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Abstract
It is known from Bellʼs theorem that quantum predictions for some entangled
states cannot be mimicked using local hidden variable (LHV) models. From a
computer science perspective, LHV models may be interpreted as classical
computers operating on a potentially infinite number of correlated bits origi-
nating from a common source. As such, Bell inequality violations achieved
through entangled states are able to characterize the quantum advantage of
certain tasks, so long as the task itself imposes no restriction on the availability
of correlated bits. However, if the number of shared bits is limited, additional
constraints are placed on the possible LHV models, and separable, i.e. disen-
tangled states may become a useful resource. Bell violations are therefore no
longer necessary to achieve a quantum advantage. Here we show that, in par-
ticular, separable states improve the so-called random access codes, which is a
class of communication problem wherein one party tries to read a portion of the
data held by another distant party in the presence of finite shared randomness
and limited classical communication. We also show how the bias of classical bits
can be used to avoid wrong answers in order to achieve the optimal classical
protocol and how the advantage of quantum protocols is linked to quantum
discord.
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1. Introduction

Quantum communication typically studies the efficiency of tasks in which either quantum bits
are communicated between distant parties, or classical bits are communicated but the parties
involved share some quantum correlations. Many problems can be efficiently solved in this
setting, for example cryptography [1], communication complexity [2], or computation [3].
Instances of these problems draw their superiority from the violation of Bell inequalities that
require entanglement, and the pay-off is that such states outperform all classical-like solutions
characterized by local hidden variable models. In the language of computer science, local
hidden variable models are models of computation wherein local classical computers execute
algorithms based on input from a potentially unlimited source of random bits. Here we point out
new classes of states, correlated in a quantum way but not necessarily entangled, which may
improve quantum protocols if the randomness shared between distant parties consists of a finite
number of classical or quantum bits. We prove this rigorously for the task called random access
code [4–6], assisted by two bits of randomness. However, due to the general nature of the
argument, we expect that similar reasoning will apply to problems of a similar nature (i.e. where
shared randomness is an expensive resource). Such a restriction is not a limitation of our
computing model, as even the universe does not have access to an unlimited number of bits [7].
Deriving limits on classical computation and communication that take finite randomness into
account is therefore not only of practical interest, but may also shed light on fundamental
questions.

The present work also contributes a new operational meaning to certain measures of non-
classical correlations. Many quantum states that are not entangled, so-called separable states,
still posses non-classical features such as those characterized by quantum discord [8–11]. The
role of quantum discord in communication problems was quite extensively studied and
connections were established with entanglement transformations [11–17], coherence of
protocols [18], as well as with the performance of certain problems that can be directly
compared to their classical counterparts [19–21]. However, the latter link with the discord is
established only for classical–quantum states [19] or for problems with additional constraints
such as the lack of certain reference frames [20, 21]. It is therefore desirable to identify a well-
known communication problem with many applications, which can gain efficiencies from
discorded states.

In this context, studying random access codes assisted with finite randomness is a natural
choice. Indeed, a quantum version of this problem is as old as quantum information itself [4–6].
The quantum codes were studied in general probabilistic theories [22], in relation to Popescu–
Rohrlich boxes [23], led to information causality [24], find applications in quantum finite
automata [6], quantum communication complexity [25], network coding [26], security of
quantum-key distribution [27], and have been recently demonstrated experimentally [28].
Assuming restrictions on shared randomness, we show that not only do separable, discorded
states allow better performance than the best classical solution, they also outperform some
entangled states.

1.1. Random access codes

Imagine that Bob would like to know (better than just by sheer guess) a random number from
Aliceʼs telephone book. Is it necessary for Alice to send Bob the whole book? Or can she
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communicate fewer ‘encoded’ pages such that Bob is reasonably confident of getting the
correct number? Random access codes are strategies designed to solve this problem. As
illustrated in figure 1, in a classical →n 1 random access code (RAC) Alice receives a
random n-bit input x, and communicates a single bit c to Bob, who given this piece of
information tries to guess the ith bit of Alice, xi, by outputting his guess bi (in every run i is
chosen at random). We may construct quantum versions of this task by either having Alice
communicate a single quantum bit, or by having Alice and Bob share an entangled quantum
state aided by a single bit of classical communication [29]. We study here the latter version of
the problem and allow for arbitrary quantum states in place of just entangled ones. The role of
quantum discord in the former version of the problem was considered in reference [30]. Our
choice makes the relevance of shared randomness more transparent because by restricting the
communication to classical the only additional resources facilitating the process are the
assisting (qu)bits.

The existing quantum codes use a finite number of qubits and are effectively compared
with classical protocols with unlimited shared randomness [29, 31]. Under such comparison, the
quantum code can outperform the classical ones only if it is assisted by quantum states violating
some Bell inequality. This is because all the states that admit a local hidden variable model (all
separable states and some entangled ones, e.g. [32–35]) can be simulated with a sufficient
amount of shared randomness, bringing no gain to the quantum protocol. However, if the size of
the assisting resources is the same, states that do not violate any Bell inequality may possibly
help improve the efficiency of the quantum protocol over the best classical ones. We stress that
this reasoning is not specific to random access codes, but also applies more generally to any task
assisted with correlated resources. This suggests that other correlation-assisted communication
protocols can find a similar advantage using separable states.

We therefore restrict the amount of shared classical bits to the same amount of shared
quantum bits and study in detail the case of two assisting (qu)bits. We first show how classical
codes gain additional efficiencies by utilizing the bias of the assisting bits to avoid wrong
guesses. Next, we provide quantum protocols assisted by separable states that outperform the
best classical protocols, and show that in some cases they outperform even protocols assisted by
quantum entanglement.

Figure 1. →n 1 random access codes with shared randomness. Alice and Bob share a
finite number of classical or quantum bits from a common source (shared randomness).
Alice is allowed to send a single classical bit to Bob, who tries to guess the ith bit, xi, of
Aliceʼs input string. We show that sharing quantum bits in separable states improves the
worst-case probability of Bobʼs correct guess over the best classical protocol.

3
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2. Finite classical randomness

A standard figure of merit characterizing the efficiency of the RAC is the probability Pmin of
Bobʼs correct guess in the worst-case scenario (minimized over x and i), i.e.

= =P b xmin Pr( )x i i imin , . Let us recall that we are interested in the →n 1 scenario with only
one bit of classical communication from Alice to Bob, and that the input of Alice contains at
least two bits, ⩾n 2. In addition to classical communication Alice and Bob may share assisting
classical bits from a common source. If no randomness is allowed in this scenario, =P 0min , as
there is always a bit that Bob guesses wrongly [31]. In the presence of shared randomness r, the
efficiency Pmin is additionally averaged over the assisting random bits,

= ∑ =P p b x rmin Pr( | )x i r r i imin , . The following theorem characterizes the maximal Pmin in the
presence of two bits of shared randomness.

Theorem 1. A classical →n 1 RAC assisted with two bits from a common source has (i)
⩽Pmin

1

2
if >n 2; (ii) ⩽Pmin

2

3
if n = 2; (iii) ⩽Pmin

1

2
for all >n 1 if the assisting bits have

maximally mixed marginals for Bob.

Proof. (i) Let us denote the random bits of Alice and Bob by ra and rb, respectively. Aliceʼs
classical communication (encoding) is an output of a binary function =c c x r( , )a , and Bobʼs
guess of xi is also an output of a binary function =b b c r( , )i i b . Observe that for every given
input x Alice can only choose from the following four possible encoding functions: 1) c = 0
independently of ra; 2) c = 1 independently of ra; 3) =c ra; 4) = ⊕c r1 a, where⊕ denotes the
binary sum. Of course for different values of x Alice can (and should) choose different encoding
functions. Indeed, we prove that if for two different inputs x and ′x Alice uses the same
encoding function, the probability of a correct guess is no greater than 1

2
. This is done via

contradiction, for if Alice chooses for x and ′x the same encoding function from the options
above, her message c is the same for both x and ′x . Accordingly, since Bob is receiving the
same message for both inputs, his guesses of the individual bits of x and ′x for a given rb are the
same and this implies that the probability of any given guess is also the same (both for a fixed rb
and averaged over the shared randomness). Therefore, if his guesses are correct for the bits of x
with probability more than 1

2
, the guess of the differing bit of ′x must be incorrect with the same

probability. Hence, ⩽Pmin
1

2
. Any sound strategy must therefore employ different encoding

functions of Alice. Since there are only four different such functions for a fixed input x, the
efficiency is at most 1

2
for all ⩾n 3. There is simply not enough shared randomness for Alice

and Bob to do more.
(ii) We now focus on the →2 1 RAC. In every protocol run, i.e. for a fixed x, Bob needs to

prepare guesses b1 and b2 for the individual bits of Aliceʼs input, which we order as
=g b b( , )c r, 1 2b

, with indices c r, b describing the variables accessible to Bob. Employing a
method similar to reference [6], we define points = = =P x b x b x( ) (Pr( 1| ), Pr( 1| ))1 2 that
represent the probabilities of Bobʼs guesses being equal to 1 for a fixed x. Using Bayesʼ rule,

= = ∑ =b x p b r r xPr( 1| ) Pr( 1| , , )i r r r r i a b,a b a b
, and the fact that ra, rb, and x deterministically

specify bi, i.e. = =b r r x bPr( 1| , , )i a b i, we explicitly write the points corresponding to Alice
using the four encoding functions listed above

4
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= + + +( )P x p g p g p g p g , (1)1
1

00 0,0 01 0,1 10 0,0 11 0,1

= + + +( )P x p g p g p g p g , (2)2
2

00 1,0 01 1,1 10 1,0 11 1,1

= + + +( )P x p g p g p g p g , (3)3
3

00 0,0 01 0,1 10 1,0 11 1,1

= + + +( )P x p g p g p g p g , (4)4
4

00 1,0 01 1,1 10 0,0 11 0,1

where ≡ = =p r k r lPr( , )kl a b is the distribution of the common source of randomness, xj

denote the four different values of x with index j denoting the different encodings employed. In
order to achieve >Pmin

1

2
, all four guesses gc r, b

must be different for different values of c and rb.

Namely, in the decomposition of every point P x( )j
j above there must be a guess =g xc r

j
, b

,
i.e. with the same individual bits as those of xj. If this is not the case then every guess gc r, b

contains at least one individual bit that is guessed wrongly. Hence the probability of an
individual bit being correct is equal to the probability of the other bit being a wrong guess,
i.e. ⩽Pmin

1

2
.

We have shown that efficient codes must involve guesses gc r, b
with all different values for

different c and rb. We will now find the optimal strategy maximizing Pmin only for inputs x3 and
x4 in equations (3) and (4). Since only two inputs are considered and the definition of Pmin

includes minimization over all four inputs, this maximization gives an upper bound on Pmin. It
will turn out that this upper bound is achieved. In the best case, Bob never outputs a guess with
both individual bits guessed wrongly. Assume they are g1,1 and g0,1 in equations (3) and (4),
respectively. Therefore, the best case corresponds to =p 011 . Since a guess giving the two bits
of x3 correctly must be different from the guess giving the two bits of x4 correctly, and the
probability of guessing any individual bit is a sum of pkl corresponding to =g xc r

j
, b

and

=g x̄c r
j

, b
having the other individual bit flipped, we may verify that

= + + +( )P p p p p p pmin , , . (5)min 00 01 00 10 01 10

This is maximized for the biased distribution = = =p p p00 01 10
1

3
, which implies that the

optimal value is =Pmin
2

3
. The optimal code, achieving =Pmin

2

3
, is detailed in table 1 where

Aliceʼs encoding and Bobʼs output is completely specified.
(iii) Here we again utilize the fact that Bobʼs guesses gc r, b

must be different for different
values of c and rb. Since (1) involves the marginal distribution of Bob, the assumption of
maximal mixedness gives = +P x g g( )1

1 1

2 0,0
1

2 0,1, and there is always an individual bit of x1

that is guessed with probability 1

2
, thus ⩽Pmin

1

2
. □

We would like to emphasize that studies of randomness usually employ so-called
‘common randomness’, i.e. pairs of perfectly correlated and locally completely random bits,
whereas our proof shows that one can utilize the bias in the shared randomness to gain
additional efficiency, in this case to avoid giving wrong answers (see table 1).

5
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3. Finite quantum randomness

Having established the classical bounds, we now proceed to demonstrate quantum protocols
that exceed them. We present explicit →2 1 and →3 1 quantum random access codes assisted
with two correlated qubits. These special cases are of particular interest because they may be
concatenated to generate more general →n 1 quantum codes (see reference [29] for a detailed
discussion of this procedure). After introducing the notation and essential concepts, we present
detailed protocols and study their efficiency when assisted with Bell diagonal states.

Throughout the rest of the paper we employ the Bloch representation of qubit states and
measurements, i.e. the three-dimensional vector ⃗s represents the qubit state
ρ σ⃗ = + ⃗ ⃗s s( ) (1̂ · ) 2, where σ σ σ σ⃗ ≡ ( , , )1 2 3 is the vector of Pauli matrices σ σ σ, ,x y z. A unit
vector α̂ represents an ideal measurement with the probability of obtaining a measurement
outcome α = 0, 1, when measured on the state ρ, being ρα σ+ − ⃗α

Tr( )1 ( 1) ˆ·

2
.

A general two-qubit state is of the form ρ σ σ= ⊗ + ⃗ ⃗ ⊗ + ⊗ ⃗ ⃗ +a b(1̂ 1̂ · 1̂ 1̂ ·ab
1

4 0 0

σ σ∑ ⊗= E )l m ij l m, 1
3 , where ⃗a0 and ⃗b0 are the local Bloch vectors of Alice and Bob,

respectively. The matrix E is the correlation matrix, and can always be made diagonal by an
appropriate choice of local bases [36]. We therefore assume, without loss of generality, that the
reference frames are appropriately chosen such that =E E E Ediag( , , )1 2 3 . If ≠E 0i , we say that
the state is correlated along that axis. We also make use of the fact that if Alice performs a
measurement α̂ with outcome α on her half of the system, then Bobʼs post-measurement Bloch
vector is

Table 1. Details of the optimal →2 1 classical random access code assisted with two
bits from a common source, ra and rb. These bits are distributed according to the biased
distribution = = =p p p00 01 10

1

3
and =p 011 , which is why below we do not present

the case of =r r( , ) (1, 1)a b . The guesses of Bob are denoted as gc r, b
and we note that for

a given input x they never contain both individual bits opposite to x. In this sense the
biased randomness is used to avoid giving wrong answers. By comparing the individual
bits of gc r, b

with the individual bits of x it is confirmed that =Pmin
2

3
.

x r r( , )a b c x r( , )a gc r, b
P(x)

00 (0,0) 0 (0,1) ( , )1

3

1

3

(0,1) 0 (0,0)
(1,0) 1 (1,0)

01 (0,0) 0 (0,1) (0, )2

3

(0,1) 0 (0,0)
(1,0) 0 (0,1)

10 (0,0) 1 (1,0) (1, )1

3

(0,1) 1 (1,1)
(1,0) 1 (1,0)

11 (0,0) 1 (1,0) ( , )2

3

2

3

(0,1) 1 (1,1)
(1,0) 0 (0,1)

6
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α
α

α
⃗ =

⃗ + −
+ − ⃗

α

αb
b E

a
( )

( 1) ˆ

1 ( 1) ˆ ·
, (6)

T
0

0

where ET is the transposed matrix E (not necessary if E is already diagonal).
We shall explore the relationship between our protocols and a class of quantum

correlations referred to as quantum discord [8–11]. Specifically, we employ the normalized
geometric measure of quantum discord [37]. A general zero-discord state has the
form σ ρ ρ= ⊗ 〉〈 + ⊗ 〉〈p p|0 0| |1 1|ab 0 0 1 1 , and the normalized geometric discord of ρab is
defined to be [20]: ρ ρ σ≡ −σD ( ) 2 Min Tr ( )a b ab ab ab|

2 2. For Bell diagonal states we have
= +D E E( )a b|

2 1

2 2
2

3
2 , where it is assumed that E1

2 is the biggest among squared diagonal
elements of E.

3.1. 3→ 1 code

The codes presented here are similar to the codes assisted with quantum entanglement [29],
with the key difference in the choice of Aliceʼs measurements. We focus first on the class of
Bell diagonal states ρab correlated along all three axes x, y and z

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ρ σ σ= ⊗ + ⊗

=

E
1
4

1̂ 1̂ , (7)ab
i

l l l

1

3

although the presented protocols can give better than classical results for more general assisting
states (e.g. it will be easy to verify that ⃗a0 can be arbitrary). The protocol is as follows:

(i) For input x, Alice performs the measurement characterized by the Bloch vector
α α α= ⃗ ⃗x x xˆ ( ) ( ) | ( ) |, where α ⃗ = − − −x( ) ( , , )

E E E

( 1) ( 1) ( 1)x x x1

1

2

2

3

3
,

(ii) Alice sends her measurement outcome α=c to Bob,

(iii) To guess the ith bit of Alice, Bob measures along σi, obtains the outcome βi, and makes
β ⊕ ci the guess.

Figure 2. The quantum →3 1 random access code assisted with two qubits. (a) Aliceʼs
measurement vectors point towards the vertices of a cuboid embedded within the Bloch
sphere. The cuboid is defined by the correlations of the shared quantum state. (b) Bobʼs
post-measurement Bloch vectors point towards the vertices of an inner cube centered at
the origin. See main text for explanation how the code works.

7
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To grasp the mechanism of this protocol, note that depending on the input, x, Aliceʼs
measurement vectors point towards the vertices of a cuboid embedded in the Bloch
sphere (see figure 2(a)). As a result of her measurement (with outcome α) and the
correlations in the shared state, the post-measurement local Bloch vector on Bobʼs side,

α α⃗ = − − − − ⃗αb ( ) ( 1) (( 1) , ( 1) , ( 1) ) | |x x x1 2 3 , points towards one of the vertices of an inner cube
within the Bloch sphere (see figure 2(b)). The x, y, and z axes correspond to the direction of
Bobʼs measurement, depending on whether he is guessing the first, second or third bit
respectively. Depending on her measurement outcome, Alice knows that Bobʼs post-
measurement Bloch vector is either pointing towards the vertex of the cube encoding x or the
vertex directly opposite across the origin, encoding x̄ with all individual bits flipped.
Therefore, Alice sends a message to Bob to either flip his guess or not to flip it. Note that the
inner product of Bobʼs measurement vectors (along the axes) with a vector pointing to any
vertex is the same, up to a sign. The probability of a correct guess of every individual bit is
therefore the same, giving Pmin, and for Bell diagonal states it is equal to

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= +

+ +− − −
P

E E E

1
2

1
1

. (8)min

1
2

2
2

3
2

As >Pmin
1

2
, this quantum code is thus more efficient than the best classical code (see theorem 1).

3.2. 2→ 1 code

This code can operate on a slightly broader class of states as we now allow E3 to vanish. The
protocol follows the same procedures as in the →3 1 case, with the exception that Aliceʼs
measurements are given by α ⃗ = − −x( ) ( , , 0)

E E

( 1) ( 1)x x1

1

2

2
, the efficiency of this quantum code can

then be verified to be

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= +

+− −
P

E E

1
2

1
1

, (9)min

1
2

2
2

which is again better than the best classical protocol using bits with maximally mixed marginals
(see theorem 1). Even if Alice and Bob were allowed to share more generally correlated classical
bits, for which Pmin may be as high as 2

3
for the →2 1 case, the above code may nonetheless still

outperform the best possible classical RACs so long as the assisting qubits are sufficiently
strongly correlated. It turns out that entanglement is not a necessary prerequisite to present such a
quantum advantage. We demonstrate this with concrete examples in the following section.

4. Examples

Consider Werner states, belonging to the class of Bell diagonal states and given by the mixture
of white noise and a maximally entangled state [32]

ρ ψ ψ= − ⊗ + ∈q q q(1 )
1̂ 1̂

4
, [0, 1]. (10)ab

The state is entangled for >q 1

3
and is separable otherwise. Its geometric discord can easily be

verified to be =D qa b| [37]. Since for the Werner states all = ±E qi , equations (8) and (9)
reveal that the geometric discord directly measures the efficiency of the →n 1 quantum codes

8
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assisted with this class of states, = +P (1 )
D

nmin
1

2
a b| for n = 2,3. Moreover, it is the presence of

quantum discord in the assisting states that empowers the quantum advantage.
The same statement likely holds for more general codes. For example, concatenating

→2 1 code assisted by the Werner state as in reference [29], we find that the efficiency of
→2 1m code is given by

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟= +P

D1
2

1
2

. (11)
a b

m

min

The concatenation of the quantum codes requires −2 1m pairs of qubits in the Werner state, and
a fair comparison with the classical case is then made by replacing the qubit pairs with
correlated bits that have maximally mixed marginals. Numerical simulations indicate that →4 1
classical RACs formed through the concatenation procedure cannot achieve >Pmin

1

2
. We

conjecture in general that the concatenation of →2 1 classical RACs assisted with bits having
maximally mixed marginals cannot give >Pmin

1

2
, and therefore the quantum advantage is

present for any m, as indicated in equation (11).
We now show that a separable state may be used to outperform the best classical code

assisted with two correlated random bits. The example once again utilizes Bell diagonal states.
Recall that the classical bound is = ≈→P 0.667cl

2 1 2

3
for all classical →2 1 RACs, and

=→Pcl
3 1 1

2
for all classical →3 1 RACs. By optimizing the efficiency of the →2 1 quantum

code, see equation (9), over the separable Bell diagonal states, the optimal state has
= =E E1 2

1

2
and =E 03 , which gives the efficiency = + ≈P (1 ) 0.677min

1

2

1

2 2
, slightly above

the classical bound. Better results are obtained for the →3 1 quantum code. By optimizing
equation (8) over separable Bell diagonal states, the best state has = = =E E E1 2 3

1

3
and the

efficiency is = + ≈P (1 ) 0.596min
1

2

1

3 3
, considerably above the classical bound. Note that

there may exist a quantum code achieving better efficiencies, utilizing some other class of
separable states or following a different procedure.

In the last example we show that separable states can outperform some entangled states.
We have already demonstrated that in using a separable state the →2 1 quantum code may
achieve efficiencies of at least = +P (1 )min

1

2

1

2 2
. Comparing this with equation (11), we can

see that it outperforms the protocol assisted with the entangled Werner states for < <q1

3

1

2
. It

remains to be shown that there is no better quantum protocol for →2 1 quantum code assisted
with the Werner states. This follows from the optimality of the protocol for the maximally
entangled state ψ〉| shown in references [6, 29], the fact that the completely mixed state encodes
local randomness giving at most =Pmin

1

2
, and that the Werner state is a mixture of these two

states.
Although quantum discord empowers quantum advantage in our examples and is

proportional to the efficiency of the protocol for fixed classes of states, it should be noted that
the amount of the geometric quantum discord for different classes of states is not an indicator of
the usefulness of the states for quantum random access codes. Namely, our optimal separable
state for →2 1 code has the discord = ≈D 0.354sep

1

2 2
that corresponds to

= +P D(1 )min
1

2 sep , but Werner states have =D qWer and the corresponding

= +P (1 )
D

min
1

2 2
Wer . Therefore, Werner states containing more discord than the separable state,
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i.e. ∈D ( , )Wer
1

2 2

1

2
, still give worse Pmin than the separable state. The precise physical quantity

that is a resource for better quantum codes is at present unknown.
Finally we would like to comment on a variation of quantum random access codes that allows

Alice to send a qubit to Bob in place of their both sharing correlated qubits. Results presented here
may suggest that Alice should be able to send Bob noisy states (as opposed to pure states) and still
be able to beat the classical limit. This is indeed the case, as we will briefly explain for the →2 1
code. The classical limit is known to be 1

2
if we allow for uncorrelated local randomness [31]. The

optimal quantum protocol that beats this bound encodes the input x into pure quantum states ψ 〉| x
with Bloch vectors ψ ⃗ = − −(( 1) , ( 1) , 0)x

x x1 2 . If Bob now measures along x (y) axis in order to read
the first (second) bit, his worst-case probability of correct guess is +(1 )1

2

1

2
. Suppose we

perform the same measurements on white noise 1̂1

2
. The outcomes of the measurements are

completely random, which is enough to give as good a result as the best classical protocol in the
worst case. If Aliceʼs encoding is in the form of a mixed state ψ ψ〉〈 + −q q| | (1 ) 1̂x x

1

2
, its

corresponding Bloch vector is ψ ⃗q x. Applying the same protocol, we find that = +P (1 )q
min

1

2 2
,

which is always better than classical except for the completely mixed state of q = 0.

5. Conclusions

We demonstrated that separable states are a useful resource in random access codes as soon as
finite shared randomness in the quantum and classical protocols is counted in the same way, i.e.
bits are replaced with qubits. This is particularly relevant if randomness is not a freely available
resource.

We hope the example given here opens a research avenue on efficiency of solutions to
various problems in the presence of finite randomness. This is of both practical and fundamental
interest. On the practical side, computers can use only a finite and restricted set of random bits
for computations; therefore separable states are likely to enlarge the class of states that allows
quantum advantages once these restrictions are taken into account. On the fundamental side, it
would be interesting to know if entanglement is necessary to demonstrate in a Bell-like scenario
deviations from predictions of local hidden variable models that involve only a finite number
of bits.
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