _ - _1 >
2(Nyi = Ny) v 3 z+2z'+ zz' 3z+z2'+2zz2"°

(3.15)
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z+1 , ,
F(Nyi = Nx)/v =~ (@ + Dz +1) =327 - 1]
_ 2+ 1B 2)
- 7+ 2"+ 22 ’ (316)
zZ2-(1-iq)z(z’ +1 2 '
$ Ny = No) /o = )2 DL 9@ z) g

QA+iq)2)z+2 +22)) z+2z'+zz'

From (3.13) we see that X can only occur for z’' <1, and XV only for z' > 1.
Using (3.15) and (3.16) it is clear that we may have phase VI under the
condition B(z,z')<0 for 0<z'<1, and a(z, z') <0 for z' > 1. Both condi-
tions imply that z <1, so that there cannot be a phase transition between VI
and VIII. From eq. (3.17) and z < z_ we find that phase VII may only occur
for z' > 1, so that there is no phase transition between X and VIL

"We can now discuss the possible phase transitions. For 0<z <1, 0 <z’ <1,
the only possible phases are X and VI and there is a first-order transition which
is given by B(z,z')=0, 0<z'<1. For 0<z<1, z'>1, we can have the
phases VI, VII and XV. Phase VI is most favorable for a region containing
z’>%1, z=0 and z'=1, z<1, and XV is most favorable for a region
containing 1<z <z,, z' > 1. Phase VII will actually occur, since a(z, z') >0
for z = z_ at sufficiently large z’. There is a second-order transition between
VII and XV at z=2z_, a first-order transition between VI and VII at
¥(z,z')=0, and a first-order transition between VI and XV for a(z, z') =0.
Note that y(z, z') =0 corresponds to Cy; =0, so that ¥(z, z') = 0 describes
also the second-order transition between XVI and VII. For z>1, z'>1 the
only possible phases are XV and VIII and there is a second-order transition at
z=z,. Finally, for z>1, 0<z’' <1, we have only X and VIII, and there isa
first-order transition at 8(z, z') =0.

On the basis of the considerations given above we have obtained the phase
diagram at b =0 under the condition (3.1), as given in fig. 5. The phase
transition lines y =0, a =0, 8 =0, § =0, z =z, z = z_ have been indicated
in this figure. The transition line z' =1 between X and XV is a first-order
transition, since the vector m, changes discontinuously from a real vector to a
vector with m, - m, =0, although the lengths m,, m,, m; of the order vectors
are continuous at this transition. Fig. 5 contains also the special points P, Q, R.
At the critical end point P, the second-order line between XV and VII meets
the first-order lines between XV and VI and between VI and VII. When phase
VI, however, is replaced by the degenerate phase XVI, P becomes a bicriti-
cal point, at which the first-order line between XVI and XV meets the second-
order lines between XV and VII and between XVI and VIL. Q is always a
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Fig. 5. Phase diagrams at b =0 for fixed ¢ = —iw,/v, 0<g <1, and positive z= iw,/v, 2’ =
1w} /v. The dashed lines are second-order transitions and the solid lines are first-order transitions,
P and Q are critical end points and R is a triple point. The dotted lines are the continuations of
a=0and y=0.

critical end point at which the second-order line between VII and XV meets
the first-order lines between X and XV and between X and VIII, and R is a
triple point at which three first-order lines between X and VI, VI and XV, and
XV and X come together.

3.3. Phase diagram for b #0 at the triple point z =z’ =1

When an external magnetic field is taken into account, the situation is more
complicated and other phases such as I and Al may appear in the phase
diagram. As an example we shall treat the phase diagram as a function of
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temperature and magnetic field at the triple point R (z =z’ = 1), where the
phases X, XV and VII are in equilibrium at b =0.

In the case that z = z’ = 1, it can be shown that only the phases X, I, VI and
A1 can occur in the phase diagram for b # 0, see appendix D for some details.
We now first consider the BW solution X. From the explicit expression for @,
that follows from (1.18) and table VII, one obtains the following gap equa-
tions:

m{u, + (4v + 2w1)mf + 2w, +w,+w, + wg)mg + (4v +4w, + wz)mg}

=0,

m,{u, + (4v + 2w1)m§ + 2w, +w, + w, + w;)mf + (4v +4w, + wz)mi}

=0, (3.18)

my{2u; + (4v + 4w, + w,)(m2 + m2) + 2(6v + 4w, + w, + 2w, + wi)m3}
=0.

Due to the fact that &, does not contain a term ~mjm,m, in the special case
z' =1, we must consider a BW phase with m m,m,#0, and a different phase
(BW’) with m, =0, mym; #0.

In the case that m,;m,m; #0 we obtain

ey rbemi 1)
u, +u, Tx’ u, +u, 10 x/’
2
-myv 1 ( y )
= 1
u, + u, T 40 1-4 (3.19)

and, since mg >0, one has the condition

Y < < (1+y2), (3.20)

X

in which the equality sign describes the bifurcation to the phase BW' with
m, = 0. Inserting (3.19) in (1.10), we obtain

SawV =_i+_l_ Y_Z_l(Y_z)_l<X>2 (3.21)
(u,+u,)’? 80 20 x 10\x/ 4\x/ "~ '

On the other hand, for m, =0 one finds
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-miv 1 y? —m3u E_Zi_c)_gy;

ﬁ%ﬁﬁ(“%”?)’ e 92 - 322
leading to the result

Mz_ﬁ_iz_i(1)2+i£_i£_2(£)2

(, +u,’ 368 2x R\x) B x BE w\y¥/)-

(3.23)

For the other phases A1, I and VI, one has from (2.1), (2.3) and (2.6)

farv 1 ( Y)2
-_L(1+2) 3.24
(u, + u2)2 36 x ( )
fiv __ 1 1y 7 <y>2
(u,+u,)> 27 54x 108 \x/ (3.25)
v __3 _1(2)2
(s + u2)2 =~30 "1\ (3.26)

From the results (3.21), (3.23)—(3.26) one can work out table XII of phase-
transition lines.

The phase diagram in the special case z = z' = 1 has been plotted in fig. 6.
The phase diagram presented in fig. 6 contains a bicritical point at x = %,y = 1,
where the two second-order lines between I and Al, and between (BW)' and

TasLE XII
Phase-transition lines in the special case that z=z'=1
Order of
Phase transition transition Transition line
VI->1 2 Y= %x
I—- Al 2 y=13ix,x>%
BW'— A1l 2 5x =18y’ +4y, x< 3
BW— BW’ 2 fhx=y-4y
2\ 2 2 2
BW—I 1 (%) —%y;+ﬁ(1—20)y-c> =0
17 . 62 80 > 5y
BW'—1 1 sy s (L) 5%

4y (y2>z_
+9 x2+ " =0
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Fig. 6. Phase diagram in the case that w, = lv, w,= —v, w,=w;=2v. The solid curves are
second-order transitions, the dashed curves first-order transitions.

A1l meet the first-order line between BW' and I, and a critical end point at
x~0.95, y~0.95, where the second-order line BW— BW' meets the first-
order lines BW— I, BW’— 1. This critical end point can only exist for w; =2v
and for all other values wj # 2v there is only one BW phase with m m,m, # 0.

4. Concluding remarks

In a sequence of papers, cf. also refs. 7, 8, 5, 1, we have presented a
systematic study of the phases that can occur in liquid *He in the presence of a
magnetic field and taking also into account the contributions from a contact
term of the Hubbard type. This has been done on the basis of the Landau
expansion (1.4)—(1.6) in terms of the 18 real order parameters, i.e. the three
complex vectors m,, m,, m, describing the ordering of spin pairs ff, || and
N, I, respectively, with explicit values of the coefficients. The coefficients
u,, u,, u, of the second-degree part have been given in eq. (1.7), the coeffici-
ent v in (1.5), (1.6) arises from a pairing interaction with /=1 of the
BCS-type, and the coefficients w,, w,, w,, w} are the contributions from spin
fluctuations. In eq. (1.19) we have presented the explicit results for
w,, W,, Wy, w; at b =0 up to order I? which have been obtained in ref. 5 on
the basis of a second-order perturbation calculation of the Hubbard inter-
action.

As the analysis of the 18 order parameter problem is a very complicated
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task, we have assumed that the inner products of the vectors m,, m,, m, can be
chosen to be real and furthermore we have applied a so-called inertia condition
(1.16) which expresses a certain rigidity of the geometrical configuration of the
vectors m,, m,, m; with respect to changes in external parameters, such as
temperature, magnetic field and pressure. In this way we have obtained
one-dimensional solutions R1,R1’, Al, Al', A3, in which only one of the
vectors m,, m,, m, is non-vanishing, two-dimensional solutions I-VIII with two
non-vanishing vectors, as well as three-dimensional solutions IX-XVI for
which all three vectors are different from zero.

As it turned out to be too complicated to investigate the phase diagram on
the basis of the complete Landau expansion for arbitrary values of the
coefficients w,, w,, w;, w;, we have used the second-order results for the
coefficients, as given in (1.19), as a guideline, thereby assuming that higher
order contributions will not affect the signs of these coefficients, but merely
change the second-order values by certain (positive) enhancement factors.

In the present paper we have dealt with two separate problems. The first
problem is concerned with the stability of the phase diagram in the absence of
spin fluctuations, as given in ref. 8. For this purpose we have investigated the
phase diagram in the presence of a magnetic field for small values of the
coupling constant I of the Hubbard interaction. In this limit it is safe to assume
that the signs of the coefficients w, w,, w,, w} are correctly given by (1.20).
Taking nb <0 we have shown that for sufficiently small values of these
coefficients only the phases Al, I, VI and X can occur. The corresponding
phase digrams have been presented in figs. 1-4. Here X is the extension of the
BW phase to finite values of the magnetic field, as already considered in ref. 8,
and there are two new phases I and VI, which have not been considered before
as candidates for the phase diagram. In the limit w,, w;— 0, phase VI becomes
degenerate with the ABM phase (III) or the planar phase (II), and the region
in which I occurs shrinks to zero. For small values of the spin fluctuation
parameters it may not be easy to distinguish the phase diagram from a diagram
in which the phases VI and I are replaced by the ABM or the planar phase.

The second problem we have dealt with is the phase diagram at zero
magnetic field, also for larger values of the spin fluctuation parameters under
the restriction that w,, w, and wj satisfy eq. (3.1), in which the signs of
Ww,, W3, w; correspond to the ones in (1.20), and the inequality ¢ <1 is obeyed
in a large range of coefficient values, including the values (1.19). In that case
only the phases VI, VII, VIII, X and XV play a role in the phase diagram.
Phase X is again the BW phase, VII is the so-called e-solution introduced in
ref. 12, and VI, VIII and XV are new phases. The resulting phase diagram, as
a function of z=jw,/v, z’=jwj/v, at a fixed value of g = —w,/w, with
0<g <1, has been presented in fig. 5. The phase diagram of fig. S contains
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some special critical points, and in fig. 6 we have presented the phase diagram
as a function of temperature and magnetic field at the special value z =z'=1,
corresponding to a triple point at b = 0, at which the phases VI, X and XV are
in equilibrium.

On the basis of these considerations one may atempt to give some discussion
of the so-called profound effect, i.e. the effect of a small magnetic field on the
phase diagram as a function of temperature 7 and pressure p. When p
increases, the parameters w, and w; can be expected to increase as well.
Starting from the BW phase for b =0 at low pressure, one could expect, at a
certain pressure p,, to have a phase transition to one of the ordered phases VI,
VIII or XV, as displayed in fig. 5. If we assume that wi/w, would be
independent of I=I(p), and therefore be equal to 1 as in (1.19), this
transition would take place at the point (z, z') = (1, 1) in fig. 5. However, for
w;, slightly larger than w}, one would cross the line z’' =1 and have a transition
form X to XV, and, for w, slightly smaller than w}, one would cross the curve
B(z,z')=0in fig. 5 and have a transition from X (BW) to VI. At this stage
one may speculate that the second possibility could occur in practice, as VI is a
two-dimensional phase with only 11 and || ordering, but in the presence of a
magnetic field one may anticipate a more complicated behaviour.

Let us discuss, on the basis of figs. 4 and 6, what may happen at a small
value of the magnetic field, when w, and w; increase from the values of fig. 4 to
values of the order of 2v. Comparing fig. 4 and fig. 6 one may anticipate no
qualitative changes in the second-order phase transitions between BW and Al
and between I and Al and also at the bicritical point where these transition
lines meet. Furthermore there is a second-order transition line between VI and
I, the slope of which decreases upon increasing w, and wj, to a finite value 25 at
w, = wj = 2v. On the other hand at values of w,, w; very close to the transition
line B(z, z') =0 in fig. 5 one may expect the transition between BW and VI,
and also the critical end point on the second-order line between VI and I to
occur at very small values of y. These features are displayed in fig. 7, in which
we have plotted the phase diagram as a function of temperature and magnetic
field at the values w, = v, w,=—v, wy;=1.90v, w;=1.94v. (In this case
again we can only have the ordered phases X, I, VI and Al, as discussed at the
end of appendix D.)

Note that in this case the transition line between the phases BW and I has a
rather complicated behaviour with a maximum value of x at x ~0.98. Further-
more, the value of A=m,/m,, in which m, and m, denote the order parame-
ters of the BW phase, is very small on a large part of this transition line. This
feature is reminiscent of what happens at the special value wj = 2v, for which
the BW phase is split into a phase with m;m,m, 0 and another phase BW'
with m, = 0, as shown in fig. 6.
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Fig. 7. Phase diagram in the case that w, = v, w, = —v, w; =1.90v, w; = 1.94v. The solid curves
are second-order transitions, the dashed curves first-order transitions. The numbers indicate the
values of A =m,/m, in the BW phase at the transition lines.

Fig. 7 can also give a qualitative understanding of the profound effect, as the
transition line between BW and VI has a rather low minimum y ~0.03 at a
rather large value of x ~0.6. Let us consider a small fixed value b’ of the
magnetic field and a pressure p, which is slightly smaller than the pressure p, at
which transition at b =0 between BW and VI takes place. When b’ is small
enough, the minimum of the transition curve b( p,) between VI and BW will
occur at a value larger than b’, and on increasing the temperature from a lower
value to the critical temperature T, (i.e. x =0), one only observes a transition
BW-— Al in the immediate neighbourhood of T,. However, when p increases,
the transition line between BW and VI will go down, and at a certain value p,,
the minimum of the transition curve b( p,) will coincide with the value b'.
Hence, for all p values satisfying p, < p < p,, the minimum b( p,) will lie below
the chosen value b’, and there will be a phase transition BW—VI at a
relatively large value of x, corresponding to a temperature well below 7.

The arguments given above can also be justified analytically for values of
w;, wy which are very close to 2v. In fact, taking w,=2v(1 - a), w;=
2v(1— '), one may evaluate fyy, up to linear terms in «, a’. Using the
relation

fow — fow = —(4a + 2a’)vm24 —2(a + a’)vm?zmg2 - 4|a’|vm§2m?mg ,

(4.1)
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in which m), mJ , m) and f,, refer to the BW solution at @ = &’ =0, as given
by (3.19) and (3.21), one finds

(faw = fow)v __6a=5a'+dla’|  a y’
(u, + u,)’ 800 100 x
_(9a +5a’) (}j) : , <X>2
200 x Ta(ata’) x
S (-2 0+ %) - () - 5]
20 745 o\ TV Tl
(4.2)
Comparing (4.2) to the relation
(fVI_f(\)’I)v_ (¢’ +10a) rq1 (}’)2
@ ruy s @iy (43)

in which again fY, refers to the solution VI at @ = &’ =0, one can derive the
relation

(@' —ta)x=3y" — {Fy* - (10y* + 50a"y*)(a’ — ja)}'"
(a"=a—3a’) (4.9)

for the transition line between BW and VI in linear approximation for a and
a'.
Eq. (4.4) implies that the transition between BW and VI at b =0 will take
place at the values o' = 1, and for o’ values slightly larger than ja, the
minimum value of y is equal to {8a"(a’ — 1a)}'"* and occurs at a relatively
large value of x, i.e. x ~20a". The coordinates of the critical end point at the
second-order line between VI and I are given by x ~10a”, y ~ ja” in this
approximation. (For extremely small values of a’ — }a, i.e. @’ — ja <a”, itis
possible that x has also a minimum value on the transition line between BW
and VI, before it reaches the critical end point.)

Although the features mentioned above may give a qualitative account, it
certainly does not give a detailed understanding. First of all, the precise
behaviour of the spin fluctuation coefficients as a function of pressure is not
known, and in the absence of more detailed data on the coefficients of the
Landau expansion, in the case of a contact interaction of the Hubbard type,
one does not know the point on the curve B(z,z’)=0 in fig. 5, where the
phase transition BW— VI at b = 0 will take place. The precise location of this
point can be important for actual estimates of the coordinates of the minimum
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of the transition curve BW— VI at finite small values of b. Furthermore, one
should have rather precise estimates on the relation between the coordinates x
and y, and the temperature differences and magnetic field values, respectively,
which occur in practice. In connection with this, it is hard to say to which
extent other phases such as phase I (and possibly other phases at larger values
of x and y), may be of importance in a discussion of the profound effect. It
should be noted that the transition lines in a realistic temperature-magnetic
field diagram would have a much steeper behaviour than the one displayed in
figs. 6 and 7, as the y coordinate has to be multiplied by —(A_n)/B, and the x
coordinate by a much smaller factor (A n)%B..

Finally, the phase diagrams presented in figs. 1-7 are based on the assump-
tion that the signs of the parameters w,, w; are correctly given by the
second-order values of (1.19). In particular, this assumption is sufficient to rule
out the ABM phase as a candidate to occur in the phase diagram. From a
theoretical point of view, starting from the Hubbard hamiltonian, and consid-
ering the usual ideas about enhancement, it is not easy to imagine that this
assumption is not true. But, it may be noted that the ABM phase can occur
indeed when the parameters w,, w; are negative, as suggested by the spin
fluctuation results of ref. 17. Therefore, we shall discuss this case as well.

First of all it is straightforward to show that at small negative values of w,
and wj only the phases Al, II, IIT and X can occur in the phase diagram in the
presence of an external field. From these phases ITI has always a smaller free
energy than phase II when w, <w;. Considering the case w, < w;, one has
only the phases Al, III and X, implying that the phase diagram in the absence
of spin fluctuations as presented in fig. 1 is stable under small perturbations
Wi, Wy, wy, wy with w; <0, w; <0 in the Landau expansion. Of course,
in such a case the two-dimensional phase has to be identified with the ABM
phase, i.e. phase VI in fig. 1 must be replaced by III. We shall not present
explicit results on phase diagrams for negative w,, w, in the presence of a
magnetic field. Such phase diagrams have been given in ref. 19 under the
assumption that only the phases BW, ABM and Al are important and this
assumption has been corroborated in the appendices A, B and E of the present
paper, at least for small (negative) values of w, and wj.

Secondly, it is not hard to extend the phase diagram of fig. 5 at zero
magnetic field to negative values of w; and wj. In fact, one will have the ABM
phase in the region bounded by the line z’' = —1, z < —1, where we have a
transition to phase VI and the line 1 +4z — 3z’ =0 for —1< z’ <0, where we
have a transition to phase X. Apart from that there is a phase-transition
between phase VI and phase V at the curve (1+2z)(1+2')=1 for z< -1,
z' < -1, and between phase VI and phase X at the line z = —1, z’ < —1. (The
solutions VII, VIII, XV, I and II do not occur at b = (. For the solutions VIII
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and XV this follows from table X, for the solutions I and VII this has been
shown in appendix E, and the phases X, VI and V can be shown to be more
favourable than phase II for z' < z.)

The phase diagram at b =0 as a function of z and z’ for negative z and z' is
presented in fig. 8.

The spin fluctuation results of ref. 17 with z' = {z would indicate a first-
order transition between BW and ABM at the value z=—-3, z' = — 4.
Finally, the profound effect in the case of negative w, and w; may be explained
quite easily by the fact that the transition curve between BW on the one hand,
and ABM and A1l on the other hand in fig. 1 moves down to the x-axis for z
and z’ values such that $z — z’ + § is a small positive number, so that at zero
field BW is only slightly more favourable than ABM. Assuming no other
phases to occur under such conditions, this will provide the explanation that
the phase transition at a small fixed magnetic field may occur at temperatures
which are substantially lower than the transition temperature at zero field.

With regard to the actual situation in He one might note that the ex-
perimental results for the specific heat jumps®®) do not give direct support to the
signs of the Landau parameters as suggested in eq. (1.20), see also ref. 21. One
even could raise the question whether the Hubbard hamiltonian with a contact
interaction would give rise to an appropriate description®®). One should not
even exclude the possibility that the spin fluctuation model which is usually
justified by means of an approximate diagrammatic analysis®>*°), starting from
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Fig. 8. Phase diagram for negative z = iw,/v and z' = iw}/v. The dashed lines are first-order
transitions.
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a contact interaction of the Hubbard type, could produce more realistic results
than a contact interaction itself. Future experiments could give some detailed
information on the values of the spin fluctuation coefficients so that one can
make more concrete theoretical predictions on the regions in the phase
diagram which apply to the situation in liquid *He. From fig. 8 one can note
that phase VI may also occur for negative values of z and z’, provided that z
and z' are large enough.
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Appendix A

In this appendix we show that the solutions A3, R3, IV, XIII, XIV do not
lead to an absolute minimum of the Landau expansion.

i) Solutions A3 and R3. Considering f,; as given by table I, and taking into
account that 2u; = u, + u, as follows from (1.7), we immediately have f,; = f;;,
(b =0), implying that A3 does not lead to an absolute minimum. The same
conclusion applies to R3, since f, = f,, (b =0).

ii) Solution IV. Considering (1.18) with m;=0, b, =a,,, b, =a,, and b, =
a,,, it follows from table II that &, = &, + vm; at all values of m, and m,, so
that solution IV does not occur.

iii) Solution XIII. From (1.18) and table VII one has the expression

Dy = uym; + umy + 2u,mi + (4v + 4w, + w, + 2w ) {1(m? + mi) + m3)
+(8v + 4w, + wy)mi(m} + md) + L(4v — w, = 2ws)(mi — m3)’ .
(A1)
In order that Py, at fixed m; — m? has a minimum corresponding to a mixed

phase with m> + m2 >0, m?> 0, the coefficient of m3(m’ + m2) should not be
larger than twice the square root of the product of the coefficients of
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(m} + m2)* and of mj;, leading to the condition w, =2v. In order that @y, has
a minimum with m} >0 the coefficient of (m} — m3)” should be positive, i.e.
4v — w, — 2w, >0. From the gap equations corresponding to @y, we have
m:—m;=(u, — u,)/(4v — w, —2w,), implying that m’=m’. Comparing
solution XIII with solution XV we have

Dy — Pyy = —vm + dvmim; + womim) (A.2)
which is non-negative at w, = v. Hence, solution XIII does not occur.

iv) Solution XIV. From (1.18) and table VII one can write down an explicit
expression for &y,,,. From the gap equations corresponding to @, one can
show that

u,+u, —2u, —(4v — w, —2w;)(m, —m, sgn(4v — w, — w3))2

2

m; o } _
x{1+ p—— sgn(4v —w, —2w;) =0 (A.3)

177%2

implying with (1.7) that 4v — w, — 2w, <0. Considering the extrema of Py,
with m,m,m; =0 in the case that 4v —w, — 2w, <0, i.e.

2

m
(uy +uy —2uy) + (4v—w, — 2w3)(ml’;’12 — 1)(m1 + m2)2 =0,

2
(uy—uy)+(dv —w, — 2w3)<1 - —,;lz-:l;l—z)(mf — m%) =0,

(A.4)
(u, + uy +2u,) + (16v + 8w, )(m> + m; + 2m3)

2
ms

+(4v - w2—2w3)( ‘1)(’"1_"‘2)2:0-

mm,

From the first eq. (A.4) one finds that mj5 /(m,m,)=<1, and the second and
third eqgs. (A.4) yield the inequalities

(u, + u, +2u,)

2 2 2 2 2 _
mi—m, <0, m;+m;+2my<-— (A.5)
! 2 ! 2 3 16v + 8w,
From (1.10), (1.7) and (A.5) it is easy to show that
(uy + u,)(u, +u, +2uy)
_1
fav= 1 160 + 8w, ) (A.6)
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so that phase XIV at b # 0 is less favorable than the A1l solution. On the other
hand, for b = 0 the equality sign in (A.6) holds so that in that case XIV and A1l
are degenerate.

Appendix B

In this appendix we show that the solutions V, IX, XI and XII do not occur
under the condition (1.20) for the signs of w,, w,, wj.

i) Solution V. Considering (1.18) with m;=0, b, =a,,, b,=a,,, b,=a,,,
and using table II, we have

D, =P, + v(m‘lt + m;) + w3mfm§ =@, + v(m‘l‘ + m;) + w;mfmi s
(B.1)

implying that V does not occur, if w, or w; is larger than —2v.

il) Solution IX. For 6v — w, — 2w, — w} >0 one can compare IX with solution
XII. From (1.18) and table VII we have

(4v + 2w3)m§(mf + mi) (w;<2v),

Pix — Pn >{ (B.2)

2 2 )
(8v — wy)m3(m, — m,)" + 4(w; + wimym m, ,

implying that IX does not occur under the conditions 6v — w, — 2w, — w}; >0,
wy; > —2v, 8v —w, >0.

For 6v — w, — 2w, — w; <0, one can compare IX with solution XIV. This
leads to

Dy — Dy = v(mf - mg)z +(2v+ wé)(mg - mlm2)2 + 4vm§(m1 + m2)2 5
(B.3)

so that IX does not occur when 6v — w, — 2w, — w; <0, wj> —20.

iii) Solution XI. For w;<2v we compare XI with solution X. Using the
relation (w5 + wj)m, - m, + (2v — wi)m’ =0, given in table VI, we have

Dy — Dy = v(m‘l1 + m;) — wgmfmi + (2v — wé)m§(2mlm2 +m;-my,)=0.

(B.4)
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For w;>2v we can compare XI with solution XV leading to
Dy, — Dyy = v(m’ —2m3) + (W) — 20)(w, + 20)(w, + W) 'm; . (B.5)
From (B.4) and (B.5) it follows that XI does not occur when w, > —2uv.
iv) Solution XII. Comparing XII with X we have
Dy — Oy = wamimi + v(m| + m3), (B.6)

so that XII does not occur when w, > —2v.

Appendix C

In this appendix we show that the solutions VII, VII', VIII, VIIT', XV, XV’
and XVI do not occur at sufficiently small values of w,, w,, w;, w; satisfying
(1.20).

i) Solutions VII, VII'. Using (1.14) with table IV, and also table I, it is
straightforward to compare VII with the A1 solution. We find that VII can only
have a lower free energy than Al, i.e. f,; <f,,, under the condition

Us
= >
u, 4,
(C.1)

4v+4w, +w, {<4v +4w, + w2>2

44= 3v+w, 3v+w,

4v(dv +4w, + w, +2w;) — (dv + 4w, + wz)z}”2
Bv+w)(2v +w;) '

From 2u, > u, + u, and (C.1) we have (u;, — u,)/(u; + u,) < —1+ A~ which
for sufficiently small w,, w,, w;, w; must be smaller than the value B given in
table VIII. As a result phase VII can only have a lower free energy than Al in
the region where phase VI exists. We therefore compare the solutions VII and
VI. For this purpose we rewrite f,,; as

_”§(4U — Wyt wy)— %(ul - ”3)2(4v +4w, +w,) + (u§ - uf)w3

(4v + 4w, + w, + w,)(4v — 3w, + wy) + wy(dv — 3w, — w,)
(C.2)

fou =
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Considering VII as the special case m, =0 of solution XVI, we obtain for its
stability, using also the gap equations for m, and m,, respectively,

0<1 azd,X;” _ {uz —u, —{8v—w,—-2w,—(a +,1)wzg}m§ o (C3)
om’ u +u, —2us + 2wy + (a+ Dwitmi — dw,ms
with a= -1+ 8v/(2v + wj). Combining both inequlities (C.3) we find
Us — U, 1[ 2wy + (a + )w; ]
<=1+ . C4
u,—u, 2 1 8v—w,—2w;—(a+1)w; (C4)

On the other hand, from the second inequality of (C.3) we have {2w, + (a +
1)wjym? >4w,m’, and inserting the solutions for m; and m} from the gap
equations for VII we obtain

Uy — Uy 4(4v + 2w, + iw,) — {2+ (a + L)wi/w,}(4v + 4w, + w, + w,)

u; +u, 8v—w, 2w, —(a+1)w, '
(C.5)
Inserting (C.4) and (C.5) in (C.2) one can derive the inequality
Forr > —u§ - %(ul - uz)zA’ (C.6)
VI du + 4w, + w, + wy + wi(8v — w, —2w,) /(8v — w, + 2w,) :

with a rather complicated explicit expression for A’. We shall not give this
expression, but merely mention that A’  in the limit that w,, w,, w,, w}
tend to zero.
Using the inequalities
8v—w, —2w,

4o +aw, +w, Fw b ——2 273,
PR Bt w, + 2w, 3

4v+4w1+w2+w3+%%,
> (C.7)
’ . 2'yU
A<4v—-w2—w3—zv_y),

both of which are satisfied at sufficiently small values of w,, w,, Wi, Wi, We
immediately obtain from (C.5) and (2.6) f,; > f,,, so that phase VII does not
occur.

From eq. (C.2) for f,,; and a similar expression with u, replaced by u, for
fyn- we have
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fvn' ~fVII
- (u, — ul){%(2u3 —u; —u,)(4v +aw, + w,y) — wi(uy + u,)}
(4v +4w, +w, + wy)(dv — w, + w,) + wy(4v ~ 3w, — w,)

(C.8)

so that fy;;, > fyy for 4v +4w, +w, >0, w,>0, 4v — Sw, — w, > 0.

ii) Solutions VIII, VIII'. Eq. (1.18) with m, =0 can only have an absolute
minimum with m,m; # 0 under the condition

(4v+4w, +w, + b))
Cu+w +b)4v+4w, + w, + 2w, + b3)}1/2

p= q <2. (C.9)
For solution VIII we have b, = a,, = b; =0, b, = a,, = 4v, implying that (C.9)
cannot be satisfied for small values of w,, w,, w,, wj.

A similar argument can be applied with regard to solution VIII’ which can
be obtained from VIII interchanging u, and u,, and also m, and m,. From the
explicit expression for fy;; which follows from (1.14) and table IV and a
similar one for f,;,, which can be obtained interchanging u, and u, in the
expression for f;, we have

Fyur = fym
~(uy — u){(4v = 2w3)2uy — (4v + 4w, + w, + 2w, )(uy + u, — 2u,)}
4(4v + 4w, + wy +2w,)(2v + w,) — (8v + 4w, + w,)’

>

(C.10)

implying that VIII' is less favourable than VIII for w, > 2v at all values of b,
and for w; < 2v at sufficiently large values of b, see also (1.7) and the stability
conditions (1.15).

iii) Solutions XV, XV'. Eq. (1.18) at m,>0 can only have a minimum
m,m, #0 under the condition (C.9). For solution XV we have b, = b, =0,
b, =4dv, so that (C.9) cannot be satisfied at small values of w,, w,, w,, wj.
Therefore, solution XV (and also XV') cannot lead to an absolute minimum of
the Landau expansion.

In order to investigate the relative stability of the solutions XV and XV’ we
introduce the function

D=¢(u,+u,+ u,)(m? + mi+2md) + & (u, +u, — 2u,)(m? + ml — 4m?)
+ 5y — uy)(mi = m3) + (Bo + wy + fw, + Swy) (m] + m] + 2m3y?
252
+ %(Ws - U)(mi + mg - 4m§)2 + %(SU - W, Ws)(m% —m;)
+Liev(m? - mi)(m> + m; — aml), (C.11)
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such that ¢ = @y, for e = —1, and @ = &,,,., for € = 1. From the condition
that @ at fixed m’ + m. + 2m? has an absolute minimum for mi —mj #0,
m? + m} — 4m> #0, we obtain the inequality

(ws = v)(50 — w, — w,) —3v° =0. (C.12)

On the other hand, from the gap equations for m; — m., m?> + m> + 2m? and
m}+ m} —4m} it is easy to show that the absolute minimum f of @ for
mym,m, #( is given by

_ o tu, + u3)2
A TT 12w, + 3w, + 2w,

iv, o), — “2)z T H(Sv—wy = wy)(u, +u, - 2“3)2 —dev(u, —uy)(u, +u, —2u,)
- (W, —v)(Sv — w, — w,) —30°

(C.13)

From (C.13) it is clear that, when XV with € = —1 and XV’ with € =1 both
exist, solution XV must have a lower free energy.

iv) Solution XVI. From (1.18) and table VII we have
Dy = uym’ + um? + 2u,mi + (3v + w, ) (m? + m3)
+(4v + 4w, + w, +2w)m; + (4v + 4w, + w,)mi(m} + m2)
+{2w + w, + 2w, + (a + Dw, - 20}mim? (C.14)
in which a has been defined by (C.3). From (1.10) and the solutions with

mym,m; # 0 of the gap equations corresponding to @y, it is straightforward to
show that

1 (u, +u,)° _1 (g — u,)’
fen="3 dv+4w, +w,+w, +2y0/(2u+y) 4 8v—w,—2w,—(a + 1)w)

! {2w, + (@ + Dwid (e, + u, = 2u,)(u, + u, +2u,) — (4v + 4w, + w,)(u, + 1, — 2u, )
4 {4w, + (@ + Dwil{4v + 4w, + w, + w, + 290/ 2u + v)}
(C.15)

and the last term on the right-hand side of (C.15) is non-negative, as can be
shown using the solution of the gap equations for @y, in the condition m? > 0.
Denoting the first two terms on the right-hand side by f’, we have fy,,; > f’ and
we shall now show that f’ can never be smaller than the absolute minimum of
the Landau expansion.
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Comparing f' and f,, we find that f' <f,,, only under the condition that
(u; — u,)/(u, + u,) < A” in which A” is a rather complicated expression. We
shall not give this expression here, but only use the fact that A”— } in the limit
that w,, w,, wy, w; tend to zero. For sufficiently small w,, w,, w,, w; we
therefore have A” < B, in which B has been given in table VIII, so that we can
have f' <f,,, only in the region where phase VI exists. Using the inequlity

8v—w,=2w,—(a+)w;>4v —w,—w,; —2yv/(2v —v), (C.16)

we find that fy,,; = f' = f,,;, and phase XVI does not occur at sufficiently small
w,, w,, w;, ws, satisfying (1.20). Note that for b = 0 the equality signs hold, so
that XVI and VI are degenerate in the absence of a magnetic field.

Finally, for phase XVI one has the condition m:=0, or

—(uy — uy)
8v—w,—2w; — (a+1)w;

< 2w, (u, + uy) — (4v + 4w, + wy)(u, + u, — 2u;,)
(4w, + (a + Dwii{dv + 4w, + w, + wy +2y0/(20 + 7)}

(C.17)

and if (C.17) is not satisfied, phase VII is a more favourable phase.

Appendix D

In this appendix we show that the phases VII, VII', VIII, VIII', XV, XV’
and XVI do not occur under the conditions w, = jv, w, = —v, w;=w, =2v,
and w, = tv, w,=—v, w;=1.90v, w;=194v, assumed in figs. 6 and 7,
respectively. We first consider the various phases in the case that w, = v,
W, = —U, wy=w; =20.

Solutions VII, VII'. From (C.1) one finds that f,, <f,, under the condition
y + 2.538y* < 0.269x, which can be only satisfied in the region, where solution
I or solution VI exists. From (1.14) and table IV, and using the condition
fvin <fa:>» we have

_fwe 13 1y 1 (z)2+1y_2_iy_3__12(y_2>2
(u, +u,)’> 368 46 x 46 \x 184 x 40 x* 368 \x
3 1y 1 (y)z
=== —=\z) . 1
738 46 x 46 \x (D.1)
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Comparing the right-hand side of (D.1) with (3.25) and (3.26) it is easy to
show that f,,, > f, and also that f,,; > f,, under the condition y/x < 3, which
is the condition for VI to exist. Phase VII' does not occur, since f ;. > vy, as
follows from (C.8).

Solution VIII. From (1.14) and table IV, we have, taking into account the last
inequality of (1.15), i.e. 3x= 5§y +2y°,

fom? __i_l(z)z_iﬁ_1£_2<xf)2
32 4 \x

(uy + u,)® 16 x 2x* 32\x
9 1y 27 <y2>2 3
%6t eax 6a\x) = T80 (D2)

implying that f,,;; is larger than f,,; at b =0.

Solution XV. From the gap equation corresponding to @y, i.e. (C.11) with
€=-1, one can solve m}—m}, m’+m>+2m’ and m’ + m> +4m’. The
inequality m> + m3 — 4m’ < m’ + m> + 2m? leads to the condition

—4(u, + u, + uy)
320+ 24w, + 3w, + 4w,

_ T3u(uy —uy) — (Su = w, — wi)(uy + u, —2us)

=

(w; — 0)(50 — W, — w,;) — 30° ; (D.3)

in which the equality sign describes the bifurcation to phase I. In the special

case under consideration here (D.3) reduces to y + % y* < %x, so that phase

XV can only occur in the region where VI exists. From (C.13) we have
frew 31 <y)2 1y 27(y2>2 y’

X

(u, + u,)’ 80 4 \x 20 x 20 ’ (D-4)

and using y + 4 y* < %x and (3.26) it follows that f,, > f,.
Solution XVI. From the bifurcation with VII as given in table X we obtain

¥ — 15¥° < %x, implying that XVI can occur only in the region where the BW
phase X exists. Working out (C.15) we have

fomv 3 1<y)2 1y 3<y2>2
oty 80 4\ tox "20\%) (D.5)

so that fi; > fyw. as follows from (3.21).
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Solutions VIII' and XV'. The solutions XV’ and VIII' can be inferred from
(C.11) with € =1 as the minima with m,m,m, # 0 and with m, = 0, respective-
ly. From (C.11) for e =1 it is clear that one only can have an absolute
minimum of the Landau expansion under the condition m; —m5>=0, m} +
m} — 4m> <0. (In fact, when m; — m} and m’ + m’ — 4m’ have the same sign,
the right-hand side of (C.12) with e = —1 has a lower value than the right-hand
side with e =1, and if m} — m} <0 and m> + m5 —4m5>0 one can find a
lower value of the right-hand side of (C.11) with e = —1 replacing m?, m2, m}
by m5, m}, m;, respectively.)

Assuming that m’ — m2 >0, m’> + m5 —4m5<0, m;+m5—m5>0 at the
minimum of (C.11) with € =1, one can introduce

=2 _ 2 _ 2.2 8 2 ~2 __ 4 _ 2 8. .2
miy=3zmi—smy;+3my, m;=3m,—35sm;+im;,
Lo . (D.6)

~ = = -2 -2 2 2 _ _2
so that ml—mz—m1 mi, m +m2+2m3=m1+m2+2m§, me+mi -
4m5 =4m’ — m} ~ m?, leading to

@ = L(u, + u, + u,) (2 + mi+2m3) + 15 (u, + u, — 2u,) (M + ms — 4m3)

+3(u, - uz)(ml rﬁ;)+(%v+ wy+ iw, + %W3)'(771f+rr_l§+2n_12 ?
-2 -2\2 -2, -2 _2\2

+3(5 —w,y)(my —m3) +1—12(w3—v)(m1+m2—4m3)

—lev (ml—mz)(m§+ra§—4na§). (D.7)

Comparing (D.7) and (C.11) it is clear that the right-hand side of (D.7) for
€ =1 cannot be smaller than the absolute minimum of (C.11) for e = —1,
implying that solution XV’ is less favorable than solution XV in this case.
Finally in the case that m2 = m} + m5, we have the following inequality for @
with € = 1:

@ = u,m’ + u,m; +2u,m; + (3v + w, )m} + (6v + w,)m;
+(4v + 4w, + w, + 2w, ms + (v + 4w, + w,)mi(m] + m3)
+Q2w, + w, + w, + dvym’m; , (D.8)

implying that @ = @, under the condition
(1207 = 2w,v — 2wiv — waw}) /(2v + wj) = 0. (D.9)

Hence, phase XV’ does not occur when (D.9) is satisfied. This holds also for
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some other solutions with € =1 such as VIII' and I’ that can be obtained via
bifurcation with XV’, see also fig. 1 at the end of ref. 1. The argument does not
apply to phase VII, since in the case m, = 0 the inequality (D.8) reduces to an
equality in which the right-hand side is equal to &,,;.

In the case that w, = v, w, = —v, w; = 1.90v, w; = 1.94v considered in fig.
7, the phases XV’ and VIII' cannot occur because of the same reason. The
other phases can be ruled out by arguments which in part are similar to the
ones used above. More specifically one can show that:

i) fun <fa,, only in the region where phase I or phase VI exists. It is
straightforward to show that f,;>f;, and also that f;;>f,;, when y/x =<
0.0673 which is the condition of existence of phase VI and y”/x<1.

ii) Evaluating f,;, and using the last inequality of (1.15), i.e. 3x = §y +2y°,
one has again f; > fy; (b =0), so that phase VIII does not occur.

iii) Taking into account the bifurcation condition with phase I, cf. (D.3), we
obtain y +2.879y* <0.03536x as condition of existence of phase XV, so that
XV can only exist where VI exists. Evaluating fy, and f,;, and using the
condition y + 2.879y < 0.03536x, it is straightforward to check that fyy > fy;-

iv) Using the bifurcation of XVI with phase VII, cf. (C.17), one has the
condition y <0.0635x + 0.1336y° implying that for x <5 one must have y/x <
0.0673, so that phase XVI can exist only where phase VI exists. Then
fxvi > fyr, because of (C.16) being valid in the case under consideration here.

Appendix E

In this appendix we show that the phases VIII, XV, XVI, I, VI and VII do
not occur for w,, w; <0 at sufficiently small values of w,, w,, w,, wj. First of
all, for w, <0 it is clear that (C.9) of appendix C cannot be satisfied, implying
that VIII and XV do not occur. Secondly, from (C.14) it follows that &, at
fixed m? — m} can only have a minimum with m? + m}#0, m’ + m>#m’ -
m, m:#0 under the condition

2(4v +4w, +w,)
((4v + 4w, + w, + 2w, )(dv + 4w _+ w, + 2w, + (a + Dyw})}

pE <07

(E.1)

which cannot be satisfied for negative and sufficiently small values of wi, Wi,
Thus, phase XVI does not occur. Thirdly, phase I does not occur, since both
terms in the right-hand side of (2.10) are negative for w, <0. For phase VI we
can use the condition x, = m, - m,/m5 = —1. From eq. (A.21) of ref. 1 we then
have '
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2

m; —2vy -y

2> st

m% 40—y 2v (E.2)

Inserting (E.2) into (2.11) we find
2 2
o= [L( 1) _< _ﬂ)l]

fin = fsmy 407 — o2 1+ 20 LE T v v/ 20l (E.3)

Using the inequality w, < wj, which means that phase III is more favourable
than phase II, or equivalently that —2w,y < —4v? we find
4 2
myy

fu— s I {5y* - 4"}, (E.4)
which is negative for y* < $v% A similar argument for f;; — f,,; can be applied
in the case that w} < w,, implying that phase VI does not occur for w;, w; <0
at sufficiently small w,, w,, w,, w;.

From the explicit resuit (C.2) for f,; together with (2.5) one finds

_ x) (1 Y y_)}
Ffon—fur {w3<l+x + (4v +4w, + w,) 2x+ p

(U, + u,)* (40 + 4w, + w, +2w,){4(4v + 4w, + w, +2w)Bu + w)) — (du +éw, + w,)’}

) 2
— Ea _ 1__
4 \x X X

4v—w,—2w, 4v+aw +w,+2w;’ (E.5)

in which x and y have been defined by (2.25).
From the condition m> =0 for phase VII, i.e. the third inequality of (1.15),
which by the way cannot be satisfied at b =0, we have

2
X+y—)+w3<1+y)>0. (E.6)
X X

(4U + 4W1 + Wz)( ;

1
2
From eq. (C.1), in which A = % in the limit w , w,, w;, w;—0, one finds

2 2 2 _ _ 2\2
1(2) +y_(1_y_) 4v — w, = 2w, ><1x+y_) (E.7)
4 \x x x/ 4v+4w, + w,+2w, 2x x

at sufficiently small w,, w,, w;, w;. Inserting (E.6) and (E.7) into (E.5) we
finally have (2w, + w, + 2w, <0)

2
w2(1 + X)
fou — S = ’ X
(u, + 0, (4o +4w, + w, +2w,){4(4v + 4w, + w, +2w)(3v + w,) — (40 + 4w, + w,)’}
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1 y yz)z
<2 x * X
4v~w, — 2w,

{1 _ (4v + 4w, + w,)’(4v — w, —2w,) }
(4v +dw, + w, + 2w, }{4(4v + 4w, + w, +2w,)(Bv + w,) — (dv + 4w, + wy)*} )’

which is positive at sufficiently small w,, w,, w,, w;, implying that phase VII
does not occur.
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