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Abstract. The yeast KAR/gene is essential for mi- 
totic growth and important for nuclear fusion. Muta- 
tions in KAR/prevent duplication of the spindle pole 
body (SPB), and affect functions associated with both 
the nuclear and cytoplasmic microtubules. The local- 

ization of hybrid Karl-lacZ proteins, described else- 
where (Vallen, E. A., T. Y. Scherson, T. Roberts, K. 
van Zee, and M. D. Rose. 1992. Cell. In press), sug- 
gest that the protein is associated with the SPB. In this 
paper, we report a deletion analysis demonstrating that 
the mitotic and karyogamy functions of KAR/are sep- 
arate and independent, residing in discrete functional 
domains. One region, here shown to be essential for 
mitosis, coincided with a part of the protein that is 
both necessary and su~icient to target Karl-lacZ hy- 

brid proteins to the SPB (vallen, E. A., T. Y. Scher- 
son, T. Roberts, K. van Zee, and M. D. Rose. 1992. 
Cell. In press). Complementation testing demon- 

strated that deletions in this interval did not affect nu- 
clear fusion. A second region, required only for 
karyogamy, was necessary for the localization of a 
Kar3-1acZ hybrid protein to the SPB. These data sug- 
gest a model for the roles of Karlp and Kar3p, a ki- 

nesin-like protein, in nuclear fusion. Finally, a third 
region of KAR/was found to be important for both 
mitosis and karyogamy. This domain included the hy- 
drophobic carboxy terminus and is sufficient to target 
a lacZ-Karl hybrid protein to the nuclear envelope 
(Vallen E. A., T. Y. Scherson, T. Roberts, K. van Zee, 

and M. D. Rose. 1992. Cell. In press). Altogether, the 
essential mitotic regions of KAR/comprised 20% of 
the coding sequence. We propose a model for Karlp in 
which the protein is composed of several protein- 

binding domains tethered to the nuclear envelope via 

its hydrophobic tail. 

I 
N eukaryotic cells, the microtubule organizing center 
plays a crucial role in nucleating the microtubules re- 
sponsible for mitosis, meiosis, and the formation of the 

interphase cytoskeleton. In yeast, the microtubule organiz- 
ing center is called the spindle pole body (SPB) 1 and is 
comprised of the spindle plaque (a disc-shaped structure em- 
bedded in the nuclear envelope) and associated osmophilic 
material. Mitosis, meiosis, and conjugation are associated 
with distinct and specific alterations in the morphology of 
the SPB (Byers and Goetsch, 1974, 1975; Byers, 1981). 

As the nuclear envelope remains intact throughout mito- 
sis, opposite faces of the spindle plaque are associated with 
the nuclear and cytoplasmic microtubules. Cytoplasmic 
microtubules are specifically required for nuclear movement 
and karyogamy (Delgado and Conde, 1984; Huffaker et al., 
1988). In zygotes, the cytoplasmic microtubules span the 
gap between the two haploid parental nuclei. The nuclei then 
move together and nuclear fusion is initiated at or near the 
SPB to form the diploid nucleus (Byers and Goetsch, 1974, 
1975). 

Mutations in several genes (KAR/, KAR2, and KAR3) have 

1. Abbre~tions used in this paper: 5-FOA, 5-fluoro-orotic acid; SPB, spin- 
erie pole body. 

been isolated that cause severe defects in nuclear fusion 
(Conde and Fink, 1976; Fink and Conde, 1976; Polaina and 
Conde, 1982). Aside from their roles in karyogamy, all three 
genes have important or essential functions in various mi- 
totic processes. KAR/is required for SPB duplication and 
various karl mutations influence the length and morphology 
of cytoplasmic microtubules in mitotic and mating cells 
(Rose and Fink, 1987). Consistent with the genetic data, the 
localization of hybrid gene products containing parts of the 
Karl protein suggested that Karlp is associated with the SPB 
(Vallen et al., 1992). K/IR2 encodes the yeast homologue of 
mammalian BiP/GRF78, the HSP70 protein resident in the 
ER (Rose et al., 1989; Normington et al., 1989). KAR2 has 
been implicated in the translocation and processing of secreted 
proteins (Vogel et al., 1990; Vogel, J., and M. Rose, unpub- 
lished observations). KAR3 encodes a kinesin-like motor 
protein that has been implicated in antiparallel sliding of 
microtubules during both nuclear fusion and mitosis (Meluh 
and Rose, 1990). Major questions concerning the roles of the 
/fAR genes in nuclear fusion are whether the mutant pheno- 
types arise as a consequence of prior defects in mitotic func- 
tions and whether their roles in mitosis and nuclear fusion 
are separate and distinct. 

In this paper, we identify three distinct domains of KAR/ 
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that are required for mitotic viability and karyogamy. Re- 
markably, only two small regions, which together comprise 
20 % of the predicted protein, are uniquely important for via- 
bility. One region is essential for mitosis and may be in- 
volved in the association of the protein with the SPB. The 
second region is important for both viability and nuclear fu- 
sion. As the second region is composed of hydrophobic 
residues, it may form a membrane spanning domain. The 
third region is required only for nuclear fusion; deletion mu- 
tations have profound effects on the length of cytoplasmic 
microtubules and the localization of Kar3-1acZ hybrid pro- 
teins. Taken together, these data suggest a model for the 
structure of Karlp and for its role, together with Kar3p, in 
yeast nuclear fusion. 

Materials and Methods 

Strains and Microbial Techniques 

Yeast strains used are listed in Table I. Yeast media and genetic techniques 
were essentially as described by Rose et ai. (1990). Yeast transformations 
were performed by the lithium acetate procedure of Ito et al. (1983) using 
50 ttg of sheared, denatured carrier DNA. Transformants were selected on 
synthetic complete media lacking uracil or leucine. Urn- segregants of 
transformants were selected on 5-fluoro-orotic acid (5-FOA) medium as de- 
scribed by Boeke et al. (1984). Small scale plasmid DNA preparations were 
made by the boiling lysis method of Holmes and Quigley (1982). Yeast DNA 
for Southern blot analysis and PCR reactions was prepared by the method 
of Hoffman and Winston (1987). 

Quantitative matings of yeast strains were performed essentially as de- 

scribed by Dutcher and Hartwell (1982). Approximately 5 x l0 s exponen- 
tially growing cells of each parent were mixed together and concentrated 
on a 0.45-ttm pore size nitrocellulose filter. The mating mixtures were in- 
cubated for 5 h on yeast extract-peptone-dextrose (YPD) at 300C and then 
diluted in sterile H20. Cells were plated on YPD, selective synthetic 
medium, and yeast extract-peptone-glycerol with cycloheximide (3 ttg/rni) 
to determine the titer of viable cells, diploids, and cytoductants, respec- 

tively. 
For the semi-quantitative plate mating assay, a modification of the stan- 

dard mating type test protocol was used (Rose et al., 1990). Fresh lawns 
of a wild type strain and fresh patches of strains to be tested were inoculated 

by replica plating the day before the mating. For mating, strains were replica 
plated together onto YPD plates and allowed to mate for 3 h at 30"C. Mating 
plates were then replica printed to synthetic medium to select for diploid 
cells. The frequency of diploid formation was compared to KARd and karl-1 
controls on the same plate. For the analysis of mutations on CEN-based vs. 
2/~m-based plasmids, we compared strains by testing them together on the 
same mating plate. 

Plasmid Constructions 

All enzymes were used according to the specifications of their suppliers. 
Linkers were purchased from Pharmacia Fine Chemicals (Piscataway, NJ), 
New England Biolabs (Beverly, MA), or synthesized at Princeton Univer- 
sity. The construction of plasmids pMR95 (karl-S72), pMR97 (karl-S88), 
and pMR99 (karl-S96) has been previously described (Rose and Fink, 

1987). 
Two codon insertions into the TaqI and SspI enzyme recognition sites 

within the KAR/gene were isolated by a technique described by Barany 
(1985a,b, 1988). DNA was linearized by restriction enzyme digestion in the 
presence of ethidium bromide, oligonucleotide linkers were added, and the 
plasmid was reclosed with DNA ligase, pCGTCGA (27-8546-01; Pharmacia 
Fine Chemicals) was inserted into ~ q I  sites to form KARI-Q250, KARl- 
Q260, and KARl-Q270 (plasmids pMRI071, 1294, and 1295, respectively). 
CCGCGG (27-8430-01; Pharmacia Fine Chemicals) was inserted into SspI 
sites to form KARl-P210, KARl-P220, karl-P230, and karl-P240 (plasmids 
pMR1420, 1422, 1424, and 1426). These insertions were isolated in plas- 
mid pMR326, a pSB32 (gift ofG. Fink, M.I.T., Cambridge, MA) derivative 
containing the KAR/gene on a genomic HindllI-BamHI fragment of ,~2.6 
kb, LEU2 and CEN4. Linker insertions were mapped by the acquisition of 
a novel restriction enzyme site. When phosphorylated linkers were used, 
multiple linker insertions were detected by the appearance of an additional 
restriction site created by the junction of two or more linkers. 

To facilitate certain deletion constructions, 8-, 10-, and 12-bp linker in- 
sertions were isolated at two sites within KAM. For one set, pMR76 (KAR/ 
on YCp50) was linearized with Sad and blunted with T4 DNA polymerase. 
CGTCGACG, CGGTCGACCG, or CCGGTCGACCGG were ligated onto 
the blunt ends before reclosure to form karl-C281, KARl-C282, and karl- 
C283 (pMR1449, 1451, and 1453), respectively. Similar sets of insertions 
were made into pMR1422 (KARd-P220) after cleavage with SaclI and blunt- 
ing with 1"4 DNA polymerase to form KARl-P221, karl-P222, and karl- 
1'223 (pMR1514, 1516, and 1518). 

Duplications within the coding sequence of KAR/were constructed from 
various linker insertions by ligating fragments containing a 5' portion of the 
gene on a BamHI-SalI or BamI-II-XhoI fragment to fragments containing 

a 3' portion of the gene on a SalI-AatlI or XhoI-AatlI fragment. This 
resulted in the duplication of the region of the gene carried on both frag- 
ments. The fusion joints of these pairs of sequences were the linker inser- 
tions previously isolated (Rose and Fink, 1987). These duplications were 
then cloned into pSB32. 

Deletion alleles of KAR/were constructed on YCp50 in a manner similar 
to the duplications described above. Linker insertions previously described 

(Rose and Fink, 1987) as well as those described above were used. To con- 
struct A27, a Sall-StuI adaptor (TCGAGC, CC) was inserted in the Sail site 
at the junction between the 5' and 3' fragments. To make A29, the plasmid 
containing the 5' and 3' fragments was digested with SalI, and the ends were 
filled in with the Klenow fragment of DNA polymerase I before reclosure 
of the plasmid. A complete deletion of the hydrophobic tail of KARl (karl- 
P23/) was created by digesting karl-P230 with SaclI, blunting the ends with 
T4 DNA polymerase and inserting an Xba linker (CTCTAGAG) before 
religating. This resulted in a termination codon at position 413. 

Analysis of Mutations 

The phenotypes of the insertions were investigated either by the "spore via- 
bility test" (Rose and Fink, 1987) or by the "plasmid shuffle" method (Boeke 

et al., 1987). For spore viability, a diploid strain heterozygous for a deletion 
of KAR/(MS136) was transformed with a centromere-based, URA3 marked 
plasmid containing the mutant KAR/gene. Transformants were sporulated 
and tetrads were dissected. Failure of the plasmid to suppress the chro- 
mosomal deletion resulted in only two viable spores per tetrad. Suppression 
of the chromosomal deletion allele resulted in two, three, or four viable 
spores from each tetrad. 

We assayed for the presence of the plasmid by replica printing to media 
to select for the plasmid marker, usually UK43. In all cases, including those 
in which the plasmid could not suppress the chromosomal deletion of KAR/, 
the plasmid was transmitted to a subset of the meiotic progeny. Therefore, 
the inviability associated with some of the deletions was not due to absence 
of the plasmid. 

A caveat of the spore viability assay is that a mutation that only blocks 
spore germination cannot always be distinguished from a mutation that 
causes inviability. However, previous analysis has demonstrated that spores 
carrying a deletion of KAR/are able to germinate and divide a few times 
(Rose and Fink, 1987). Although it is possible that KAR/ is not required 
for germination and the first few mitotic divisions, it is more likely that 
spores contain enough KAR/mRNA or protein to proceed through several 
cell divisions. Regardless of the mechanism, these data suggest that the in- 
viability caused by certain KAR/mutations results from a mitotic, and not 

a germination, defect. 
For plasmid shuffling, a haploid strain (MS397) was constructed that 

contained a deletion of KAR/on the chromosome and a wild type KAR/ 
gene on a URA3 marked centromeric plasmid (pMR'/6). For these experi- 
ments, the mutant KAR/ gene was carried on a LEU2 marked plasmid, 
pMR326. Mutant derivatives of plasmid pMR326 were transformed into 

MS397 and transformants were subsequently grown on 5-FOA; Ura+ cells 
die but Ura- cells continue to grow on this media. Functional KAR/ on 
pMR326 can suppress the chromosomal deletion so that cells can lose 
pMR76 by missegregation and become Ura3 - and 5-FOA R. However, if the 
strain is dependent on the presence of the wild type KAR/gene for viability, 
it will be 5-FOA s because it cannot lose the URA3-based pMR76. Subse- 
quently, strains containing mutant alleles of KAR/generated either by plas- 
mid shuffling or by the "spore viability test" were tested for heat and cold 
sensitive growth and karyogamy. 

Certain mutations that failed to complement a chromosomal deletion of 
KARd had lower steady state levels of Karl protein as determined by West- 
ern blot analysis. To determine whether increased levels of these proteins 
would allow complementation, the deletion alleles were subcloned as a 
HindlII-EcoRI fragment onto the 2 t~m-based vector, CGS42 (J. Maio; 
Collaborative Genetics, Bedford, MA). These plasmids were then trans- 
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Table L Yeast Strains 

Strain Genotype Source* 

MS10 

MS52 

MS136 

MS147 

MS397 

MS739 

MS751 

M S l l l 3  

MSl117 

MS1274 

MS1461 

MS1463 

MS1465 

M S 1467 

MS1473 

MS1475 

MS2059 

MS2102 

MS2111 

MS2113 

MS2115 

MS2117 

MS2124 

MS2127 

MS2133 

MS2135 

MS2989 

MS2990 

MS2991 

MS2992 

MY603 

MY606 

MY749 

BWG1-7A 

MY913 

TD28 

8960-1 lb 

XW2-20A 

JPI1 

JPJ1 

JPK2 

MATa ura3-52 leu2-3 leu2-112 ade2-101 

MATc~ ura3-52 leu2-3 leu2-112 trpl-A1 

MATa/c~ ura3-52/ura3-52 lys2-801/ + his4-539~+ karl-102/ + 

MATa trpl-A1 lys2-801 ade2-101 cyh ~ [rho ~ ] 

MATa ura3-52 leu2-3 leu2-112 karl-102 
[pMR76:YCp50 KARl] 

MATc~ ura3-52 leu2-3 leu2-112 ade2-101 karl-1 
MATa ura3-52 leu2-3 leu2-112 ade2-101 

[pMR1300:YCp50 KAR3-lacZ hybrid]* 

MATc~ ura3-52 leu2-3 leu2-112 trpl-A1 karl-Al5 
MATc~ ura3-52 leu2-3 leu2-112 trpl-A1 karl-A13 
MATa ura3-52 trpl-A1 lys2-801 cyh R karl-A13 

MATa ura3-52 leu2-3 leu2-112 trpl-A1 karl-A13 
[pMR1491:YCp50 karl-A17] 

MATc~ ura3-52 leu2-3 leu2-112 trpl-A1 karl-A13 

[pMR1493:YCp50 karl-A18] 
MATc~ ura3-52 leu2-3 leu2-112 trpl-A1 karl-A13 

[pMR1495:YCp50 karl-A19] 
MATc~ ura3-52 leu2-3 1eu2-112 trpl-A1 karl-A13 

[pMR1497:YCp50 karl-A20] 
MATer ura3-5 2 leu2-3 1eu2-112 trp l-A1 karl-A13 

[pMR76:YCp50 KARl] 

MA Tc~ ura3-5 2 leu2-3 leu2-112 trp l-A1 karl-A13 

[YCpS0] 

MATta ura3-52 leu2-3 leu2-112 trpl-A1 karl-A13 
[pMR95:YCp50 karl-S72 ] 

MA Ta ura3-52 leu2-3 leu2-112 karl-A13 
[pMR1300:YCp50 KAR3-lacZ hybrid]* 

MATa ura3-52 leu2-3 leu2-112 trpl-A1 karl-A13 
[pMR1738:pCGS42 karl-Al 7] 

MATtx ura3-52 leu2-3 leu2-112 trpl-A1 
[pMR1740:pCGS42 karl-A18] 

MATct ura3-52 leu2-3 leu2-112 trpl-A1 

[pMRI742:pCGS42 karl-A19] 
MATc~ ura3-52 leu2-3 Ieu2-112 trpl-A1 

[pMR1744:pCGS42 karl-A20] 
MATa ura3-52 leu2-3 leu2-112 trpl-A1 

[pMR1752:pCGS42 karl-A13] 
MATc~ ura3-52 leu2-3 1eu2-112 trpl-A1 

[pCGS42] 

MATa ura3-52 leu2-3 1eu2-112 trp l-A1 
[pMR1713:pCGS42 karl-S72] 

MATc~ ura3-52 leu2-3 leu2-112 trpl-A1 
[pMR1552:YCp50 karl-A13] 

MATtx ura3-52 leu2-3 1eu2-112 trpl-A1 

[pMR1426:pSB32 karl-P240] 
MATer ura3-52 leu2-3 leu2-112 trpl-A1 

[pMR2399:pCGS42 karl-P240] 

MATc~ ura3-52 leu2-3 1eu2-112 trpl-A1 
[pMR2323:pSB32 karl-P231] 

MATtx ura3-52 leu2-3 Ieu2-112 trpl-A1 

[pMR2400:pCGS42 karl-P231] 
MATa ura3-52 inol-1 SUP v~ karl-103 
MATa ura3-52 inol-1 SUP wa karl-104 

MATa ura3-52 inol-1 SUI ~~ karl-105 

MATa ura3-52 leu2-3 leu2-112 his4-519 

MA Ta ura3-52 leu2-3 leu2-112 his4-519 
[pMR260:YCp50 pGAL1-KAR1]w 

MATa ura3-52 inol-1 SUP yea 

MATtx ura3-52 leu2-3 karl-1 
MATa his4 leul can1 nys R thr karl-2 

MATc~ ade2-1 his4-15 can1 nys R karl-5 
MATtx ade2-1 his4-15 canl nys R karl-3 

MATa ade2-1 his4-15 can1 nys R karl-4 

karl-A13 

kar l-A l 3 

karl-A13 

karl-a l 3 

karl-A13 

karl-A13 

karl-A13 

karl-A13 

karl-A13 

karl-A13 

karl-A13 

adel-lO0 GAL § 

adel-lO0 GAL § 

Rose and Fink (1987) 

Rose and Fink (1987) 

Rose and Fink (1987) 

L. Guarente 

Rose and Fink (1987) 

Rose and Fink (1987) 

Polaina and Conde (1982) 

Polaina and CoMe (1982) 

Polaina and Conde (1982) 

Polaina and Conde (1982) 

* Unless otherwise noted, all strains are from this study. 
* Meluh and Rose (1990). pMRI300 contains the amino-terminal 309 codons of KAR3 fused to the 5' end of the lacZ gene. 
w Rose and Fink (1987). 
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formed into MS136 and assayed for comptementation in the spore viability 
test and transformed into MSl117 to assay for complementation of the 
karyogamy defect. 

Mapping of Mutations and DNA Sequence Analysis 

Temperature sensitive and karyogamy deficient alleles of KAR/ were 
mapped by the method of gap repair (Orr-Weaver et al., 1983). Plasmids 
containing the deletion alleles of KAR/described above were linearized 
with SalI or XhoI at the site of the deletion. Linearized plasmids were trans- 
formed into the mutant strain, and transformants were screened either for 
temperature resistance by replica plating to 37~ or for karyogamy 
proficiency by the limited mating plate assay (Rose and Fink, 1987). Trans- 
formation by gapped plasmids is dependent upon repair templated by the 
chromosomal karl allele. If the mutation was in the deleted region, all trans- 
formants repaired the gap using the mutated DNA and displayed the mutant 
phenotype. However, if the mutation was not within the deleted region, re- 
pair from the chromosome usually reconstituted a wild type copy of the 
gene. By this analysis, temperature sensitive alleles karl-103, karl-104, and 
karl-lOS (Rose and Fink, 1987) were mapped between amino acids 247 and 
288. Karyogamy defective alleles karl-l, karl-2, karl-3, karl-4, karl-5 
(Polaina and Conde, 1982), and karl-106 (Kadish, D., and M. Rose, unpub- 
lished observations) were mapped between amino acids 118 and 191. 

Regions genetically defined to contain mutations were sequenced by the 
dideoxy method of Sanger et al. (1977) using Sequenase (USB, Cleveland, 
OH). Temperature sensitive karl alleles were sequenced from pMR266, 
pMR267, and pMR268 (Rose and Fink, 1987) as double-stranded super- 
coiled plasmid templates. For the karyogamy defective karl alleles, single- 
stranded DNA from the region containing the mutation was isolated by an 
asymmetric PCR amplification using a 100:1 ratio of primers (Kreitman and 
Landweber, 1989). The single-stranded DNA produced in this reaction was 
then sequenced using the limiting primer in the PCR reaction to prime syn- 
thesis in the sequencing reaction, 

Immunological Techniques 

Rabbit anti-KARl serum was prepared against a fusion protein containing 
the amino-terminal 190 amino acids of Karlp fused to E. coli trpE protein 
as described (Rose et al., 1989). 

For Western blots, total yeast proteins were extracted by the method of 
Ohashi et ai. (1982) and separated by SDS-PAGE. Proteins were electropho- 
reticaUy transferred to nitrocellulose (Burnette, 1981; Towbin et ai., 1979). 
Nonspecific antibodies were reduced by preadsorbing diluted anti-KARl se- 
rum (1:150) to a filter containing electmphoretically transferred proteins 
from a strain carrying karl-Al3 (deleted for the epitopes used for immu- 
nization). Antibody binding was visualized using 125I-labeled protein A 
(Amersham Chemical Corp., Arlington Heights, IL) and autoradiography. 
Immunofluorescent staining of yeast ceils was performed by a modification 
of the methods of Adams and Pringle (1984) and Kilmartin and Adams 
(1984), as described by Rose and Fink (1987). Rabbit antiserum (RAP 124) 
directed against yeast ~-tubulin was a generous gift from E Solomon 
(M.I.T., Cambridge, MA). The rat anti-yeast c~-tubulin mAb YOL1/34 
(Kilmartin et al., 1982) was obtained from Accurate Chemical & Scien- 
tific Corp. (Westhury, NY). Mouse anti-#5-gaiactosidase mAb was from 
Promega Biotec (Madison, WI). Rabbit anti-/3-gaiactosidase polyclonai 
antibody was from Cappel Research Reagents (Maivern, PA). F1TC and 
rhodamine-conjngated secondary antibodies were purchased from Boehr- 
inger Mannheim Biochemicals (Indianapolis, IN). The fluorescent DNA- 
specific dye 4',6'-diamidino-2-pbenylindele (DAPI) was used to visualize 
yeast nuclei. 

Wild type cells and cells containing katyogamy deficient karl alleles 
were grown to mid-logarithmic phase at 30~C in YPD or SC la'ckiog uracil 
for plasmid-containing strains. In either case media were adjusted to pH 
4.0 with HCI. For co-factor arrest, cultures were diluted 1:1 with fresh me- 
dia, supplemented with or-factor (Sigma Chemical Co., St. Louis, MO) to 
5 t~M and incubated at 30~ for 3 h. 

Construction of Strains Containing Karyogamy 
Deficient Alleles of KARl 

Isogenic strains that carry chromosomal copies of the karyogamy deficient 
karl deletions as well as karl-1 were constructed. For alleles A13 and A15, 
YCp50-hased plasmids containing the mutations were digested with TthIII1 
and reilgated, thereby deleting CEN4 and ARS/and converting them into 
YIp plasmids. These plasmids were Ilnearized with BglII to direct integra- 
tion into the KAR/locus (Oft-Weaver et ai., 1983) and transformed into 
yeast. Purified transformants were subsequently treated with 5-FOA to se- 

lect ceils in which the plasmid had excised via homologous recombination 
between the two repeated copies of the KAR/gene. The 5-FOA R colonies 
were then screened by mating assays and Southern blots to identify strains 
carrying the karyogamy defective deletion alleles. The karl-I allele was iso- 
lated by integrating pMR36 in strain 8960-1113 (Rose and Fink, 1987). A 
transformant that had gene converted both copies of/fAR/to the karl-I al- 
lele was isolated. Total DNA was prepared, digested with BglII, ligated, and 
subsequently used to transform E. coil to Amp R. The presence of the karM 
allele on plasmid pMR722 and the isolation of an isogenic karl-1 strain was 
confirmed as described above for the integration of deletion alleles of KARL 

Results 

The Hydrophobic Carboxyl Terminus of Karlp Is 
Important for Mitotic Function 

To identify functional domains in the 433 residue Karl pro- 
tein, we constructed a series of linker insertions within the 
coding region. One set introduced two or more codons and 
did not disrupt the reading frame (Barany 1985a,b, 1988) 
(Table II and Fig. 1 A). A second set of linker insertions were 
among those previously constructed by Rose and Fink (1987) 
(Table II and Fig. 1 A). The effects of the various mutations 
were tested by the ~lasmid shuffle " or the "spore viability" 
test as described in Materials and Methods. 

Of 14 linkers tested, only 3 linker insertions resulted in 
a complete loss of function at all temperatures tested. All 
three mapped to the carboxyl terminus, which is comprised 
of a 20-residue hydrophobic region (412-431) showing the 
characteristics of a type II membrane spanning domain 
(Hartmann et al., 1989). The most distal in-frame linker in- 
sertion, karl-P240 at position 421, introduced a positively 
charged residue, arginine, and a putative alpha-helix breaker, 
glycine (Fig. 2). These changes would be expected to se- 
verely affect the function of a membrane spanning domain. 
A second linker insertion, karl-S72, introduced a frameshift 
mutation at residue 426 (Rose and Fink, 1987). Linker karl- 
$72 truncated the hydrophobic region and substituted a novel 
carboxyl terminus (GRPYMKKCVQLWQ) containing sev- 
eral charged and polar residues. The third linker, karl-P231, 
was constructed to introduce a termination codon at residue 
413, truncating the protein at the beginning of the hydropho- 
bic region. These data defined the hydrophobic carboxyl ter- 
minus as being essential for viability. 

One other mutation caused a detectable mutant pheno- 
type. The linker insertion karl-P230 deleted Tyr 4t2 and 
replaced it with Ser-Ala-Asp (Fig. 2, Table II). Linker P230 
is at the beginning of the hydrophobic stretch and caused a 
15 % increase in the doubling time compared to wild type. 

We were surprised that the remaining linker insertions 
outside of the small hydrophobic tail region had no detect- 
able effect on KAR/ function. Some insertions (e.g., P210 
and P220) introduced prolines and would be expected to al- 
ter the structure of the protein. Moreover, insertions contain- 
ing multiple linkers were obtained at two sites (Table II). 
Like the two amino acid insertions, and the two small in- 
frame deletions previously isolated (Rose and Fink, 1987), 
these multiple linker insertions had no effect on KAR/ 
function. 

Large Duplications within Karlp Cause 
No Mutant Phenotype 

As the small in-frame insertions did not produce obvious 
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Table II. Amino Acids Added by Linker Insertions 

Sequence at Altered sequence 
wild type generated by Mitotic 

Allele Plasmid Residue locus insertion or deletion phenotype* 

Q250 pMR1071 14 SK SSTSTK + 

P210 pMR1420 71 NI NPRI + 

Q270 pMR1295 112 FR FRRR + 

Q271 pMR1074 112 FR FRRRRR + 

C281 pMR1451 190 KSSS KR.STAS + 

$96 pMR99 288-294 DNSFKISTP DGRPP + 

Q260 pMRI294 349 IE IVDE + 

Q261 pMR1075 349 IE IVDVDE + 

$88 pMR97 385-392 EQMVNKGWRK ERSTK + 

P220 pMR1422 404 NI NPRI + 

P230 pMR1424 411 EYF ESADF + / -  

P231 pMR2323 411 EYF ESterm - 

P240 pMR1426 421 IL IRGL - 

$72 pMR95 427-433 NIYVYYRFterm NGRPYMKKCVQLWQterm - 

* Mutations carried on low copy plasmids were assayed for phenotypes in the plasmid shuffle and spore viability assays described in Materials and Methods. (+) 
Wild type growth; ( + / - )  decreased growth rate compared to wild type; ( - ) ,  complete loss of function; (term) carboxy terminus. 
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Figure L Insertion mutations in the KAR/gene. (,4) Small inser- 
tions and deletions. Plasmids containing KAR/were mutagenized 
in vitro by the insertion of synthetic oligonucleotide linkers at the 
sites shown. See Table II for the specific sequences inserted and 
deleted. (B) Duplications within the KAR/gene. Plasmids contain- 
ing duplications of internal sequences within the KAR/gene were 
constructed by ligating together various fragments of the KAR/ 
gene. The amino acids contained on each fragment are shown; the 
duplicated region consists of those sequences contained on both 
fragments. The mutagenized, low copy number plasmids were 
transformed into yeast strains and assayed for phenotypic effects af- 
ter plasmid shuffling or in the spore viability test. All plasmids were 
tested for nuclear fusion by the plate mating assay. All the viable 
insertion mutations in A were Kar +. (+) Wild type growth; (+ / - )  
decreased growth rate compared to wild type; (-),  complete loss 
of function. 

mutant phenotypes, we constructed large duplications of the 
coding region. These might be expected to cause more dras- 
tic changes in the protein structure. Such duplications have 
previously been reported to cause nonconditional loss of 
function and temperature-sensitive mutant phenotypes in 
~-lactamase ~ a n y ,  1985a). Duplications were constructed 
by ligafing together different amino-terminai and carboxyl- 
terminal fragments from various linker insertions (Fig. 1 B). 
The duplications ranged in size from 30 to 300 amino acids. 
The structures of the duplications in the yeast transformants 
were confirmed by Southern blot hybridization (data not 
shown). In some cases Western blots were performed to 
verify the size of the mutant protein (data not shown). 

Two of the duplications caused a slight decrease in growth 
rate compared to wild type. The doubling times for strains 
containing duplications of amino acids 295-426 and 
321-384 (Fig. 1 B) were 8 and 25% longer, respectively. In 
both of these duplications, both sides of the fusion joint were 
near the carboxyl terminus. No effects on nuclear fusion 
were observed. The remaining duplications had no detect- 
able effect on either KAR/ function. 

A Second Region of Karlp Important for Mitosis 

From the above, it appears that KAR/tolerates many differ- 
ent changes that should produce significant perturbations in 
protein structure. Therefore, to use a more rigorous means 
to identify regions that are important for function, we con- 
structed a series of large in-frame deletions of KARL The 
deletions were constructed from appropriate pairs of the 

linker insertions. None encroached upon the hydrophobic 
carboxyl terminus. Plasmids were then assayed for com- 
plementation of a large chromosomal deletion using the 
spore viability test. 

Remarkably, most of the KAR/coding sequence could be 
deleted with no effect on viability (Fig. 3). In the amino- 
terminal half, as much as 41% of the protein (residues 
15-192) was dispensable. Likewise, in the carboxy-terminal 
half, 39% of the coding sequence (residues 235-404), was 
not essential. However, deletion of the region between 
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lqgure 2. Mutations of the earboxyl terminus of Karlp. The hydro- 
phobic carboxyl terminus of Karlp is shown. The putative mem- 
brane spanning region is overscored. Residues inserted by the karl- 
P230 and karl-P240 linker insertion mutations are indicated. The 
termination codon inserted in karl-F231 occurs at position 413. 
The frameshift mutation karl-S72 occurs at residue 426 and inserts 
the residues shown. (C) Carboxyl terminus; (+) wild type growth; 
( + / - )  decreased growth rate compared to wild type; ( - ) ,  complete 
loss of function. The growth phenotypes were assayed when the 
mutations were carried on low copy number plasmids. 

residues 191 and 246 (A17) created a temperature-sensitive 
growth defect. All strains containing larger deletions (e.g., 
A18, h19, and a20) that span this interval were inviable at 
all temperatures tested (13, 23, 30, and 37~ Therefore, 
these mutations defined a second important region in the 
KAPd gene, which we will refer to as region I. 

Mapping and Sequence Analysis of  karl,, Alleles 

Given that only an extremely small portion of KAR/was 
found to be required for its mitotic function, it was of interest 
to determine the position of three previously isolated tem- 
perature-sensitive mutations (Rose and Fink, 1987). All 
three independently isolated mutations were genetically 
mapped between residues 247 and 288, a region which dele- 
tion analysis (see above) had shown to be nonessential. Se- 

quence analysis demonstrated that all three alleles contained 
the same mutation, changing Trp 2~ to a UGA nonsense 
codon. As the carboxyl terminus plays a significant rote in 
Karlp's mitotic function, it seemed unlikely that the trun- 
cated protein fragment would be functional. Genetic analysis 
of the strain in which the conditional alleles were isolated, 
TD28, demonstrated the presence of a weak temperature- 

sensitive UGA-suppressor. To date, no single p i n t  muta- 
tions have been isolated that create temperature-sensitive 
forms of Karlp. However, multiple mutations within region 
I do lead to a temperature-sensitive phenotype (Vallen, E., 
and M. Rose, unpublished observations). 

The Viable Deletion Mutants Define a Region 
Required for Nuclear Fusion 

Strains carrying viable in-frame deletions were tested for nu- 
clear fusion to ascertain whether a specific region of Karlp 
is required for karyogamy. Most of the viable deletions were 
Kar § Hovcever, all strains bearing deletions including 
residues 118-191 were found to be Kar- (Fig. 3). To ac- 
curately measure the karyogamy defect, Kar- alleles A13 
and A15 were integrated at the KAR/locus. Both deletions 
caused a large decrease in the formation of diploids, and a 
concomitant increase in the formation of cytoductants (Table 
III). Strains containing the deletion alleles were as deficient 
for nuclear fusion as isogenic strains carrying the karM 
allele. The residual nuclear fusion seen in these strains 
may represent the null phenotype for KAR/'s karyogamy 
function. 

The locations of six independently isolated Kar- point 

mutations (including karl-l) were genetically mapped and 
found to tie within the region defined by deletion analysis as 
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Figure 3. Deletions within the 
KAR/gene. Plasmids contain- 
ing deletions of internal se- 

K a y  quences within the KAR/gene 
+ were constructed by the liga- 
_ tion of pairs of fragments of 
+ the KAR/ gene. The allele 
_ numbers corresponding to 

each deletion are shown. The 
+ region deleted in each allele 
+ is shown by a solid line; num- 
+ bers flanking the solid bars 
+ correspond to the missing resi- 
+ dues in each deletion. The mi- 
+ totic function of each deletion 

; ? - 1  ptasmid was assayed using the 
spore viability test. (+) Wild 
type growth; (Ts) temperature 

+ /d_]  sensitive growth; ( - )  inviabil- 
ity. Alleles were also tested 

n d  for nuclear fusion defects: (+) 
rid. wildtype karyogamy profi- 
n d  ciency; ( + / - )  intermediate 
~ d  ka.,Togamy proficiency; ( - )  
wrd karyogamy defective. The 

bracketed results were ob- 
tained by complementation of the karyogamy defect conferred by karl-Al3; in these cases, the phenotype was assayed when the mutations 
were carded on multicopy, 2 #m-based plasmids. The Karl protein (top) is numbered according to amino acid sequence. Region I (\\\) 
and the region required for karyogamy (Ill) are demarcated by hatching. The hydrophobic tail 0000 required for both functions is indicated 
by crosshatching. 
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being required for karyogamy. DNA sequence analysis re- 
vealed that all of the mutations were the result of the same 
single base change which converts Pro ts0 to Ser. Thus, the 
viable deletions and the missense mutations define a region 
of Karlp necessary for nuclear fusion. 

Table IlL Nuclear Fusion Defects of KARl Mutants 

Quantitative 
matings 

Relevant Plate 
Strain genotype Diploids C/D assay 

Intragenic Complementation between Deletion Alleles MS52 

The inviability of some of the deletion mutants prevented a MS739 
direct determination of their ability to perform nuclear fu- MS l 113 
sion. To test whether these proteins retained karyogamy MSl117 
function, strains containing chromosomal Kar- deletion al- MS1461 

M S 1463 
leles (A13 and A15) were transformed with plasmids contain- MS1465 
ing some of the inviable and temperature-sensitive deletion MS1467 
alleles. Transformants were assayed for karyogamy profi- MS1473 
ciency by replica print plate matings and quantitative filter MS1475 
assays (see Materials and Methods). If the karyogamy region MS2111 
is a domain distinct from that required for viability, these de- MS2113 
letions should restore nuclear fusion capability. MS2115 

Representative data for the transformants of A13 are MS2117 
shown in Table III. Results for A15 were essentially identi- MS2127 
cal. Both high and low copy number plasmids containing MS2059 

MS2133 
A17 promoted wild type levels of nuclear fusion. On low MS2991 
copy number plasmids, three Region I mutations, A18, A19, MS2992 
and A20, only partially restored nuclear fusion function to MS2989 
the A13 strain. However, nuclear fusion was markedly im- MS2990 
proved when these deletions were carried on high copy num- MS2135 
ber plasmids. In contrast, a high copy number plasmid car- MS2124 
rying a karyogamy region deletion (A13) did not restore 
nuclear fusion. Clearly, the region I deletions retain karyog- 
amy function. Therefore, the karyogamy function and the 
mitotic function of KAR/are at least partially mediated by 
separate protein domains. 

The carboxy-terminal mutations were also defective for 
complementation of A13. The defects associated with two 
mutations, (karl-P231 and karl-S72), were at least partially 
suppressed by expression of the mutant proteins from high 
copy plasmids, whereas the defect associated with another 
mutation, (karl-P240), was not suppressed. One explanation 
for these results is that the severity of the defect correlates 
with the steady-state levels of the mutant proteins (see be- 
low). However, high copy expression of Karl-P231 protein 
results in only partial complementation of A13, although 
steady-state protein levels are comparable to single copy 
wild type Karlp (data not shown). These results imply that 
the hydrophobic tail may have an additional function beyond 
the simple requirement for protein stability. 

Decreased Steady-State Levels of Mutant Proteins 

The interpretation of deletion mutations that are functionally 
defective is complicated by the fact that negative results can 
arise either from loss of function or from decreased protein 
stability or expression. In this regard, the karyogamy 
proficiency conferred by A17 in single copy provided func- 
tional proof for the presence of mutant protein. However, 
several other mutations showed little or no complementation 
of the karyogamy defect unless they were present on high 
copy number plasmids. One likely explanation of these 
results is that the mutant proteins were unstable. 

Western blot analysis was performed on strains containing 
the region I deletion alleles (A17, A18, A19, A20) and the 
frameshift mutation in the carboxy terminus ($72) to deter- 

% 

KARl 69 0.001 + 

karl-1 1,0 8.3 - 

karl-z115 2.3 3.7 - 

karl-Al3 0.6  3.2 - 

kar1-za13 [YCpkarl-A17] 30 0.028 + 

karl-all3 [YCpkar l -A 18] 3.7 1.9 - / +  

karl-A13 YCpkar l -Al9]  4.4 1.1 - / +  

karl-za13 YCpkarl-A20] 9.5 0.49 - / +  

kar1-za13 [YCpKAR1 ] 33 0.026 + 

karl-A13 [YCp50] 2.0 4.3 - 

karl-A13 [2/~karl-A 17] + 

karl-A13 [2~karl-A 18] + / -  

karl-A13 [2#karl-A19] + l -  

karl-A13 [2#karl-A20] + / -  

karl-A13 [2/x] 

karl-a13 [YCpkarI-S72] - / +  

kar1-z113 [2#karl-S72] + 
karl-A13 [YCpkar1-P231] 

kar1-za13 [2#karl-P231] - / +  

karl-A13 [YCpkarl-P240] 

kar1-z113 [2/~karl-P240] 

karl-A13 [YCpkarl -A 13l 

karl-A13 [2/zkarl-Zi 13] 

For quantitative matings, strains were mated to a MATa KARl [rho ~ cyh R 
strain (MS147) for 5 h at 30~ After mating, cells were plated to determine 
the number of  viable ceils, diploids, and cytoductants. Cytoductants contain a 
haploid nucleus from one parent and a cytoplasmic genetic element from the 
other parent. An increase in the cytoductant to diploid ratio (C/D) indicates a 
decrease in the frequency of nuclear fusion. 

For the plate assay, a modification of the standard mating type test protocol 
was used (Rose et al., 1990). Strains were replica plated together, allowed to 
mate for 3 h at 30~ and then replica printed to select for diploid cells. Diploid 
formation was compared to KARl and karl-1 controls on the same plate. For 
the same mutations on CEN-based vs. 2/~m-based plasmids, strains were tested 
together on the same mating plate. 

The approximate frequency of diploid and cytoductant formation can be 
defined by comparison of plate mating data to quantitative mating data for 
known controls, + indicates the wildtype KARl ~ phenotype, >25% diploid 
formation and a C/D ratio of<0.05; + / -  corresponds to 11-25% diploid for- 
marion and C/D ratio of 0.05-0.4; - / +  corresponds to 3-10% diploid.forma- 
tion and C/D ratio of 0.4-3; - is the phenotype caused by the karl-1 mutation, 
<3% diploid formation and C/D ratio of >3. 

mine the steady state levels of the mutant proteins. To 
specifically monitor the plasmid encoded proteins, the chro- 
mosome carried the A13 allele whose protein product does 
not contain the epitopes that react with the antibody. With 
the possible exception of A17, the levels of the mutant pro- 
teins were significantly less than that of wild type (Fig. 4). 
When the A18, A19, A20, and $72 mutations were carried 
on high copy number plasmids, protein levels were similar 
to that of wild type protein expressed from a low copy num- 
ber plasmid. These data support the suggestion from the 
complementation data that the mutant proteins were un- 
stable. 

In contrast to the k.aryogamy results, A18, A19, and A20 
on high copy number plasmids remained defective when as- 
sayed by the spore viability test. Moreover, overexpression 
did not suppress the temperature sensitivity of A17. Thus, al- 
though some of the mutant proteins appeared to be less sta- 
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Figure 4. Steady-state levels of Karlp in deletion mutants. MSl117 
(karI-Al3) was transformed with various plasmids and the resulting 
strains were subjected to Western blot analysis. The karl-za13 allele 
is deleted for the epitopes recognized by the Karlp antibodies. 
(Lane 1) MY913 (pGAL-KARI) grown on galactose; (lane 2) 
MS1473 (KAR/on YCp50); (lane 3) MS1475 (YCp50); (lane 4) 
MS2127 (2/~m); (lane 5) MS1461 (kar1-A17on YCp50); (lane 6) 
MS2111 (karl-a17 on 2 #m); (lane 7) MS1463 (karl-A18 on 
YCp50); (lane 8) MS2113 (karl-a18 on 2/~m); (lane 9) MS1465 
(karl-A19 on YCpS0); (lane 10) MS2115 (karl-ell9 on 2/~m); (lane 
11) MS1467 (karl-zl20 on YCp50); (lane 12) MS21 I7 (karl-A20 on 
2 #m); (lane 13) MS2059 (karl-S72 on YCp50); (lane 14) MS2133 
(karl-S72 on 2/~m). Lanes 13 and 14 are from a separate gel. The 
band corresponding to the wild type Karlp is indicated. The sizes 
of the deletion proteins vary between strains. Other bands are due 
to cross-reacting proteins and are not derived from Karlp. 

ble than wild type, increasing their steady-state levels was 
not sufficient to restore viability. One explanation for the ina- 
bility of the overexpressed mutant proteins to restore viabil- 
ity is that the intact or partially degraded mutant proteins 
might titrate other essential components. We believe this ex- 
planation to be unlikely because it predicts that the mutant 
proteins would confer a dominant negative phenotype which 
we have not detected. Therefore, these deletions must inacti- 
vate a domain that is required for the essential mitotic 
function. 

In contrast to the region I deletions, karl-S72 on a high 
copy number plasmid allowed the recovery of viable strains 
containing a complete deletion of the chromosomal copy of 
KAR/. Thus, overexpression of Karl-S72p restored mitotic 
function as well as karyogamy function. Since the $72 allele 
removes only part of the hydrophobic tail, overexpression 
may enhance its residual function. 

Unlike karl-S72, two other carboxy-terminal mutations, 
karl-P231 and karl-P240, did not support growth when pres- 
ent on high copy number plasmids. Because Karl-P231p and 
Karl-S72p are expressed to comparable levels from high 
copy number plasmids (data not shown), Karl-P231p must 
be defective for some essential mitotic function other than 
simple stabilization of the protein. It seems likely that the tail 
serves to localize or anchor the protein in the nuclear enve- 
lope; decreased stability might arise secondarily from mis- 
localization of the mutant protein. 

Phenotypes of Karyogamy Deficient Alleles 

karl-1 mutant shmoos and zygotes have aberrantly long cyto- 
plasmic microtubules (Rose and Fink, 1987). We therefore 
examined the microtubules in ceils containing the karyog- 

amy defective deletions to determine whether their pheno- 
type was similar. Wild type cells, or cells containing the 
Kar- alleles were treated with the mating pheromone or-factor 
for 3 h to induce shmoo formation and then examined by im- 
munofluorescent staining. Like the karl-1 mutation, the 
karyogamy defective karl deletions caused abnormally elon- 
gated cytoplasmic microtubules in shmoos (Fig. 5, compare 
A and B). 

Based on two observations, it seemed possible that KAR/ 
might exert its function in karyogamy via KAR3. First, long 
cytoplasmic microtubules are often found in mating cells 
containing either KAR3-/acZ hybrids or mutations in KAR3 
(Meluh and Rose, 1990). Second, although Kar3-1acZ pro- 
tein also localizes to the distal end of cytoplasmic microtu- 
bules, both Kar3-1acZ and Karl-lacZ hybrid proteins localize 
to the SPB in pheromone-treated cells. We therefore ana- 
lyzed the localization pattern of Kar3-1acZ hybrid protein in 
Kar- A13 mutant cells. In wild type shmoos, ,x,40 % of the 
cells showed Kar3-1acZp staining at both the SPB and the 
distal tip of the microtubules (Fig. 5, C and D). In the re- 
maining 60% of the cells, the SPB staining was too faint to 
be discernible, and only the brighter staining at the tip of the 
microtubules was evident. In strains containing A13, Kar3- 
lacZp staining at the SPB was not observed (<0.5%, n = 
200, six cells could not be scored due to an unfavorable 
orientation of the cell with respect to the observer), although 
it was readily observed at the distal end of the cytoplasmic 
microtubules (Fig. 5, E and F). The combination of the hy- 
brid protein and A13 caused formation of greatly elongated 
cytoplasmic micrombules, which were often longer than the 
cell and curved along the interior margin. As was seen for 
the Kar- mutation alone, these microtubules were often, 
but not always, dissociated from the SPB. In contrast, Kar3- 
lacZ protein localization was unaffected by mutations in 
KAR2 (data not shown) or KAR3 (Melnh and Rose, 1990), 
thereby demonstrating that the effect is specific to mutations 
in KAR/. Conversely, the SPB localization of Karl-lacZ hy- 
brid protein is not affected by deletion of KAR3 (data not 
shown). 

Thus, the localization of Kar3-1acZp to the SPB is depen- 
dent upon the integrity of the KAR/ karyogarny domain. 
These results suggest that the SPB localization of Kar3-1acZp 
is functionally significant for nuclear fusion. 

Discussion 

The KAR/gene is required for at least two distinct functions 
in yeast. First, during vegetative growth, KAR/is essential 
for cell viability; loss of function prevents SPB duplication. 
Consistent with this, immunofluorescent staining demon- 
strated that Karl-lacZ hybrid proteins associate with the SPB 
that is directed into the bud during cell division (Vallen et 
al., 1992). Second, KAR/is also required for efficient nu- 
clear fusion. During mating, the karyogamy defective karl 
mutants are c h a r a c t e ~  by the presence of abnormally 
long cytoplasmic microtubules emanating from the SPB 
(Rose and Fink, 1987). Together, these data suggested that 
Karl protein is a functional component of the yeast SPB for 
at least a portion of the cell cycle. In this paper, we have used 
a series of internal in-frame insertions, deletions and dupli- 
cations to define the regions of Karl protein required for its 
activities. 
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Figure 5. EAR1 mutations affect cytoplasmic micrombules and Kar3-1acZ hybrid protein localization. A, B, C, and E show staining with 
rabbit anti-/~-tubulin; D~and Fshow staining with mAb against/~-galactosidase to determine the localization of the Kar3-1acZ hybrid protein. 
W'tldtype strain MS10 (A) and karl-A13 strain MS1274 (B) were treated with o~-factor for 3 h and prepared for immunofluorescent staining 
of the microtubules. In the wildtype strain, the brightest staining is observed for the nuclear micrombules. The cytoplasmic microtubules 
are short faint extensiom, in some cases intersecting the nuclear micrombules at an obtuse angle. In the mutant strain, note the presence 
of long, detached cytoplasmic microtubules. In C-F, strains containing pMR1300 (KAK3-/acZ) were treated with ,-factor. A wildtype 
strain is shown in C and D and a karl-A13 strain is shown in E and E In the wildtype strain, the Kar3-1acZ hybrid protein is associated 
with both the SPB and the distal tips of the cytoplasmic microtubules. In the karl mutant, the Kar3-1acZ hybrid protein is associated only 
with the cytoplasmic microtubules. 

A Model  f o r  Karl  Protein 

Surprisingly, the results of  our analysis showed that only two 
small discrete regions were uniquely important for the mi- 

totic function of KARL One region, located at the extreme 
carboxyl terminus, is important for viability and karyogamy. 
This region contains an uninterrupted stretch of 20 hydro- 
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phobic and uncharged residues, in contrast to the rest of the 
protein which is highly charged and hydrophilic. Insertion of 
Arg-Gly into this region resulted in loss of Karlp function, 
suggesting that the hydrophobicity of this region is essential. 

Minimally, the hydrophobic tail serves to stabilize the 
Karl protein; mutations in this region resulted in lower 
steady-state levels of the protein. Although we have not ruled 
out the possibility that these mutations affect gene expres- 
sion, their location at the 3' end of the open reading frame 
seems more consistent with an effect on protein stability. 

Several observations suggest a more specific function for 
the hydrophobic tail. First, its length is sufficient to span a 
lipid bilayer. Second, it is flanked by charged residues as is 
frequently observed for membrane spanning domains. In- 
deed, the distribution of charged residues predicts that Karl 
protein would be a type II membrane protein (Hartmann et 
al., 1989) with the protein exposed to the cytoplasm. Third, 
a similar hydrophobic carboxy terminus has been described 
for several putative ER membrane proteins (Orlean et al., 
1988; Shim et al., 1991; Ferro-Novick, S., personal commu- 
nication). Fourth, a/3-galactosidase hybrid protein contain- 
ing Karlp residues 393-433 at its carboxy terminus localizes 
to the nuclear periphery (Vallen et al., 1992). Moreover, 
upon fractionation, the hybrid protein behaves as an integral 
membrane protein (Scherson, T., and M. Rose, unpublished 
observations). Finally, a serendipitous gene fusion between 
KAR/and the pBR322 tetracycline resistance gene is func- 
tional for both mitosis and nuclear fusion (Vallen, E., and 
M. Rose, unpublished observation). In this hybrid, Karlp's 
hydrophobic tail is deleted and replaced by sequences from 
the integral membrane protein encoded by tet ~. These ob- 
servations suggest that the hydrophobic tail of Karlp is a 
membrane spanning domain, perhaps serving to localize or 
anchor the protein to the nuclear envelope during both 
vegetative growth and karyogamy. The mutant proteins 
might be unstable as a consequence of their mislocalization. 

A second region, located near the center of the KAR/cod- 
ing sequence (region I; between residues 191 and 246), is es- 
sential for cell growth. Larger deletions that include this re- 
gion are inviable, whereas a precise deletion of this interval 
(A17) causes slow growth at low temperatures and inviability 
at high temperatures. Accurate definition of this region is 
difficult because deletions that are contiguous to or partially 
overlap this region have no mitotic phenotype (All, A13, 
A14, A15). One explanation for the complexity is that loss 
of function might require the deletion of more than one do- 
main. The larger inviable deletions produce lower steady- 
state levels of protein, but overexpression on high copy plas- 
mids does not suppress the inviability associated with them. 
Therefore, loss of function is not simply the result of de- 
creased levels of protein. 

Experiments using/~-galactosidase hybrid proteins showed 
that residues 190-259 are both necessary and sufficient for 
SPB localization (Vallen et al., 1992). It is striking that the 
region defined genetically to be essential for the mitotic 
function of Karlp is also necessary for SPB localization. One 
possibility is that this region of the protein interacts with 
other SPB components thereby allowing localization of the 
hybrid proteins. Alternatively, this region might include a 
specific SPB localization signal that targets Karlp protein to 
the SPB. 

Phenotypic analysis of the deletion mutants also defined a 

region of Karlp required for nuclear fusion (118-191). All of 
the karyogamy defective point mutations alter the same 
amino acid in this interval, Pro ~5~ to Ser. The karyogamy 
region is adjacent to, but separate from, region I, as demon- 
strated by two observations. First, karyogamy defective mu- 
tations have no perceptible effect on the mitotic function of 
KARL Second, deletions of region I can provide nuclear fu- 
sion function to a karyogamy region deletion in trans. The 
simplest interpretation of these results is that the karyogamy 
region and region I form discrete structural domains with 
distinct and separate functions during mitosis and nuclear 
fusion. 

The large variety of insertions, duplications, and deletions 
that retain function indicate that Karl protein can endure a 
remarkable degree of alteration. The extreme structural 
plasticity is reminiscent of eukaryotic transcriptional activa- 
tors in which a small DNA binding domain and short regions 
responsible for activation are joined by large nonessential 
linker regions (e.g., GAL4; Ma and Ptashne, 1987). By anal- 
ogy, Karlp may contain distinct protein binding domains, 
one for association with the SPB and one for interaction with 
the nuclear fusion machinery, both flexibly connected to a 
membrane anchor. In principle, the remainder of the protein 
might be concerned with other nonessential cellular pro- 
cesses, or essential processes masked by functionally redun- 
dant domains in Karlp or other proteins. 

Role for Karlp in Nuclear Fusion 

Nuclear fusion involves at least two steps. The first concerns 
the microtubule-dependent movement of nuclei towards each 
other in the zygote. The second step involves the fusion of 
the spindle plaques and the nuclear envelopes. The karyog- 
amy defective karl mutations have clear effects on the struc- 
ture of the cytoplasmic microtubules making it most likely 
that KAR/is involved with the first step in the pathway. One 
possibility is that the karyogamy domain is required for the 
binding of a specific protein that is required for microtubule- 
dependent nuclear fusion. 

Recently, the KAR3 gene has been discovered to be related 
to the microtubule motor protein, kinesin (Meluh and Rose, 
1990). Hybrid proteins containing the amino-terminal por- 
tion of Kar3 protein fused to/3-galactosidase localize to the 
distal ends of the cytoplasmic microtubules and the SPB in 
u-factor-treated ceils. From the expected polarity of the cy- 
toplasmic microtubules (plus end out) and the normal polar- 
ity of kinesin movement (towards the plus end), a model was 
described in which the force required for pulling the nuclei 
together is generated at the SPB. The cytoplasmic microtu- 
bules would be pulled into the SPB, coupled to depolymer- 
ization at the minus end. The model made two clear predic- 
tions. First, the length of the cytoplasmic microtubules 
should be partly determined by proteins physically present 
at the SPB. Second, the localization of Kar3-1acZ chimeric 
proteins to the SPB should depend on SPB proteins that are 
also required for nuclear fusion. Consistent with the model, 
the cytoplasmic microtubules in karl mutant shmoos are 
much longer than those in wild type cells and frequently dis- 
sociate from the SPB. Stronger support for the model comes 
from the observation that in karl mutants the Kar3-1acZ chi- 
meric protein fails to localize to the SPB but still localizes 
to the distal ends of the cytoplasmic microtubules. Thus 
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Kar3 protein localization to the SPB is dependent upon Karl 

protein. 
The directionality of Kar3p movement has not yet been de- 

termined and Kar3p may yet prove to be like nod, a minus 
end-oriented kinesin-like motor protein. Nevertheless, the 

localization of the hybrid protein to the SPB seems more 
consistent with Kar3p being a plus end-oriented motor. 

The model specifically suggests that Karl protein exerts its 
effects in nuclear fusion solely via an interaction with Kar3 
protein. The model provides an explanation for one of the 
striking genetic peculiarities of the kar/mutants. Although 
the karyogamy defective mutations are recessive, it is suffi- 
cient for one parent to be mutant for nuclear fusion to fail 
(a "unilateral" defect), Nevertheless, the wild type gene prod- 
uct is both in excess in wild type cells and accessible to the 
mutant nucleus (Dutcher and Hartwell, 1982). In contrast, 
for recessive kar3 mutations both parents must be defective 
(a "bilateral" defec0. Immunofluorescent staining of hybrid 
proteins indicates that Karl protein is assembled into the 
SPB before cell fusion (Vallen et al., 1992). The preassem- 
bly of the SPB may preclude assembly of the wild type Karl 
protein derived from the other parent. In the absence of the 
functional karyogamy domain the diffusible Kar3 protein 
would lack a binding site at the SPB. In a heterozygous 
KARl~karl mutant the presence of the wild type Karl protein 
at the SPB would allow binding of Kar3 protein in spite of 

the presence of the mutant Karl protein. 
The identification of specific domains in the KAR/gene 

product has demonstrated the existence of distinct functions 
for the protein. Characterization of the proteins that interact 
with the separate domains of Karlp should define other com- 
ponents of the SPB and serve to elucidate their roles in mito- 

sis and nuclear fusion. 
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