
Separate variable blow-up patterns for a
reaction-diffusion equation with critical

weighted reaction

Razvan Gabriel Iagar ∗,

Ariel Sánchez,†

Abstract

We study the separate variable blow-up patterns associated to the following second
order reaction-diffusion equation:

∂tu = ∆um + |x|σum,

posed for x ∈ RN , t ≥ 0, where m > 1, dimension N ≥ 2 and σ > 0. A new and
explicit critical exponent

σc =
2(m− 1)(N − 1)

3m+ 1

is introduced and a classification of the blow-up profiles is given. The most interesting
contribution of the paper is showing that existence and behavior of the blow-up patterns
is split into different regimes by the critical exponent σc and also depends strongly on
whether the dimension N ≥ 4 or N ∈ {2, 3}. These results extend previous works of
the authors in dimension N = 1.
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1 Introduction

The aim of this paper is to study the blow-up patterns (in the form of separate variable
solutions) to the following reaction-diffusion equation

∂tu = ∆um + |x|σum, (1.1)
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posed for (x, t) ∈ RN × (0, T ) for some T > 0, in dimension N ≥ 2 and with m > 1, σ > 0.
It is well known (see for example the book [26] for the homogeneous case σ = 0 or the recent
paper by the authors [15] in one dimension) that finite time blow-up is expected to occur
for solutions to (1.1), which means that there exists T ∈ (0,∞) such that u(t) ∈ L∞(R) for
any t ∈ (0, T ) but u(T ) 6∈ L∞(R). The time T ∈ (0,∞) satisfying this property is called
the blow-up time of the solution u. Here and throughout the paper we employ the short
notation u(t) for the mapping x 7→ u(x, t) for a fixed time t ≥ 0. The blow-up profiles
to Eq. (1.1) in dimension N = 1 have been studied and classified in our previous work
[15] but, as we show in the present paper, the ranges of existence or non-existence and the
behavior of the separate variable profiles is strikingly different in higher dimensions and
some new critical parameters of the problem (both with respect to the exponent σ and to
the dimension N) will be introduced.

The interest for the weighted reaction-diffusion equation with unbounded, power-like
weight, having the general form

ut = ∆um + |x|σup, (1.2)

comes from the study of the influence that the weight has on the qualitative properties
of the solutions, the dynamics of the equation and the blow-up behavior of it. The first
question, addressed by mathematicians such as Bandle, Levine, Baras, Kersner et. al. was
to establish criteria, depending on m, p, σ, the dimension N and the initial condition
u(x, 0), on whether the solutions to Eq. (1.2) blow-up in finite time or not. We quote
a series of works devoted to this problem and emphasizing on the ”life-span” of solutions
(that is, understanding how the blow up time of a one-parameter family of solutions changes
with respect to the parameter) for the semilinear case m = 1 [2, 3, 23, 24], where more
general weights a(x) instead of the pure power |x|σ are considered. The same problem, but
for the quasilinear case m > 1, has been addressed by Suzuki in [29]. Suzuki established in
his paper the Fujita-type exponent pm,σF := m+ (σ + 2)/N , that is, the minimal exponent
p > 1 such that, for any 1 < p < pm,σF , all the solutions blow up in finite time, the name
being given by similarity to the seminal paper by Fujita [7] where such an exponent has
been introduced for the homogeneous problem. The same author also obtained sufficient
conditions on the tails of the initial data u(x, 0) as |x| → ∞ for the finite time blow-up
to occur when p > pm,σF . A blow-up rate of the solutions to Eq. (1.2) has been derived
through functional estimates in [1] in the range of exponents m < p < m + N/2 and
0 < σ ≤ N(p−m)/m.

A different but very interesting question is whether the zeros of the weight (where
formally there is no reaction) can be blow-up points for the solutions. Some answers to
this question were given in the semilinear case m = 1 in the series of papers [10, 11, 12, 13]
where it is shown that in general, most solutions cannot blow up at x = 0, but the origin
can be still a blow-up point in some very specific cases. The latter paper [13] extends these
results to more general weights a(x) instead of pure powers |x|σ giving conditions under
which the zeros of a(x) cannot be blow-up points for solutions. The study of self-similar
blow-up profiles to Eq. (1.2) for m > 1 and weights |x|σ gave an answer to this question
for the quasilinear range m > 1 in our recent works [14, 16]. In these papers, we considered
Eq. (1.2) in dimension N = 1 and with 1 ≤ p < m and we proved that for σ > 0 sufficiently
close to zero (more exactly, in some interval σ ∈ [0, σ∗]) there exist blow-up profiles with
simultaneous and complete blow-up, thus including x = 0 as a blow-up point. This is a
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significant difference with respect to the semilinear case m = 1 and another interesting
outcome of the analysis of blow-up profiles in self-similar form.

The specific case of Eq. (1.1) proved to be very interesting to study, playing the role of
a critical one between two ranges of exponents with highly different dynamics. Indeed, as
indicated in [26, Chapter 4] for the homogeneous case σ = 0 and in [14, 16] for σ > 0, the
regime 1 ≤ p < m is characterized by compactly supported solutions: all the interesting
profiles and general solutions remain compactly supported up to the blow-up time, and [14]
for p = 1 and [16] for 1 < p < m give a classification of the blow-up profiles in backward
self-similar form for Eq. (1.2) in dimension N = 1. Meanwhile, the regime p > m is
characterized by solutions with tails as |x| → ∞, as it comes out from [26, Chapter 4]
for σ = 0 and from [29] for σ > 0. The dynamics of the equation should be self-similar
also in this range p > m, as it follows from the study performed in dimension N = 1 in
[26, Chapter 4], but an understanding of it is still missing in higher dimensions or for any
σ > 0. We mention here that even for σ = 0, with dimension N sufficiently large and
p > m also larger, existence or non-existence of blow-up profiles is still an open problem,
the critical exponents in terms of p and N limiting the well-studied and the open ranges
can be consulted in [26, 8]. This is why, we also believe that the present work extending
our study in dimension N = 1 [15] to any space dimension N ≥ 2, gives us experience
and a further level of understanding in a ”neighbor problem” to the above-mentioned one,
which will be considered in a forthcoming paper making use of the techniques and ideas
we learnt and developed for the current paper. We also mention that the blow-up set of
solutions to Eq. (1.1) with σ = 0 has been analyzed in [4].

To end this presentation of the precedents, we also mention the works [6] in dimension
N = 1 and [17, 19, 5] for N ≥ 2, in which a similar equation to Eq. (1.1) (that is, with
p = m) is considered, but replacing |x|σ by a localized, compactly supported and bounded
weight a(x). It is there shown that the solutions may sometimes be global and present
grow up instead of blow up, depending on the support of a(x). For the one-dimensional
case, the work [6] goes into a deeper study by establishing blow up rates, sets and profiles.

We describe below the most significant contributions of the paper.

Main results. We focus in this paper on the analysis and classification of solutions in
separate variable form to Eq. (1.1), having the precise form

u(x, t) = (T − t)−αf(|x|), α =
1

m− 1
, (1.3)

where the profiles f solve the following differential equation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ)− 1

m− 1
f(ξ) + ξσfm(ξ) = 0, ξ = |x|. (1.4)

As seen also in [15] in dimension N = 1, this is the particular form of the self-similar blow-
up patterns for the critical case p = m, where the supports of the solutions are localized
and fixed. Thus, our goal is to perform a thorough study of the differential equation (1.4),
obtain a classification of the blow-up profiles with respect to their behavior and thus extract
valuable knowledge on the dynamics of Eq. (1.1), since it is by now well-established that
the self-similar profiles for a reaction-diffusion equation are fundamental in understanding
its general dynamics for many reasons (profiles for the geometric form of the solutions
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when approaching their blow-up time, examples of true solutions with specific behavior,
optimizing estimates and inequalities on general solutions). As we shall see, the study in
higher dimensions N ≥ 2 strikingly departs from the one in dimension N = 1, giving us
also a better understanding of why N = 1 and σ = 0 are highly critical dimension and
exponent. The explanation will become even more obvious with a change of variable that
will be indicated later, but for now let us introduce a very important exponent for the
whole study

σc =
2(N − 1)(m− 1)

3m+ 1
. (1.5)

We notice that for N = 1 we get σc = 0, and this together with the subsequent analysis
will show how critical is the homogeneous case in one dimension.

We will now state our main results. To this end, we define rigorously below what we
understand by a ”good solution”.

Definition 1.1. We say that f solution to (1.4) is a good profile if it fulfills one of the
following three properties related to its initial behavior:

(P1) f(0) = a > 0, f ′(0) = 0.
(P2) f(0) = 0, (fm)′(0) = 0.
(P3) There exists ξ0 ∈ (0,∞) such that f(ξ0) = 0, (fm)′(ξ0) = 0 and f(ξ) > 0 in a

right-neighborhood of ξ0.
A good profile f is called a good profile with interface at some point η ∈ (0,∞) if

f(η) = 0, (fm)′(η) = 0, and f(ξ) > 0 in a left-neighborhood of η.

We are interested mainly in studying the good profiles with interface solutions to (1.4).
Good profiles presenting a tail as ξ →∞ instead of an interface will also be considered as
of secondary interest if they exist. With respect to the good profiles with interface, their
existence or non-existence and their local behavior strongly depend on the critical exponent
σc introduced in (1.5) and on whether the dimension N > 3 or N ≤ 3. We begin with the
statements of our main theorems for N ≥ 4.

Theorem 1.2 (Existence of blow-up profiles in dimension N ≥ 4). Let N ≥ 4. Then
good profiles with interface exist for any σ ∈ (0, σc) and do not exist at least for any
σ ∈ [σc, 2(N − 3)].

Thus, the influence of the critical exponent in (1.5) is very sharp: in higher space di-
mensions it limits the regimes of existence and non-existence of good profiles with interface.
This has a significant consequence for the equation: while for σ < σc it is expected that
any solution takes a separate variable pattern among the existing ones when approaching
its blow-up time, for σ ≥ σc the problem of the dynamics near blow-up remains completely
open and maybe asymptotic simplifications or blow-up only at the infinity of the space and
not in separate variable form have to be considered. Since our goal is not only to establish
the existence of the profiles, but to understand better their behavior too, our next theorem
gives a (partial) classification of them in the range where they exist.

Theorem 1.3 (Classification for N ≥ 4). Let again N ≥ 4. Then there exist σ0 and
σ0 ∈ (0, σc) such that

• For any σ ∈ (0, σ0), the good profiles with interface to Eq. (1.1) present a behavior
at ξ = 0 given by the assumption (P1) in Definition 1.1.

4



• For any σ ∈ (σ0, σc) the good profiles with interface to Eq. (1.1) present an initial
behavior corresponding to the assumption (P3) in Definition 1.1

• For σ = σ0, σ = σ0 the good profiles with interface to Eq. (1.1) present a behavior at
ξ = 0 given by the assumption (P2) in Definition 1.1. In this case, the local behavior
of the profiles can be made more precise:

f(ξ) ∼
[

m− 1

2m(mN −N + 2)

]1/(m−1)
ξ2/(m−1), as ξ → 0. (1.6)

It is a strong expectation that the set where the third assumption in Theorem 1.3 holds
true has to be a singleton, that is, σ0 = σ0. Proving this uniqueness requires to establish a
monotonicity in the evolution of the whole dynamical system with respect to the parameter
σ and will be left open in the current work, as a conjecture that we believe it holds true.
Notice also that the homogeneous case σ = 0 studied in [26, Chapter 4] is a particular case
of the first range of Theorem 1.3.

Returning now to lower space dimensions N = 2, N = 3, we shall see that the classifi-
cation of the blow-up profiles strongly departs from the corresponding results in dimension
N ≥ 4 and it is more similar to the one established in [15] for N = 1, although with some
differences. We make it more precise below.

Theorem 1.4 (Existence and classification for N = 2 and N = 3). Let N = 2 or N = 3.
Then, for any σ ∈ [0, σc] there exist good blow-up profiles with interface. All these profiles
present a behavior at ξ = 0 given by the assumption (P1) in Definition 1.1, that is, f(0) =
A > 0 with f ′(0) = 0.

In fact, the range of existence of good blow-up profiles with interface can be further
extended above σc, a thing that makes a strong difference with respect to higher space
dimensions, as noticed in Theorem 1.2. In practice, numerical experiments suggest that
the upper limit of this range is a very close number to σc, thus the interval of existence of
good blow-up profiles can be extended shortly after σc, but for σ larger they are expected
to cease to exist. We recall here that a rather similar classification has been established
in [15] in dimension N = 1, starting from the critical exponent σc = 0, and some precise
estimates in terms of m on the exponent σ > σc limiting the existence and non-existence
ranges have been established there. Finally, for σ sufficiently large the profiles indeed cease
to exist, and this qualitative aspect does not depend on the space dimension.

Theorem 1.5 (Non-existence for σ large). In the previous notation, there exists σ1 ≥ σc
sufficiently large (depending on m and N) such that for any σ > σ1 there are no good
blow-up profiles.

Comments on an open problem. We stress here that both the problems with variable
and unbounded coefficients (from the PDE theory perspective) and involving a study of
a three-dimensional dynamical system (from the point of view of the dynamical systems
approach, that is our method for the proofs) are very difficult ones. We conjecture here
that in fact for N ≥ 4, there is no good blow-up profile for any σ ≥ σc, thus in this range
σ1 = σc in Theorem 1.2 (while this is clearly not true for N = 2 and N = 3, where the
existence range of σ can be extended slightly above σc, as previously discussed). However,
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completing the intermediate range σ > 2(N −3) for N ≥ 4 would require to establish some
aspects both of monotonicity with respect to σ of the evolution of the trajectories in the
subsequent phase space, and of the theory of two-dimensional unstable manifolds in the
space that seem by now very difficult or unavailable, up to our knowledge. We will address
this question in forthcoming works.

A transformation. We give here an heuristic transformation leading to a better under-
standing of why dimensions N ≤ 3 and N ≥ 4 bring different results. Assume that N is just
a parameter in the differential equation (1.4), allowing thus formally for real dimensions
(a convention that is rather common and useful when dealing with radially symmetric or
self-similar solutions). Let then

N∗ =
4m+ 2

m+ 1
∈ (3, 4), σc(N

∗) =
2(m− 1)

m+ 1
(1.7)

and introduce the transformation

ξ =

(
2m

m+ 1
η

)(m+1)/2m

, f(ξ) = F (η)

(
2m

m+ 1
η

)−1/m
. (1.8)

It is easy to check that, if f(ξ) is a good profile with interface to Eq. (1.4) in dimension
N∗ and with σ = σc(N

∗), then F (η) is a good profile with interface for the homogeneous
equation Eq. (1.1) with σ = 0 and dimension N = 1. This interesting (at a formal level)
self-map of Eq. (1.1) suggests that dimensions N ∈ [1, N∗] and dimensions N > N∗ form
different regimes with respect to the dynamics of Eq. (1.1). Since N∗ ∈ (3, 4), we notice
these differences when passing from N = 3 to N = 4 in physical (natural) dimensions.
The critical value N∗ will be present in various calculations throughout the paper. Let us
finally state here that most of our results keep holding true if we allow the convention to
consider N only as a real parameter in (1.4) instead of a physical dimension, mentioning
that the results we prove for dimensions N = 2 and N = 3 hold true with this convention
for any N ∈ (1, N∗), while the results we prove for physical dimensions N ≥ 4 hold true
for N > N∗.

Structure of the paper. The main technique used in the proofs is converting Eq. (1.4)
into an autonomous quadratic dynamical system of three first order equations and then
study the associated phase space employing results and techniques typical for dynamical
systems. Sometimes, direct estimates obtained from the equation will be needed too. The
first two technical Sections 2 and 3 are devoted to the local analysis of the critical points in
the phase space and at the infinity of it. We stress here that the presence of periodic orbits
is a significant difficulty in the analysis. Once performed the (quite involved) local analysis
of the critical points, we pass to the proof of our main results, by driving the orbits in
the phase space. After devoting a short preparatory section to the analysis of an invariant
plane, the existence part in Theorem 1.2 is proved in Section 5. The non-existence for
σ ≥ σc (at least in some interval) is postponed to the end of Section 6, which is mostly
devoted to the proof of the classification of the blow-up patterns for σ ∈ (0, σc) and N ≥ 4,
but some technical constructions used for this classification are essential also in the proof
of the non-existence statement. We go back to the special case of dimensions N = 2 and
N = 3 and prove Theorem 1.4 in Section 7. The paper is finally closed by the proof of
the non-existence Theorem 1.5 for σ sufficiently large, which is done in Section 8 using a
geometrical construction which does not depend on the space dimension.
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2 The phase space. Local analysis

We introduce the following change of variables in order to transform the non-autonomous
equation (1.4) into an autonomous dynamical system

X(η) =
√
m(m− 1)ξ−1f (m−1)/2(ξ), Y (η) =

2
√
m(m− 1)

m− 1
(f (m−1)/2)′(ξ),

Z(η) = (m− 1)ξσfm−1(ξ),

(2.1)

together with the change of independent variable given by

dη

dξ
=

1√
m(m− 1)

f−(m−1)/2(ξ), (2.2)

to transform Eq. (1.4) into the following quadratic autonomous system of differential
equations 

Ẋ = m−1
2 XY −X2,

Ẏ = −m+1
2 Y 2 + 1− Z − (N − 1)XY,

Ż = Z[(m− 1)Y + σX],

(2.3)

where the derivative is taken with respect to the new variable η. Let us notice here that
the change of variable is the same as the one used in dimension N = 1 [15], and the system
(2.3) is also apparently very similar, the only new term being (N − 1)XY in the second
equation. However, as we shall see from the subsequent analysis, this single term introduces
very significant changes and difficulties in the study of the phase space. The critical points
in the finite part of the phase plane are the following four

P0 = (0, h0, 0), P1 = (0,−h0, 0), P2 = (X(P2), Y (P2), 0) and P3 = (0, 0, 1),

where h0 =
√

2/(m+ 1) and

X(P2) =
m− 1√

2(mN −N + 2)
, Y (P2) =

√
2

mN −N + 2
. (2.4)

We also notice that the planes {X = 0} and {Z = 0} are invariant for the system (2.3),
thus we restrict the analysis to the region {X ≥ 0, Z ≥ 0}, only the component Y being
allowed to change sign, which is coherent with the definition of X, Y , Z. The section is
divided into subsections corresponding to the analysis of the points and of the periodic
orbits.

2.1 Analysis of the hyperbolic critical points

The hyperbolic critical points of the system are P0, P1 and P2 and this subsection is
dedicated to their local analysis, which is rather analogous to the one in dimension N = 1
done in [15, Section 2]. The local analysis near the point P3 is postponed to the next
subsection.
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Lemma 2.1 (Analysis of the points P0 and P1). The system (2.3) in a neighborhood of
the critical point P0 has a two-dimensional unstable manifold and a one-dimensional stable
manifold. The orbits going out of P0 on the unstable manifold contain profiles such that

f(ξ) ∼

(
(m− 1)h0

2
√
m(m− 1)

ξ −K

)2/(m−1)

+

, K > 0, as ξ → ξ0 =
2K
√
m(m− 1)

(m− 1)h0
, (2.5)

that is, profiles satisfying the assumption (P3) in Definition 1.1. The system in a neighbor-
hood of the critical point P1 has a one-dimensional unstable manifold and a two-dimensional
stable manifold. The orbits entering P1 on the stable manifold contain profiles such that

f(ξ) ∼

(
K − (m− 1)h0

2
√
m(m− 1)

ξ

)2/(m−1)

+

, K > 0, as ξ → ξ0 =
2K
√
m(m− 1)

(m− 1)h0
, (2.6)

that is, profiles with interface at a positive point ξ = ξ0 > 0 as described in Definition 1.1.

Proof. The linearization of the system (2.3) in a neighborhood of the critical points P0,
respectively P1, has the matrix

M =

 ±(m− 1)h0/2 0 0
∓(N − 1)h0 ∓(m+ 1)h0 −1

0 0 ±(m− 1)h0

 ,

with eigenvalues λ1 = ±(m − 1)h0/2, λ2 = ∓(m + 1)h0, λ3 = ±(m − 1)h0, the plus sign
corresponding to P0 and the minus sign to P1. Thus, P0 has a two-dimensional unstable
manifold, while P1 has a two-dimensional stable manifold. It is rather obvious that the
orbits entering P0 on the one-dimensional stable manifold, or going out of P1 on the one-
dimensional unstable manifold (both corresponding to the eigenvalue λ2) are contained in
the Y axis. The orbits going out of P0 (respectively entering P1) on the two-dimensional
unstable manifold (respectively the two-dimensional stable manifold) contain profiles such
that X → 0, Y → ±h0 and Z → 0. We then infer from (2.1) that on the one hand we have
the local behavior

(f (m−1)/2)′(ξ) ∼ ± (m− 1)h0

2
√
m(m− 1)

, (2.7)

and that on the other hand (2.7) holds true as ξ → ξ0 ∈ (0,∞). The latter is proved
by discarding the possibilities that either ξ → 0 or ξ → ∞ in (2.7), which is established
by translating the fact that X(ξ) → 0 or Z(ξ) → 0 in terms of profiles. The details are
identical to the ones given in the proof of [15, Lemma 2.1] and will be omitted here. We
next find the behavior (2.5) by integration in (2.7) when working with the plus sign and
the local behavior (2.6) by a similar integration when working with the minus sign in (2.7).

The local analysis of the point P2 follows below.

Lemma 2.2 (Analysis of the point P2). The system in a neighborhood of the critical point
P2 has a two-dimensional stable manifold and a one-dimensional unstable manifold. The
stable manifold is contained in the invariant plane {Z = 0}. There exists a unique orbit
going out of P2, containing profiles with local behavior given by (1.6).
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Proof. The linearization of the system (2.3) near the critical point P2 has the matrix

M(P2) =


− m−1√

2(mN−N+2)

(m−1)2

2
√

2(mN−N+2)
0

− 2(N−1)√
2(mN−N+2)

−2(m+1)+(N−1)(m−1)√
2(mN−N+2)

−1

0 0 (m−1)(σ+2)√
2(mN−N+2)

 ,

with eigenvalues λ1, λ2 and λ3 satisfying

λ1 + λ2 = −(m− 1)N + 2(m+ 1)√
2(mN −N + 2)

< 0, λ1λ2 =
(m+ 1)(m− 1) + (N − 1)(m− 1)2

mN −N + 2
> 0

whence λ1 < 0 and λ2 < 0, and

λ3 =
(m− 1)(σ + 2)√
2(mN −N + 2)

> 0. (2.8)

It is easy to check, using the invariance of the plane {Z = 0} (similarly as in [14, Lemma
2.3]) that the two-dimensional stable manifold is contained in the plane {Z = 0} and there
exists only one orbit going out of P2 into the region {Z > 0} of the phase space, which
goes out tangent to the direction of the eigenvector e3 corresponding to the eigenvalue λ3,
that is

e3(σ) =

(
−

(m− 1)
√

2(mN −N + 2)

2l(σ)
,
(σ + 3)

√
2(mN −N + 2)

l(σ)
, 1

)
(2.9)

with
l(σ) := (m− 1)σ2 + (mN + 6m−N − 2)σ + 4(mN + 2m−N + 2).

Despite its very tedious form, the precise dependence on σ of the components of e3 will be
very useful in the global analysis of this orbit. Since on this unique orbit we have

X(ξ)→ m− 1√
2(mN −N + 2)

, Y (ξ)→
√

2

mN −N + 2
, Z(ξ)→ 0,

we readily deduce from the formula for X(ξ) in (2.1) that the profiles contained in this
unique orbit behave locally as in (1.6). The fact that the behavior in (1.6) is taken as
ξ → 0 follows from discarding the possibilities ξ → ξ0 ∈ (0,∞) or ξ → ∞. Assuming
for contradiction that the former takes place and recalling that Z(ξ) → 0, we get that
f(ξ)→ 0 as ξ → ξ0, contradicting that X(ξ) tends to a positive constant. If we assume for
contradiction that the convergence in (1.6) takes place as ξ →∞, again Z(ξ)→ 0 implies
that f(ξ) → 0 as ξ → ∞, then X(ξ) → 0 and a contradiction. We thus remain with the
behavior (1.6) as ξ → 0, as stated.

2.2 Analysis of the non-hyperbolic point P3

This subsection is devoted to the analysis of the critical point P3, which is a non-hyperbolic
one, the linearization of the system (2.3) in a neighborhood of this point having three
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eigenvalues with zero real part: λ1 = 0, λ2 = i
√
m− 1, λ3 = −i

√
m− 1. Thus, in order

to analyze the system in a neighborhood of P3 we have to use more involved techniques
specific to the bifurcation theory, more precisely by deducing the Poincaré normal form of
the system using the theory and techniques presented, for example, in books such as [18] or
[30]. As we shall see below, this is the first instance where the critical exponent σc comes
decisively into play.

Lemma 2.3 (Local analysis near the point P3). For any σ ∈ (0, σc), the critical point P3

behaves as an attractor for the orbits coming from the half-space {X > 0} of the phase
space associated to the system (2.3). The orbits entering it contain profiles presenting a
tail as ξ →∞, namely

f(ξ) ∼
(

1

m− 1

)1/(m−1)
ξ−σ/(m−1), as ξ →∞. (2.10)

For any σ > σc, the critical point P3 behaves as a repeller for the orbits coming from the
half-space {X > 0} of the phase space and there are no orbits either entering or going out
of it.

Proof. The proof is rather long and will be divided into several steps for the readers’
convenience. The steps are similar to the ones in the analysis in dimension N = 1 [15,
Lemma 3.1] but the calculations give a different outcome depending on N and σ.

Step 1. A new change of variable. We begin with a change of variable suggested in
[30, Section 3.1F, p.331] by letting

v = (m− 1)Y + σX, u =
√
m− 1(Z − 1), z = X (2.11)

to obtain from the system (2.3), after straightforward calculations, a new system
v̇ = −

√
m− 1u− m+1

2(m−1)v
2 + K1(σ)

2(m−1)zv + K2(σ)
m−1 z

2,

u̇ =
√
m− 1v + uv,

ż = −σ+2
2 z2 + 1

2zv,

(2.12)

where

K1(σ) = (3m+ 1)σ − 2(m− 1)(N − 1), K2(σ) = σ[(m− 1)(N − 2)−mσ] (2.13)

Since our goal is to establish the first terms of the normal form of the system (2.12), we
perform one further change of variable according to [18, Section 8.5] by letting w = v+ iu,
or equivalently

v =
w + w

2
, u =

w − w
2i

.

Starting from ẇ = v̇ + iu̇, using the equations in (2.12) and the correspondence between
(v, u) and (w,w), we find

ẇ = i
√
m− 1w +

K2(σ)

m− 1
z2 +

(
1

4
− m+ 1

8(m− 1)

)
w2

−
(

1

4
+

m+ 1

8(m− 1)

)
w2 +

K1(σ)

4(m− 1)
(zw + zw)− m+ 1

4(m− 1)
ww,

(2.14)
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and

ż = −σ + 2

2
z2 +

1

4
zw +

1

4
zw. (2.15)

Step 2. The Poincaré normal form. Following the general theory in [18, Section 8.5]
and letting g(z, w,w) (for the equation (2.15)), respectively h(z, w,w) (for the equation
(2.14)) be the nonlinear parts of the equations in the previous step, we can derive the
Taylor expansions of g and h in the following general forms (according to the notation on
[18, p. 332-333])

g(z, w,w) =
∑

j+k+l≥2

1

j!k!l!
gjklz

jwkwl, h(z, w,w) =
∑

j+k+l≥2

1

j!k!l!
hjklz

jwkwl.

In our specific case, one can readily establish the coefficients up to order 2 as it follows:

g200 = −(σ + 2), g110 = g101 =
1

4
, g020 = g002 = g011 = 0, (2.16)

and (using the notation with h for the w equation)

h200 =
2K2(σ)

m− 1
, h020 =

1

2
− m+ 1

4(m− 1)
, h002 = −

(
1

2
+

m+ 1

4(m− 1)

)
,

h110 = h101 =
K1(σ)

4(m− 1)
, h011 = − m+ 1

4(m− 1)
.

(2.17)

We now rely on the explicit formulas given in [18, Lemma 8.9] to calculate the coefficients
of the Poincaré normal form of the system having as starting point the coefficients in (2.16)
and (2.17). Skipping the technical details (indicated in the particular case N = 1 in [15,
Lemma 3.1]) and maintaining the terms up to order two, we can write{

ż = −σ+2
2 z2 +O(|(z, w,w)|3),

ẇ = i
√
m− 1w + K1(σ)

4(m−1)zw +O(|(z, w,w)|3),

Undoing the change of variable w = v + iu in order to get back to the variables (z, v, u)
and maintaining only the terms up to order two, we finally find the Poincaré normal form
of the system (2.12):

ż = −σ+2
2 z2 +O(|(z, v, u)|3),

v̇ = −
√
m− 1u+ K1(σ)

4(m−1)zv +O(|(z, v, u)|3),
u̇ =
√
m− 1v + K1(σ)

4(m−1)zu+O(|(z, v, u)|3).
(2.18)

Notice that the coefficient K1(σ) plays an important role in the normal form (2.18) and
that K1(σ) < 0 for σ ∈ (0, σc) while K1(σ) > 0 for σ > σc.

Step 3. End of the proof. Following again [30, Section 3.1F], we pass the normal form
(2.18) into cylindrical coordinates by letting v = r cos θ, u = r sin θ and z unchanged. We
thus find the following normal form in cylindrical coordinates:

ż = −σ+2
2 z2 +O(|(z, r)|3),

ṙ = K1(σ)
4(m−1)zr +O(|(z, r)|3),

θ̇ =
√
m− 1 +O(|(z, r)|3),

(2.19)
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Assume first that we are not considering connections included in the planes {z = 0} or
{r = 0} and let σ ∈ (0, σc), which is equivalent to K1(σ) < 0. We infer then from the first
two equations in (2.19) that in a neighborhood of the critical point P3 (seen as the origin
in (2.19)) both components z and r are monotonically decreasing along the trajectories of
the system. This gives that the orbits entering such neighborhood cannot end in a limit
cycle and have to enter P3. On the contrary, when σ > σc we have K1(σ) > 0. We can
then integrate (up to third order) the system formed by the first two equations in (2.19)
to get in a neighborhood of the critical point P3 that

dz

dr
∼ −2(σ + 2)(m− 1)

K1(σ)

z

r
= K3(σ)

z

r
,

where K3(σ) < 0 for σ > σc, whence we obtain by integration that

z ∼ CrK3(σ), K3(σ) = −2(σ + 2)(m− 1)

K1(σ)
. (2.20)

We infer from (2.20) that the orbits in a neighborhood of the critical point P3 and corre-
sponding to integration constants C > 0 in (2.20) tend to hyperbolas that do not go out
of the point. There might be still an orbit going out of P3 corresponding to the constant
C = 0 in (2.20), that is, tangent to the plane {z = 0} but not contained in it. But on such
an orbit going out of P3 we have X(ξ)→ 0, Z(ξ)→ 1, thus we deduce from (2.1) that

Z(ξ)

X(ξ)2
=

1

m
ξσ+2 → +∞, (2.21)

which shows that there is no orbit containing profiles and going out of this point into the
region {X > 0} of the phase space. Notice at this point that also in the case σ ∈ (0, σc),
where we already know that the orbits coming from the interior of the phase space enter P3,
we obtain in (2.20) the form in which such orbits enter P3 (in this case with K3(σ) > 0).
It remains to consider the orbits fully contained in the planes {z = 0} or {r = 0} of the
system (2.19). Since z = X, the former orbits are contained in the invariant plane {X = 0}
and we discard them, as they do not contain interesting profiles. For the latter plane,
r = 0 implies v = u = 0, thus such orbits are contained in the line of equation Z = 1,
(m− 1)Y + σX = 0, which in terms of profiles becomes the hyperbola

f(ξ) =

(
1

m− 1

)1/(m−1)
ξ−σ/(m−1), (2.22)

and this is not a solution to Eq. (1.4). Thus, no interesting trajectories come from these
exceptional planes. Coming back to the previous analysis, we conclude that the critical
point P3 behaves as a repeller for σ > σc and as an attractor for the orbits coming from the
region {X > 0} for σ ∈ (0, σc). In the latter case, the orbits entering P3 have Z(ξ) → 1,
which is equivalent to (2.10) taking into account the definition of Z in (2.1). To end the
proof, the fact that (2.10) holds true as ξ →∞ follows immediately from (2.21). The proof
is complete.

Let us remark here that we omit the local analysis near the point P3 exactly for σ = σc.
Since K1(σ) = 0 in this case, the analysis becomes much more involved, as terms of higher
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order in the Poincaré normal form have to be considered. However, the good news is that
the analysis of this critical case is not needed for the classification of the profiles, thus we
refrain from entering it.

2.3 Periodic orbits

Apart from the critical points in the plane analyzed above, the system (2.3) presents some
explicit periodic orbits (or cycles) lying inside the invariant plane {X = 0}. Indeed, by
letting X = 0 in (2.3), we obtain the same system as in dimension N = 1, namely{

Ẏ = −m+1
2 Y 2 + 1− Z,

Ż = (m− 1)Y Z,
(2.23)

that can be integrated to obtain the following curves

Y 2 =
2

m+ 1
− 1

m
Z −KZ−(m+1)/(m−1), (2.24)

which are periodic orbits of the system provided K > 0 (as for K < 0 they cross the plane
{Z = 0} and we are not interested in them). In particular, the one with K = 0 and the
parabolic cylinder in direction X > 0 constructed from it proved to be very important
as a separatrix in the analysis in dimension N = 1 [15, Section 4]. These periodic orbits
are plotted in Figure 1, where those corresponding to constants K > 0 lie in the region
bounded by the explicit separatrix with K = 0.

0
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0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1

Z

Y
-h0 h0

P3

Figure 1: Periodic orbits in the invariant plane {X = 0}

In our case, we need to know whether such periodic orbits can be limit cycles for orbits
coming from the positive part {X > 0} of the phase space. Since we are dealing with
a three-dimensional dynamical system, the theory of the stability of limit cycles is quite
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complicated in practice and the analysis of the Poincaré map (which is usually the criterion
for stability) appears to be not easily available if the analytic form of the periodic orbit
is difficult to handle. Thus, we employ a different technique, working directly with the
differential equation (1.4), to show that at least when σ 6= σc there are no orbits coming
from {X > 0} and having (2.24) as limit cycles. The idea is to show that, if a solution to
(1.4) has infinitely many oscillations, they have to be damped and their amplitude converges
to zero.

Proposition 2.4. For any σ 6= σc, there is no orbit coming from the region {X > 0} of
the phase space associated to the system (2.3) and having any of the orbits in (2.24) with
K > 0 as limit cycle.

Proof. Assume for contradiction that there exists such an orbit. It is then obvious that, for
X > 0 but very close to zero, it has to oscillate between two fixed values of Z (the maximal
and minimal height of the periodic orbit in (2.24)) having Z = 1 in the middle. We can
thus say that the profiles contained in this orbit oscillate around the hyperbola Z = 1, that
is (2.22), and with an almost constant amplitude for ξ large. We will next show that such
solutions to Eq. (1.4) cannot exist, by working directly with the differential equation. To
this end, we first introduce a new change of variables given by

G(ζ) = (m− 1)1/(m−1)ξσ/(m−1)f(ξ) = Z(ξ)1/(m−1), ζ =
2

σ + 2
ξ(σ+2)/2, (2.25)

and derive by straightforward calculations the differential equation solved by G(ζ), that is
(written in the same form as (1.4))

(Gm)′′(ζ) +
N − 1

ζ
(Gm)′(ζ) +Gm(ζ)−G(ζ) +

K(σ)Gm(ζ)

ζ2
= 0, (2.26)

where

N = 1− K1(σ)

(m− 1)(σ + 2)
, K(σ) = − 4mσK2(σ)

(m− 1)2(σ + 2)2
.

and K1(σ), K2(σ) are defined in (2.13). Let us notice that at least formally, the oscillations
of the profile f(ξ) around the hyperbola (2.22) translate into oscillations of G(ζ) with
respect to the horizontal line G = 1, which is an equilibrium point of the equation. It is
thus enough to prove that such oscillations must be damped and that any positive solution
G(ζ) to (2.26) satisfies lim

ζ→∞
G(ζ) = 1. This is rather expected at a formal level by removing

the last term in the limit, but the rigorous proof is more involved and borrows ideas from
the proof of [26, Lemma 1, Section 4.1.2, p. 183-184]. We begin by multiplying Eq. (2.26)
by (Gm−1G′)(ζ) to get (quitting the dependence on ζ to simplify the notation)

1

m
(Gm)′′(Gm)′ +

N − 1

mζ
[(Gm)′]2 + (G2m−1 −Gm)G′ +

K(σ)

ζ2
G2m−1G′ = 0,

which integrated on a generic interval [ζ1, ζ2] gives

1

2m

[
(Gm)′2(ζ2)− (Gm)′2(ζ1)

]
+ Φ(ζ2)− Φ(ζ1) +

N − 1

m

∫ ζ2

ζ1

(Gm)′2(ζ)

ζ
dζ

= −K(σ)

∫ ζ2

ζ1

(G2m)′(ζ)

2mζ2
dζ,

(2.27)
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where

Φ(ζ) =
1

2m
G2m(ζ)− 1

m+ 1
Gm+1(ζ).

Since we assumed that G has infinitely many oscillations around the constant value G = 1,
it thus has a sequence of local maxima and minima, that we denote by ζMn , respectively
ζmn , such that ζMn → ∞ and ζmn → ∞ as n → ∞. At any of these points, (Gm)′(ζmn ) =
(Gm)′(ζMn ) = 0. Moreover, taking into account that the orbit containing G approaches in
the limit one periodic orbit of the form (2.24) with K > 0 and that Z = Gm−1, we get that
Φ(ζ) is uniformly bounded for ζ sufficiently large. We thus infer that, if we let ζ2 = ζMk
and ζ1 = ζmj (that is, one maximum and one minimum point, not necessarily the same
ones in the sequence of them) in (2.27), the first four terms either directly vanish or are
uniformly bounded. We are thus left with the two integral terms. To estimate them, we
express first the derivatives (Gm)′ and (G2m)′ (derivatives being taken with respect to ζ)
in terms of the component Z in the phase space. Taking into account that G = Z1/(m−1),
the fact that in the system (2.3) the derivatives are taken with respect to the independent
variable η introduced in (2.2), and the change of variable from ξ to ζ, we have

d(Gm)

dζ
=

d

dξ
Zm/(m−1)

dξ

dζ
= ξ−σ/2

d

dξ
Zm/(m−1)

= ξ−σ/2f(ξ)−(m−1)/2(ξ)
d

dη
Zm/(m−1)

=
m

m− 1
ξ−σ/2

[
1

m− 1
ξ−σZ

]−1/2
Z1/(m−1)Ż

=
m√
m− 1

Z1/(m−1)+1/2[(m− 1)Y + σX],

(2.28)

where in the last calculation step we used the equation for Ż from the system (2.3). More-
over, following a similar calculations as in (2.28), we also get

d(G2m)

dζ
=

2m√
m− 1

Z(m+1)/(m−1)+1/2[(m− 1)Y + σX]. (2.29)

We deduce from (2.29) and the fact that the trajectory containing the profile f approaches
a limit cycle of the form (2.24) that (G2m)′ is uniformly bounded by some constant L > 0
for ζ sufficiently large, thus∣∣∣∣∫ ∞

ζ1

(G2m)′(ζ)

2mζ2
dζ

∣∣∣∣ ≤ L

2m

∫ ∞
ζ1

1

ζ2
dζ <∞. (2.30)

On the contrary, (2.28) together with the fact that G = Z1/(m−1) and that the trajectory
containing the profile f defining our G in (2.25) approaches a limit cycle imply that Gm

(hence also (Gm)′) approaches a periodic function for ζ sufficiently large (as being a solution
to an autonomous equation in the limit). This gives that the remaining integral in (2.27),
namely

N − 1

m

∫ ∞
ζ1

(Gm)′2(ζ)

ζ
dζ (2.31)
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is divergent. We thus reach a contradiction in (2.27) by choosing ξ1 a fixed minimum point,
ξ2 = ξMn and passing to the limit as n → ∞, as all but one term are bounded, provided
that the coefficient in front of the integral in (2.31) is not equal to zero. Recalling that

N − 1

m
= − K1(σ)

m(m− 1)(σ + 2)
,

and the fact that K1(σ) = 0 if and only if σ = σc, the contradiction is reached for any
σ 6= σc, as claimed.

We again refrain from analyzing the critical case σ = σc here, as it will be not needed
in the sequel. Let us notice that the above proof also applies for σ = 0, providing a
slight improvement of the result in [26, Remark, p. 184], where it is only shown that the
oscillations are damped but not convergent to zero. The proof of Proposition 2.4 completes
the local analysis of the finite part of the plane. We are now ready to pass to the analysis
of the critical points at infinity.

3 Analysis at infinity of the phase space

The aim of this section is to complete the local analysis of the phase space associated to the
system (2.3) by studying the critical points at infinity. We follow the recipe in [22, Section
3.10] where new variables (X,Y , Z,W ) are introduced in order to pass to the Poincaré
hypersphere. More precisely, we let

X =
X

W
, Y =

Y

W
, Z =

Z

W
,

and following [22, Theorem 4, Section 3.10], the critical points at infinity of the phase space
associated to the system (2.3) lie on the equator of the Poincaré hypersphere, that is, at

points of the form (X,Y , Z, 0) such that X
2

+ Y
2

+ Z
2

= 1, and are at the same time
solutions to the following system:

XQ2(X,Y , Z)− Y P2(X,Y , Z) = 0,

XR2(X,Y , Z)− ZP2(X,Y , Z) = 0,

Y R2(X,Y , Z)− ZQ2(X,Y , Z) = 0,

(3.1)

where P2, Q2 and R2 are the homogeneous second degree parts in the right hand side of
the system (2.3), namely

P2(X,Y , Z) =
m− 1

2
XY −X2

,

Q2(X,Y , Z) = −m+ 1

2
Y

2 − (N − 1)XY ,

R2(X,Y , Z) = Z((m− 1)Y + σX).

The system (3.1) becomes
XY ((2−N)X −mY ) = 0,

XZ
(
(σ + 1)X + m−1

2 Y
)

= 0,

Y Z
(
(σ +N − 1)X + 3m−1

2 Y
)

= 0,

(3.2)
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and taking into account that we are only considering the part of the equator where X ≥ 0
and Z ≥ 0, we readily get the following critical points:

Q1 = (1, 0, 0, 0), Q2,3 = (0,±1, 0, 0), Q4 = (0, 0, 1, 0),

and Q5 =

(
m√

(2−N)2 +m2
,

2−N√
(2−N)2 +m2

, 0, 0

)
.

Let us notice at this point that the dimension N = 2 appears to be critical in the analysis
of these points. Thus, we will let it aside for a moment and restrict ourselves first at
dimensions N ≥ 3. Despite the fact that the differences with respect to the dimension
N = 1 (studied in [15]) appear to be not significant in the expression of the critical points
and system (3.2), we shall see that they are noticeable with respect to the qualitative
behavior of some of the profiles. We analyze below the critical points one by one.

Lemma 3.1 (Analysis of the point Q1). For N ≥ 3, the critical point at infinity represented
as Q1 = (1, 0, 0, 0) in the Poincaré hypersphere has a two-dimensional unstable manifold
and a one-dimensional stable manifold. The orbits going out of this point to the finite part
of the phase space contain profiles f(ξ) such that f(0) = a > 0 and f ′(0) = 0, corresponding
to the assumption (P1) in Definition 1.1.

Proof. Following part (a) of [22, Theorem 5, Section 3.10], the flow of the system (2.3) in
a neighborhood of Q1 is topologically equivalent to the flow near the origin for the new
system 

−ẏ = (N − 2)y +my2 + zw − w2,
−ż = −(σ + 1)z − m−1

2 yz,
−ẇ = −w + m−1

2 yw,
(3.3)

where we choose the minus sign in the system (3.3) in order to match the direction of the
flow given, for example, by the first equation of the original system (2.3),

Ẋ =
1

2
X[(m− 1)Y − 2X],

leading to Ẋ < 0 in a neighborhood of Q1, taking into account that |X/Y | → +∞ near
this point. Since N ≥ 3, the two-dimensional unstable manifold and one-dimensional
stable manifold are obvious. The profiles going out of Q1 on the two-dimensional unstable
manifold are contained in orbits tangent to the plane {y = 0} in the system (3.3). On the
one hand, we get from (3.3) that

dz

dw
∼ (σ + 1)

z

w
,

or equivalenty z ∼ Cwσ+1, which in variables (X,Z) writes

Z

X
∼ C

Xσ+1
,

whence XσZ ∼ C, that is f(ξ) ∼ C. On the other hand, from the tangency of the unstable
manifold, we do not only get that y → 0 but also y/z → 0, which implies Y/Z → 0.
Together with the fact that Y/X → 0 on these profiles, we simultaneously get that

Y

X
=
ξf ′(ξ)

f(ξ)
→ 0,

Y

Z
=

√
m

m− 1
ξ−σf(ξ)−(m+1)/2f ′(ξ)→ 0,
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which, together with the fact that f(ξ) ∼ C, readily gives that f ′(ξ) → 0. The fact that
all the limits and equivalences above are taken as ξ → 0 follows immediately from the fact
that X(ξ)→∞, which leads to ξ−1 →∞.

Lemma 3.2 (Analysis of the points Q2 and Q3). For N ≥ 2, the critical points at infin-
ity represented as Q2,3 = (0,±1, 0, 0) in the Poincaré hypersphere are an unstable node,
respectively a stable node. The orbits going out of Q2 contain profiles f(ξ) such that there
exists ξ0 ∈ (0,∞) with f(ξ0) = 0, f ′(ξ0) = +∞, while the orbits entering the point Q3 and
contain profiles f(ξ) such that there exists ξ0 ∈ (0,∞) with f(ξ0) = 0, f ′(ξ0) = −∞.

Proof. We employ this time part (b) of [22, Theorem 5, Section 3.10] to infer that the flow
of the system near the points Q2 and Q3 is topologically equivalent to the flow near the
origin for the system

±ẋ = −mx+ (2−N)x2 + xw2 − xzw,
±ż = −3m−1

2 z − (σ +N − 1)xz − z2w + zw2,
±ẇ = −m+1

2 w − zw2 + w3 − (N − 1)xw,
(3.4)

where the minus sign corresponds to the point with Y → +∞, that is Q2 and the plus
sign corresponds to the point with Y → −∞, that is Q3. This is seen from the fact that
both points are characterized by |Y/X| → ∞ and |Y/Z| → ∞ in a neighborhood of them,
thus in the second equation of the system (2.3) the term −(m + 1)Y 2/2 dominates near
Q2 and Q3, indicating a direction of the flow from right to left (Y decreasing along the
trajectories) near the two points. Since there is no influence of N in the linear terms in the
system (3.4), the rest of the analysis is totally identical to the one performed in dimension
N = 1 in [15, Lemma 2.4] to which we refer.

We are now left with the points Q4 and Q5. As we shall see, the analysis of these
points is much more involved than the analogous one in dimension N = 1, since in fact
they alternate to be unstable nodes and, depending on the value of σ > 0, pass from one to
the other the orbits presenting a specific vertical asymptote at ξ = 0. This is made precise
in the following statement.

Lemma 3.3 (Analysis of the points Q4 and Q5). Let N ≥ 3. Then, depending on the value
of σ, either Q5 is an unstable node or Q4 is an unstable node. In any of the two cases, the
orbits going out of the point that is an unstable node contain profiles presenting a vertical
asymptote at ξ = 0 with behavior

f(ξ) ∼ Cξ(2−N)/m, as ξ → 0, C > 0 free constant, (3.5)

while the orbits going out of the point which is not an unstable node are included in the
infinity part of the phase space and do not contain other profiles.

Proof. Since the proof is longer and more involved than the previous ones, it will be divided
into several steps for the easiness of the reading.

Step 1. Local analysis near Q5. We can analyze locally Q5 by identifying it with the
critical point (y, z, w) = ((2 − N)/m, 0, 0) in the system (3.3). The linearization of (3.3)
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near Q5 has the matrix

M(Q5) =

 N − 2 0 0

0 2m(σ+1)−(N−2)(m−1)
2m 0

0 0 2m+(N−2)(m−1)
2m

 ,

thus Q5 is an unstable node if

K(m,N, σ) := 2m(σ + 1)− (N − 2)(m− 1) > 0 (3.6)

Assume now that (3.6) holds true. Then the orbits going out of Q5 are characterized by
y = (2−N)/m, that is Y/X ∼ (2−N)/m, which in terms of profiles reads(

f(ξ)(m−1)/2
)′
∼ (2−N)(m− 1)

2m

f(ξ)(m−1)/2

ξ
,

and this leads to the desired behavior (3.5) by integration. Since X/Z →∞ in a neighbor-
hood of Q5, we get that

ξ−1−σf(ξ)−(m−1)/2 →∞,

and we infer from (3.5) that necessarily ξ−1−σ → ∞, which gives that the previous local
behavior must be taken as ξ → 0. When (3.6) does not hold true and we have the contrary
inequality, the unstable manifold remains two-dimensional and it is completely contained
in the invariant plane {z = 0} of the system (3.3), which in terms of profiles reduces to
either Z = 0 or X = ∞, thus in both cases no new profiles exist and Q5 behaves like a
saddle for the orbits approaching it in the finite part of the plane.

Step 2. Identification of Q5 and Q4. We are left with the question of what happens
with the profiles with behavior as in (3.5) when (3.6) is no longer true, and if the remaining
point Q4 does not bring any other new profiles. Moreover, the point Q4 cannot be easily
analyzed using the recipes in [22, Section 3.10]. To overcome these difficulties, we introduce
a different change of variable

x =
1

m(m− 1)
ξ2f(ξ)1−m, y =

ξf ′(ξ)

f(ξ)
, z =

ξσ+2

m
,
d

dη
= ξ

d

dξ
, (3.7)

and in these dependent variables (x, y, z) and independent variable η Eq. (1.4) transforms
into the system 

ẋ = x(2− (m− 1)y),
ẏ = −my2 − (N − 2)y + x− z,
ż = (σ + 2)z,

(3.8)

having (among others) the critical point Q′4 = (0, (2 − N)/m, 0). It is straightforward
to check that the linearization of the system (3.8) near the point Q′4 has a matrix with
eigenvalues

λ1 =
2m+ (N − 2)(m− 1)

2m
, λ2 = N − 2, λ3 = σ + 2,

thus Q′4 is an unstable node. The orbits going out of Q′4 contain profiles with the properties
z → 0 and y → (2 − N)/m, that readily give (3.5) as ξ → 0, thus the orbits going out of
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Q5 in Step 1 (when (3.6) was true) are identified with the orbits going out of Q′4. Notice
next that, if we look for profiles with behavior given by (3.5), that is, going out of Q′4, we
compute

Z

X
=

√
m− 1

m
ξσ+1f(ξ)(m−1)/2 ∼ KξK(m,N,σ)/2m, as ξ → 0,

with K(m,N, σ) given in (3.6). It thus follows that, when K(m,N, σ) < 0 we get Z/X →
+∞ as ξ → 0, and in the same way Z/Y → −∞. In this case the unstable node Q′4
is identified with the unique point at infinity where Z dominates over X and Y among
the critical points of the system (2.3), that is Q4. We thus notice that, when the sign of
K(m,N, σ) changes, the orbits containing profiles with behavior given by (3.5) immigrate
from Q5 to Q4.

Step 3. No other orbits go out of Q4. It remains the final question of whether there
are other orbits specific to Q4, with a different behavior than (3.5) and that are not seen
in the change of variable (3.7). Such orbits are characterized by Z → ∞ and Z/X → ∞,
together with |Z/Y | → ∞. We go back then to Eq. (1.4) and notice first that

ξσf(ξ)m

f(ξ)
= Z(ξ)→∞,

thus the term f(ξ)/(m−1) is of lower order than the last term of (1.4). Moreover, Z(ξ)→∞
implies that f(ξ)→∞, thus the orbits going out of Q4 must contain profiles with a vertical
asymptote. In particular, also fm has a vertical asymptote at ξ = 0, which implies in
particular that ln fm has a vertical asymptote too, hence

(fm)′

fm
= (ln fm)′ → −∞,

and this gives that the term (N −1)(fm)′/ξ dominates over the term ξσf(ξ)m in Eq. (1.4).
In a first order of approximation, we are thus left with the first two terms of Eq. (1.4)
(the two ones involving derivatives), and an integration of the equation formed with them
readily leads to the behavior (3.5). It thus follows that all the orbits going out of Q4 contain
profiles satisfying (3.5), which were already found as orbits going out of Q′4 in the system
(3.8).

We conclude that, in fact, the limitation introduced by the sign of K(m,N, σ) is purely
technical and in fact the critical points Q5 and Q4 can be seen as a single one with respect
to the analysis of the orbits going out of them. In order to simplify the notation, we
make the convention to call Q5 throughout the paper this unstable node containing
the profiles with behavior given by (3.5). We close this section with the analysis of the
points Q1 and Q5 in dimension N = 2.

Lemma 3.4 (Local analysis of the critical point Q1 = Q5 in dimension N = 2). Let N = 2.
Then the critical points Q1 and Q5 coincide and the new critical point (that we relabel Q1) is
a saddle-node in the sense of the theory in [9, Section 3.4]. There exists a two-dimensional
unstable manifold on which the orbits go out tangent to the plane {Y = 0} and these orbits
contain good profiles with f(0) = A > 0, f ′(0) = 0, satisfying thus assumption (P1) in
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Definition 1.1. All the rest of the orbits go out into the region {Y < 0} and contain profiles
with the local behavior

f(ξ) ∼ D (− ln ξ)1/m , as ξ → 0, D > 0 free constant. (3.9)

Proof. We go back again to the system (3.3) and notice that exactly for N = 2, the
linear term in the equation for ẏ vanishes. In fact, a simple calculation with matrices
and eigenvector (1, 0, 0) gives that, if we let µ = 2 − N , we are dealing at µ = 0 with a
transcritical bifurcation as in [28] (see also [9, Section 3.4]). It follows that at N = 2 the
critical point Q1 = Q5 is a saddle-node with a matrix having eigenvalues λ1 = 0, λ2 = σ+1
and λ3 = 1. The two-dimensional stable manifold tangent to the vector space spanned by
the eigenvectors e2 = (0, 1, 0) and e3 = (0, 0, 1), that is {y = 0}, contains orbits inherited
from the critical point Q1 and their analysis is totally similar as the one in Lemma 3.1,
leading to good profiles such that f(0) > 0 and f ′(0) = 0. All the other orbits, according to
the theory in [9, Section 3.4], go out tangent to the line {y = 0} (which is the direction of
the eigenvector of the eigenvalue λ1 = 0) in the variables of the system (3.3). This means
that |y/w| → ∞, |y/z| → ∞ on these orbits when approaching the point Q1, thus we infer
from the first equation in (3.3) that ẏ ∼ −my2 < 0, which gives that the orbits go out into
the region {y < 0}. But with respect to the initial variables we have y = Y/X and thus the
region {y < 0} coincides with the region {Y < 0}. This also implies that, without absolute
values, y/w → −∞ and y/x → −∞ along these orbits. It remains to establish that the
profiles contained in these orbits have a local behavior given by (3.9). To this end, we first
notice that, in terms of profiles, we have

y =
Y

X
=
ξf ′(ξ)

f(ξ)
, z =

Z

X
=

√
m− 1

m
ξσ+1f(ξ)(m−1)/2, w =

1

X
=
ξf(ξ)−(m−1)/2√

m(m− 1)
.

The next plan is to go directly to Eq. (1.4) and show that in a neighborhood of the point
Q1 and along these orbits, the first two terms (the ones including derivatives) dominate
over the last two and the local behavior is given in a first order approximation by the
combination of them. We have

(fm)′(ξ)/ξ

ξσf(ξ)m
=

mf ′(ξ)

ξσ+1f(ξ)
= C(m)

y

zw
→ −∞ (3.10)

and
(fm)′(ξ)/ξ

f(ξ)/(m− 1)
=
m(m− 1)f(ξ)m−1y

ξ2
=

y

w2
→ −∞. (3.11)

We next infer from (3.10) and (3.11) that the last two terms in Eq. (1.4) are of lower order
with respect to the term (fm)′(ξ)/ξ, which is easy to see that is of the same order as the
first one. Thus, the local behavior of the profiles contained in the orbits going out tangent
to {y = 0} in a small neighborhood of Q1 is given in first approximation by the joint effect
of the first two terms in (1.4), that is

(fm)′′(ξ) +
1

ξ
(fm)′(ξ) ∼ 0,

which leads to (3.9) by a direct integration. It is easy to check that this behavior is taken
as ξ → 0 by discarding the other possibilities ξ → ξ0 ∈ (0,∞) or ξ → ∞ in the line of
similar proofs done in the previous Lemmas, we omit here the details.

We are now ready to enter the global analysis of the system.
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4 Analysis in the invariant plane {Z = 0}
This shorter section presents a few technical results that will be very useful in the forthcom-
ing global analysis. Before going to the study of the whole phase space associated to the
system (2.3), we restrict ourselves to the plane {Z = 0} and establish how the connections
go inside this plane. Such orbits do not contain profiles but they are usually lower limits
of the manifolds in the three-dimensional phase space and we have to understand where
these connections go. The reduced system in the plane {Z = 0} writes{

Ẋ = m−1
2 XY −X2,

Ẏ = −m+1
2 Y 2 + 1− (N − 1)XY,

(4.1)

with the same critical points as in Sections 2 and 3 except for Q4. Also notice here that
the analysis performed in Lemma 2.2 gives that P2 is an attractor in the plane {Z = 0},
while P0 and P1 are saddle points. Moreover, Q1 is also a saddle point and Q5 is always
an unstable node in the plane {Z = 0} provided N ≥ 3, as it follows from Lemma 3.1 and
by analyzing the two-dimensional unstable manifold in Lemma 3.3. We then have

Lemma 4.1. The unique orbit entering the critical point P1 in the invariant plane {Z = 0}
comes from the node Q5.

Proof. The linearization of the system (4.1) near the point P1 has the matrix

M0(P1) =

(
−m−1

2 h0 0
(N − 1)h0 (m+ 1)h0

)
,

thus the unique orbit entering the saddle point P1 enters tangent to the eigenvector ((3m+
1)/2,−(N − 1)) corresponding to the negative eigenvalue of M0(P1). Since −(N − 1) ≤
−1 < −h0, it follows that the orbit enters from the region {Y < −h0}. We next consider
the line {Y = −h0} and the flow of the system (4.1) on this line is given by the sign of the
expression (N − 1)h0X, which is positive. This proves that the line {Y = −h0} cannot be
crossed from right to left, thus the orbit stays forever in the region {Y < −h0} and it must
come from Q5.

We will now inspect the (also unique) orbits going out of P0 and Q1, which are also
saddle points when restricted to the plane {Z = 0}. We will prove below that they connect
to the attractor P2 = (X(P2), Y (P2)) with X(P2), Y (P2) defined in (2.4).

Lemma 4.2. The unique orbit going out of P0 inside the invariant plane {Z = 0} enters
the critical point P2. The same holds true for the unique orbit going out of Q1.

Proof. Connection P0 − P2. We consider the curves (isoclines of the system (4.1))

C1 : Y =
2

m− 1
X, C2 : −m+ 1

2
Y 2 + 1− (N − 1)XY = 0,

the first one being the line connecting the origin (0, 0) to P2, while the second passes through
both P0 and P2. The intersection between the line C1 and the horizontal line {Y = h0}
passing through P0 is given by X = (m−1)h0/2. Let us thus consider the rectangle limited
by the X and Y axis, the line {Y = h0} and the line {X = (m − 1)h0/2}. It is easy to
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check that Y (P2) < h0 and X(P2) < (m − 1)h0/2 (the equality in both being attained
for N = 1), thus the point P2 lies inside the rectangle. By calculating the directions of
the flow of the system (4.1) on the sides of this rectangle, we find that any orbit entering
the rectangle must remain there forever. It is easy to check that the orbit going out of P0

enters the rectangle. Moreover, if we call F (X,Y ) the vector field of the system (4.1), we
have

divF (X,Y ) = −m+ 3

2
Y − (N − 1)X < 0

inside the rectangle, and Bendixon’s criteria [22, Theorem 1, Section 3.9] ensures that no
limit cycles can exist inside the rectangle. We then infer from the Poincaré-Bendixon’s
theorem [22, Section 3.7] that the orbit from P0 has to enter a critical point inside the
rectangle, and the only possible point is P2, as claimed.

Connection Q1 − P2. It is not difficult to see that the orbit going out of Q1 goes out
tangent to the line {Y = 0} and enters the region {Y > 0}. Thus, it follows that the
orbit enters the strip {0 < Y < h0} from which it cannot go out. Moreover, using the first
equation of the system (4.1), we infer that

Ẋ = X

(
(m− 1)

2
Y −X

)
< 0,

while Y < h0 and X > (m−1)h0/2. This easily proves that the orbit going out of Q1 must
enter first the rectangle considered in the previous step and then P2.

After these preparatory sections, we are in a position to start proving our main results.

5 Existence of good profiles for σ ∈ (0, σc)

This section is devoted to the proof of Theorem 1.2 and also to the existence part in
Theorem 1.4 for the same range of σ. The proof is involved and technical and follows a
number of steps, being in the end based on the ”three sets” argument. The main idea is
to follow the two-dimensional manifold entering P1. As a convention of notation, we will
identify throughout the next sections surfaces in the phase space with the functions whose
graph they represent (for example Z(X,H), Z(X,Y ) etc.).

Proof of Theorem 1.2, existence part. Step 1. In a first step, we show that the orbits
entering P1 and lying very close to the plane {Z = 0} come from the unstable node
conventionally named Q5 at the end of Lemma 3.3. Indeed, Lemma 4.1 together with the
fact that Q5 is an unstable node (at least in the case when K(m,N, σ) ≥ 0 in (3.6)) give by
a standard continuity argument that there are more connections entering P1 and coming
from Q5. In the case when K(m,N, σ) < 0, there are orbits entering P1 as close as possible
(in a tubular neighborhood) to the one entering P1 and coming from Q5 inside the plane
{Z = 0}. But then Q5 acts as a saddle point and rejects the other connections, that will
actually come from Q4; the latter follows easily from Lemma 3.3 where we identify Q5

and Q4 with a single unstable node for any value of σ. The interested reader can rather
easily check that the profiles with an interface at ξ0 ∈ (0, ε) for ε > 0 sufficiently small are
contained in these orbits, by using the relation (2.21), but we omit the details, since we
will not use this fact later.
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Step 2. Approximating the stable manifold and constructing a separatrix sur-
face. Since we want to better analyze the two-dimensional stable manifold of P1, we
translate this point at the origin by setting H = Y + h0, where we recall that h0 =√

2/(m+ 1) < 1. The system (2.3) becomes in these variables
Ẋ = m−1

2 XH − m−1
2 Xh0 −X2,

Ḣ = −m+1
2 H2 + (m+ 1)h0H − Z − (N − 1)XH + (N − 1)h0X,

Ż = Z[(m− 1)H − (m− 1)h0 + σX],

(5.1)

We know that in a neighborhood of the point P1 we have a two-dimensional stable manifold
of the form Z = f(X,H) and we look for a local approximation of this manifold up to
order two. The algorithm for this local approximation of the stable manifold is justified
by the general theory given, for example, in the book [27, Section 2.7, p. 79-82]. We thus
approximate Z = f(X,H) by its Taylor development up to second order near the origin by
letting

Z1(X,H) = AX +BH + CX2 +DH2 + EXH +O(|(X,H)|3) (5.2)

with coefficients A, B, C, D, E to be determined. Calculating

Ż = AẊ + 2CXẊ + EẊH +BḢ + 2DHḢ + EXḢ,

then replacing the expressions of Ż, Ẋ and Ḣ with the right hand sides of the equations
in the system (5.1) and identifying the coefficients to similar terms, we obtain

A =
4m(N − 1)h0

3m+ 1
, B = 2h0m, C =

2(N − 1)(mN − 4mσ − 6m−N + 2

(3m+ 1)(5m− 1)
,

D = −m, E = −4m(N + σ − 1)

5m− 1
.

(5.3)

With these coefficients in mind, we introduce the following surface, that will be our main
tool to separate and drive connections in the phase space:

Z(X,H) = −mH2 − (σ + 2)(2N + σ − 2)

8m
X2 −

(
N − 1 +

σ

2

)
XH

+
(2N + σ − 2)h0

2
X + 2mh0H,

(5.4)

describing over the plane {X = 0} the curve Z = −mH2 + 2mh0H, which is nothing else
than the unique curve from the family (2.24) corresponding to K = 0, that has been used
decisively in the study of the analogous problem in dimension N = 1. As we see here, the
surface (5.4) is quite far from being a cylinder (as we had in dimension N = 1) but still
has the same trace on the plane {X = 0}. Moreover, let us also remark that this surface
contains the points P0 and P1. The normal to this surface is given by

n =

(
−(σ + 2)(2N + σ − 2)

4m
X − 2N + σ − 2

2
H +

2N + σ − 2

2
h0,

−2mH − 2N + σ − 2

2
X + 2mh0,−1

)
,

(5.5)
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and the flow of the system (5.1) on the surface (5.4) is given by the sign of the expression
obtained, at the points of the surface, as the scalar product between n and the vector field
of the system (5.1). After some rather tedious but direct calculations, we find that the flow
is given by the sign of the following expression, that will be used throughout the paper:

F (X) = − K1(σ)

2(m+ 1)
X − (2N − σ − 6)(2N + σ − 2)(σ + 2)

16m
X3, (5.6)

where we recall that K1(σ) is defined in (2.13). Since σ ∈ (0, σc), the coefficient of X in
(5.6) is positive, thus there exists a region very close to the plane {X = 0} where F (X) ≥ 0.
Since the normal vector n points in negative direction in the third component, this gives
that in such a region with X sufficiently small, the surface (5.4) cannot be crossed by
connections ”from below to above”, that is, going from the region where Z(X,H) < 0 in
(5.4) to the region where Z(X,H) > 0.

Step 3. Connections to P1 and from P0. We show that the orbits entering P1 on
its stable manifold and with X > 0 very small, connect to P1 from the region where
Z(X,H) > 0 with respect to the separatrix surface given by (5.4). To prove this claim,
we calculate the difference between the approximation of the stable manifold entering P1

obtained in (5.2) and the surface Z(X,H). We have

Z1(X,H)− Z(X,H) = −K1(σ)

2
X

[
h0

3m+ 1
+

H

5m− 1
+

8mN − 5mσ − 18m+ σ + 2

m(3m+ 1)(5m− 1)
X

]
,

(5.7)
which is positive provided X > 0 is sufficiently small, since for σ ∈ (0, σc) we have K1(σ) <
0. We then infer from Step 2 above that an orbit entering P1 on the stable manifold in a
sufficiently small region 0 < X < X0 such that F (X) > 0 and Z1(X,H) − Z(X,H) > 0,
cannot cross the surface Z(X,H) in (5.4) and has to stay above it (that is Z1(X,H) >
Z(X,H)) for any H ∈ (0, 2h0), where we choose 2h0 since it is the H-component of the
critical point P0 = (0, 2h0, 0) in the system (5.1). By performing totally similar calculations
following again the theory in [27, Section 2.7, p. 79-82], we can also approximate the two-
dimensional unstable manifold going out of P0. To this end, we introduce the new variable
H = Y − h0 and obtain a rather similar Taylor approximation up to order two of this
unstable manifold, namely

Z0(X,H) = −AX −BH + CX2 +DH
2

+ EXH, (5.8)

where A, B, C, D, E are the coefficients introduced in (5.3). By changing Z(X,H) into
variables (X,H), we can again calculate the difference between the Taylor approximation
of the unstable manifold going out of P0 and the separatrix surface (5.4) to find

Z0(X,H)−Z(X,H) = −K1(σ)

2
X

[
− h0

3m+ 1
+

H

5m− 1
+

8mN − 5mσ − 18m+ σ + 2

m(3m+ 1)(5m− 1)
X

]
,

(5.9)
which is negative provided X > 0 is sufficiently small. It thus follows that there exists a
fixed right-neighborhood of the plane {X = 0}, in the form of a strip

S := {0 < X < X(m,N, σ),−h0 ≤ Y ≤ h0},
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where X(m,N, σ) only depends on m, N , σ, such that the orbits entering P1, respec-
tively going out of P0 on their two-dimensional manifolds inside the strip S are completely
separated by the surface (5.4) and cannot connect.

Step 4. Connections between Q2 and P1. We conclude from the previous analysis that
the orbits entering P1 from inside the strip S have to cross the plane {Y = h0} at points
with Z > 0. Since the direction of the flow of the system (2.3) on the plane {Y = h0} is
given by the sign of the expression

−Z − (N − 1)h0X < 0,

it follows that these orbits come from the region {Y > h0}. We also notice that, on orbits
of the system (2.3) inside the region {Y > h0} we have

Ż = Z[(m− 1)Y + σX] ≥ 0, Ẏ = 1− m+ 1

2
Y 2 − Z − (N − 1)XY < 0,

thus components X and Y are monotonic on these orbits. Such orbits cannot thus come
from an α-limit cycle and they have to come from a critical point inside the region {Y > h0},
and the only such point is Q2.

Step 5. The three sets argument. Gathering the previous results, we have shown that
in the two-dimensional manifold entering P1 there are orbits coming from the unstable node
Q5 (with the convention of labeling made at the end of Lemma 3.3) and other orbits coming
from the unstable node Q2. At a formal level, since both Q5 and Q2 are nodes, the orbits
coming from them are relatively open sets in the relative topology on the two-dimensional
stable manifold of P1, thus there must be a non-empty relatively closed set with orbits
entering P1 and coming from other critical points or α-limits. This formal plan is made
rigorous by a three-sets argument. Starting from the system (5.1), we keep only the first
order approximations in the first and third equation and obtain in a neighborhood of P1

that
dZ

dX
∼ (m− 1)h0Z

(m− 1)h0X/2
=

2Z

X
,

whence we find by integration that the orbits entering P1 on its two-dimensional stable
manifold enter tangent to the beam of curves Z = DX2 + o(X2) with D ∈ (0,∞). Doing
the same with the second equation and keeping only the first order terms, we further get

dH

dX
∼ −2(m+ 1)

m− 1

H

X
− 2(N − 1)

m− 1
,

hence (taking into account that H, X → 0) we get the particular solution

H = −2(N − 1)

3m+ 1
X + o(X).

This latter equation, together with the one-parameter family Z = DX2 + o(X2), charac-
terize the two-dimensional manifold entering P1. Introduce then the following three sets:

A = {D ∈ (0,∞) : the orbit tangent to Z = DX2 comes from Q2},
B = {D ∈ (0,∞) : the orbit tangent to Z = DX2 does not come from Q5 or Q2},
C = {D ∈ (0,∞) : the orbit tangent to Z = DX2 comes from Q5}.
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On the one hand, we infer from Step 4 that the set A is non-empty and in fact contains an
interval of the form (D∗,∞), since the orbits inside the strip S will have X > 0 as small
as possible for a fixed Z, thus correspond to very large parameters D. On the other hand,
we deduce from Step 1 that the set C is non-empty and contains an interval of the form
(0, D∗), since the orbits lying in a tubular neighborhood of the unique orbit entering P1

inside the plane {Z = 0} have very low component Z for X fixed and thus correspond
to very small parameters D > 0. Moreover, sets A and C are open, since Q2 and Q5 are
unstable nodes. It then follows that the set B is non-empty and closed, hence there are
some orbits entering P1 and coming from other critical points.

Step 6. End of the proof. The connections corresponding to parameters D ∈ B can be
in one of the following four cases, as it follows from the local analysis in Sections 2 and 3:
• Orbits starting from P0: they contain good profiles satisfying assumption (P3) in

Definition 1.1
• Orbits starting from P2: they contain good profiles satisfying assumption (P2) in

Definition 1.1
• Orbits starting from Q1: they contain good profiles satisfying assumption (P1) in

Definition 1.1
• Orbits coming from an α-limit. We will rule out this possibility by using [22, Theorem

1, Section 3.2], which gives that any α-limit should be a compact set in the phase space,
thus bounded both in X and Z components. We thus obtain that there exist K1, K2 > 0
such that

ξσf(ξ)m−1 ≤ K1, f(ξ)(m−1)/2(ξ) ≤ K2ξ,

which in particular gives that both ξ and f(ξ) remain bounded along the profile contained in
such trajectory. Moreover, such a profile starting from a compact α-limit present infinitely
many oscillations, thus there exist an infinity of maxima and minima to f(ξ), from which
we can extract convergent sequences of minima, respectively maxima

ξn,min → ξmin, ξn,max → ξmax ∈ (0,∞),

such that their terms are alternated (that is, a maximum point lies between two minimum
points and viceversa). We then deduce that there exist points

ξn ∈ (ξn,max, ξn,min), f ′′(ξn) = 0, ξn → ξ0,

where the latter is obtained by eventually restricting ourselves to a subsequence, relabeled
in the same way for simplicity. Replacing in the equation (1.4) we get

lim
n→∞

N − 1

ξn
(fm)′(ξn) =

1

m− 1
f(ξ0)− ξσ0 fm(ξ0) ∈ R.

But it is easy to see that, if

ξmin = lim
n→∞

ξn,min 6= lim
n→∞

ξn,max = ξmax,

then (fm)′(ξn)→ ±∞ (the sign depending on whether the function oscillates from minima
to maxima or viceversa when passing through ξn), which is a contradiction unless ξ0 = +∞,
which is not the case. It thus follows that the α-limit should be reduced to a point to which
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the oscillations converge (being damped), thus a critical point. Since from all the remaining
critical points Q1, P0 and P2 start orbits containing good profiles, the proof is complete.

Remark. An inspection of the previous proof shows that the dimension is irrelevant, thus
the same proof gives the existence of good profiles with interface also for dimensions N = 2
and N = 3 when σ ∈ (0, σc). This will be used later.

6 Classification of profiles for N ≥ 4

This is the longest and most technical chapter of this paper, which is devoted to the
classification of the orbits entering P1, with respect to their points of origin (among Q1, P0

and P2, as it comes out from the proof in Section 5) for dimension N ≥ 4 and σ ∈ (0, σc).
The goal of this section is to prove Theorem 1.3. Before starting the proof, we state a short
but useful

Lemma 6.1. All the possible ω-limit sets of the system (2.3) that are not a single point
are included in the plane {X = 0}.

Proof. We derive from Step 6 in the proof of Theorem 1.2 in Section 5 and from [22,
Theorem 2, Section 3.2] that all the ω-limit sets are included in either the invariant plane
{X = 0} or the invariant plane {Z = 0} (otherwise, since the ω-limit is itself an invariant
set, going backwards on it, its α-limit should be a compact set inside the phase space and
we have shown that this is not possible). But it cannot belong to the plane {Z = 0} since a
limit cycle must cross infinitely many times the plane {Y = 0}, and this can be done only
at points with Z > 1.

We are now in a position to classify the orbits entering P1 in the phase space for
σ ∈ (0, σc) and prove the existence part in Theorem 1.3. Due to its length, the proof will
be again divided into several steps

Proof of Theorem 1.3, existence part. Step 1. Orbits from P2 for σ close to zero.
We recall the surface (5.4), that is fundamental for our analysis. In the initial variables
(X,Y, Z) it writes

Z(X,Y ) = −(σ + 2)(2N + σ − 2)

8m
X2 − 2N + σ − 2

2
XY −mY 2 +

2m

m+ 1
. (6.1)

The aim of this first step of the proof is to prove that for σ > 0 sufficiently small, the orbit
going out of P2 will connect to the critical point P3 which behaves like an attractor. To this
end, we begin by recalling that the direction of the flow of the system (2.3) on the surface
(6.1) is given by the sign of the expression F (X) in (5.6), which is positive provided that

X2 < X2
0 (m,N, σ) = − 8mK1(σ)

(2N − σ − 6)(2N + σ − 2)(σ + 2)(m+ 1)
> 0. (6.2)

Notice here that dimension N ≥ 4 already plays an important role: the fact that 2N −σ−
6 > 0 which holds true for 0 < σ < 2(N − 3) allows for the previous estimate. We next
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observe that X(P2) < X0(m,N, σ) for σ > 0 small, where X0(m,N, σ) is defined in (6.2).
Indeed, for σ = 0 we have

X0(m,N, 0)2 −X(P2)
2 =

(3m− 1)(m− 1)(mN −N +m+ 3)

2(mN −N + 2)(m+ 1)(N − 3)
> 0,

and this holds true also for σ > 0 sufficiently small by continuity. Notice again the im-
portance of the fact that N − 3 > 0 in the previous estimate. Moreover, by replacing
X = X(P2) and Y = Y (P2) in the expression of the surface (6.1) we get

Z(X(P2), Y (P2)) =
m− 1

4m(mN −N + 2)

[
(3m− 1)(m− 1)(N − 1)

m+ 1

−mN + 4m−N
2

σ − m− 1

4
σ2
]
> 0,

(6.3)

provided σ > 0 is sufficiently small. Since Z(P2) = 0, it follows that the critical point P2

lies below the surface (6.1) and inside the region where the flow on the surface satisfies
F (X) ≥ 0.

Step 2. The unique orbit from P2 goes to P3 for σ > 0 small. This step is very
technical and some calculations have been performed with the aid of a symbolic calculation
software. Consider first the plane {Y = 2X/(m − 1)} passing through the point P2. The
intersection of this plane with the surface (6.1) is given by the parabola

Z =
2m

m+ 1
− R(σ)

8m(m− 1)2
X2, (6.4)

where

R(σ) = (m−1)2σ2+2(m−1)(mN−4m−N)σ+4(m−1)(5m−1)N+4(3m2+6m−1) > 0,

thus it is a parabola with a negative dominant coefficient and it intersects the plane {Z = 0}
at

X = X1(m,N, σ), X1(m,N, σ)2 =
16m2(m− 1)2

(m+ 1)Q(σ)
.

We next notice that X1(m,N, σ) < X0(m,N, σ) for σ > 0 sufficiently small. Indeed, we
calculate

Z0(σ) =
2m

m+ 1
− Q(σ)

8m(m− 1)2
X0(m,N, σ)

=
(2mN + (m− 1)σ + 6m− 2N + 2)L(σ)

(m− 1)2(m+ 1)(2N − 6− σ)(2N + σ − 2)(σ + 2)
,

with

L(σ) = (m2 − 1)σ2 + 2(m+ 1)(mN + 4m−N)σ − 4(m− 1)(3m− 1)(N − 1) < 0

provided σ > 0 is sufficiently small, which implies also that Z0(σ) < 0 for σ sufficiently
small. Thus X1(m,N, σ) < X0(m,N, σ) since the parabola (6.4) is decreasing with respect
to X. We finally consider the plane {X = X1(m,N, σ)}. It is obvious from geometrical
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reasons that X1(m,N, σ) > X(P2) for σ > 0 sufficiently close to zero, and the flow on this
plane is given by the sign of the expression (m−1)Y/2−X1(m,N, σ) which is negative in the
region where Y < 2X/(m− 1). Moreover, the intersection of the plane {X = X1(m,N, σ)}
with the surface (6.1) is a parabola having a positive maximum, namely

Z =
16m2((m− 1)σ + 2mN + 2m− 2N + 2)

(m+ 1)L(σ)
− 2N + σ − 2

2
X1(m,N, σ)Y −mY 2.

We have thus built a compact region limited by the planes {X = 0}, {Z = 0}, {X =
X1(m,N, σ)} and the surface (6.1), having the critical point P2 inside for σ > 0 sufficiently
small and from where no orbit can escape through its walls. Thus, since the orbits entering
P1 do that outside the surface (6.1), the orbit going out of P2 cannot connect to either P1 or
Q3 for σ > 0 sufficiently small, hence the analysis performed in Lemma 2.3 and Proposition
2.4 shows that the orbit going out of P2 must enter the critical point P3.

Step 3. Orbits for σ = σc. The goal of this step is to show that for σ = σc the unique
orbit going out of P2 connects to the stable node Q3. To this end, we notice first that for
σ = σc the critical point P2 lies ”above” the surface (6.1). Indeed, if we replace X = X(P2),
Y = Y (P2) and σ = σc in (6.1) we get

Z(X(P2), Y (P2)) = −(N − 1)(m− 1)2[m(N − 4) +N − 2]

(mN −N + 2)(3m+ 1)2(m+ 1)
< 0,

since we are with N ≥ 4. We next prove that the orbits entering P1 on the two-dimensional
stable manifold do that ”below” the surface (6.1). To this end, for σ = σc we approximate
the stable manifold of P1 by its Taylor development up to order three, a fact justified again
by the theory in [27, Section 2.7, p. 79-82], to find that

Z1(X,Y ) = AX +BY + CX2 +DH2 + EXH + FX3 + o(|(X,Y )3|), H = Y + h0,

where

A =
4m(N − 1)h0

3m+ 1
, B = 2mh0, C =

2(mN + 2m−N + 2)(N − 1)

(3m+ 1)2
, D = −m,

E = −4(N − 1)m

3m+ 1
, F = −

4(N − 1)(mN + 2m−N + 2)[m(N − 4) +N − 2]
√

2(m+ 1)

(5m− 1)(3m+ 1)2
,

(6.5)

and we just notice that the first five coefficients are exactly equal to the same ones of the
surface (5.4) (which is the same as (6.1) written in variables (X,H,Z)). Thus, we have

Z1(X,Y )− Z(X,Y ) = FX3 + o(|(X,Y )3|) < 0, since F < 0 for N ≥ 4. (6.6)

We deduce that the stable manifold of P1 lies below the surface Z(X,Y ) in (6.1) in a
neighborhood of P1. Finally, recalling that the flow of the system (2.3) over the surface
(6.1) is given by (5.6), which becomes for σ = σc

F (X) = −4(N − 1)(mN + 2m−N + 2)[m(N − 4) +N − 2]

(3m+ 1)3
X3 < 0,
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and that the direction of the normal to the surface n in (5.5) points in the negative direction
of the Z component, we conclude that no trajectory in the phase space can cross this
surface from above (that is, from the region {Z > Z(X,Y )}) to below (that is, into the
region {Z < Z(X,Y )}). This proves that the orbit going out of P2 will never cross this
surface and thus it cannot connect either to P1 or to P3. We then infer from the local
analysis and from Lemma 6.1 that it cannot reach a limit cycle (since all the limit cycles
in (2.24) with K > 0 lie below the surface), thus it has to enter the unstable node Q3.

Step 4. A new three-sets argument. Since Q3 is a node, it follows by standard
continuity that there exists σ0 < σc such that the orbit going out of P2 enters Q3 for any
σ ∈ (σ0, σc). Moreover, we have proved that there exists σ0 > 0 such that the orbit going
out of P2 enters P3 for any σ ∈ (0, σ0). We can thus define the three sets

A = {σ ∈ (0, σc) : the orbit going out of P2 enters P3},
B = {σ ∈ (0, σc) : the orbit going out of P2 enters P1},
C = {σ ∈ (0, σc) : the orbit going out of P2 enters Q3}.

and conclude that A and C are open sets (the former follows from the attractor-like behavior
of P3 established in Lemma 2.3 and the latter since Q3 is an attractor) and (0, σ0) ⊆ A,
(σ0, σc) ⊆ C. We infer that the set B is non-empty and closed and it contains at least a
point, for which there is a good profile with interface contained in the orbit going out of
P2 and satisfying assumption (P2) in Definition 1.1. Moreover, since A and C are open, at
least their limit points belong to B, thus σ0 ∈ B and σ0 ∈ B, completing the proof of the
third statement in Theorem 1.3.

Step 5. Connections to P1 from P0 and Q1. For the range σ ∈ (0, σ0) for which the
construction done in Steps 1 and 2 applies, it is easy to see that the same argument limits
all the orbits going out of P0, as they have to enter necessarily the same compact region
which is used to limit the orbits going out of P2, thus all the orbits from P0 connect to
P3. We infer by elimination that the orbits with good profiles entering P1 according to
Theorem 1.2 must come from Q1 and thus contain profiles that satisfy assumption (P1) in
Definition 1.1.

Passing to σ < σc but close to σc, we claim that no orbit coming out of Q1 can connect
to P1. To this end, we restrict ourselves to the case σ = σc and we show that the whole
two-dimensional surface coming out of Q1 lies at a strictly positive distance from P1. By
passing to the limit as X →∞ and Y → 0 in the equation of the surface (6.1) we obviously
get that Q1 lies above the surface (6.1), thus all the orbits going out of Q1 connect to Q3 for
σ = σc, and we work on the (compact, if seen in the Poincaré hypersphere) two-dimensional
invariant manifold M formed by all the orbits going out of Q1 with the flow given by the
dynamical system on it, which also gives an orientation to the manifold. This manifold is
limited by two separatrices, one being included in the Poincaré hypersphere connecting Q1

to Q5 and then Q3 and the other being formed by the orbit connecting Q1 to P2 inside the
plane {Z = 0} (constructed in Lemma 4.2) continued with the orbit going out of P2 and
entering Q3. If the critical point P1 is a limit of some sequence of points on this manifold,
it means that in any neighborhood of P1 a saddle sector is formed by the orbits in M ,
whence P1 ∈ M and a new separatrix connecting Q1 to P1 must exist inside the manifold
M . But such separatrix does not exist for σ = σc and we reach a contradiction. It thus
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follows that the orbits going out of Q1 stay at a positive distance from P1 for σ = σc, and
by continuity and a standard argument of tubular neighborhoods it readily follows that the
same holds true in a small interval σ ∈ (σ2, σc) for some σ2 ∈ (0, σc). Taking into account
that there exists a orbit entering P1 and containing good profiles, by elimination this orbit
can come only from P0, as claimed, for any σ > 0 sufficiently close to σc.

We show in Figure 2 a picture of the phase space in both cases discussed in the clas-
sification done before: when σ > 0 is small and when σ < σc is very close to the critical
exponent (for the data of the experiments, N = 4 and m = 2, we have σc = 6/7). Notice
the number of oscillations the orbits going out of P0 do, before entering P3.

Y

P0P1 P2

P3

X

Z

(a) σ > 0 small

Y

P0P1

P2

P3

X

Z

(b) σ < σc, σ ∼ σc

Figure 2: Trajectories in the phase space for different values of σ ∈ (0, σc). Numerical
experiment for m = 2, N = 4 and σ = 0.5, respectively σ = 0.84

Remarks. 1. In fact, one can notice that the manifold M associated with its natural flow
inherited from the system (2.3) is a parallel manifold of strip form, according to the theory
in [20], and for such manifolds Markus-Neumann’s Theorem states in particular that they
are topologically equivalent to regions of the plane having the same separatrix configuration
[21] (see also [22, Section 3.11]). Since the two limit-separatrices of M both connect to Q3

for any σ ∈ (0, σc) for which the orbit going out of P2 connects to Q3, this fact strongly
suggests that all the orbits going out of Q1 will enter Q3 whenever the unique orbit going
out of P2 enters Q3, and thus the outcome of Step 5 can be extended to the whole interval
σ ∈ (σ0, σc) for which P2 connects to Q3. However, this is not a full proof of this fact.

2. The fact that m(N − 4) + N − 2 > 0 appeared in a decisive way in some steps of
the proof of Theorem 1.3. We see again here that, if we allow fractional dimensions, the
branching point for the classification is given by N∗ = (4m+ 2)/(m+ 1), a fact noticed in
the Introduction in (1.7) with the mapping (1.8).

We complete the proof of Theorem 1.2 with its non-existence part, that we state here
as a separate result for simplicity.
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Proposition 6.2. For N ≥ 4 and σ ∈ [σc, 2(N−3)], there are no good profile with interface
solutions to Eq. (1.4).

Proof. This is now rather easy in view of the ideas and calculations used in the proof of
Theorem 1.3. The plan is to prove that for σ ≥ σc and N ≥ 4 the orbits coming from P0,
P2 or Q1 cannot enter P1; in fact, they will all connect to Q3, while as an outcome of the
proof, all the two-dimensional manifold entering P1 will come from the unstable node Q5

(always with the convention of identification between Q5 and Q4 introduced after Lemma
3.3). First of all, for σ > σc, recalling the local approximation Z1(X,H) ≡ Z1(X,Y ) of the
manifold entering P1 given by (5.2), we readily get from (5.7) and the fact that K1(σ) > 0
that

Z1(X,Y )− Z(X,Y ) < 0,

where Z(X,Y ) is the expression of the surface (6.1), thus for any σ ≥ σc we infer that
the orbits entering P1 do that from ”below” the surface (6.1) (the exact equality case
σ = σc being considered in (6.6)). With respect to the point P0, for σ = σc we can again
approximate the two-dimensional manifold going out of it up to order three as we did for
the manifold entering P1 and get

Z0(X,Y ) = −AX −BY + CX2 +DH2 + EXH − FX3 + o(|(X,Y )3|), H = Y − h0,

with coefficients A to F given in (6.5), noticing thus that

Z0(X,Y )− Z(X,Y ) = −FX3 + o(|(X,Y )3|) > 0, since F < 0 for N ≥ 4. (6.7)

We conclude that the orbit going out of P0 does this above the surface (6.1) for σ = σc and
it is easy to check that the same occurs for any σ > σc using only the approximation up to
order two in (5.8) and the sign in (5.9). With respect to the point P2, we obtain from the
calculation in (6.3) that for σ = σc we have

Z(X(P2), Y (P2)) = −(m− 1)3(N − 1)[m(N − 4) +N − 2]

(mN −N + 2)(m+ 1)(3m+ 1)2
< 0,

thus the critical point P2 having Z(P2) = 0 lies above the surface (6.1) for any σ > σc,
since the expression (6.3) is decreasing with respect to σ. It remains to show that the orbits
going out of Q1 also lie above this surface. The profiles going out of Q1 satisfy, according
to Lemma 3.1, f(0) = A > 0 and f ′(0) = 0, thus in terms of the phase space variables have
X = +∞, Y = Z = 0. Letting thus points of the form (x0, 0, 0) with x0 very large and
replacing in the formula of (6.1) we get

Z(x0, 0) =
2m

m+ 1
− (σ + 2)(2N + σ − 2)

8m
x20 < 0,

thus these points approximating Q1 lie above the surface (6.1) and passing to the limit
x0 → +∞, the same occurs for Q1. It is then easy to notice that for σ ∈ [σc, 2(N − 3)] the
sign of (5.6) is always negative, thus the surface (6.1) cannot be crossed by any trajectory
of the system from above to below (or rigorously from the region {Z > Z(X,Y )} into
the region {Z < Z(X,Y )}). Hence, no orbit from either P0, P2 or Q1 can enter P1 for
σ ∈ [σc, 2(N − 3)], as claimed.
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7 Global analysis in dimensions N = 2 and N = 3

Let us take now N = 2 or N = 3. Our goal is to prove Theorem 1.4. This is an immediate
consequence of the following

Proposition 7.1. For any σ ∈ (0, σc], there exist good orbits entering P1. All these orbits
come from the critical point Q1.

Proof. Recalling the surface (6.1) and the flow of the system (2.3) on it, given by the
function F (X) defined in (5.6), the fundamental remark is that the flow F (X) is positive
for any σ ∈ (0, σc]. This is due to the fact that for N ∈ {2, 3} we have 2N − σ − 6 < 0 for
any σ > 0. We thus deduce that the trajectories of the system (2.3) cannot cross the surface
(6.1) from the interior (that is, from the region {Z < Z(X,Y )} towards the exterior (that
is, the region {Z < Z(X,Y )}) of it. Let us also remark at this point that in dimensions
N ≤ 3, the surface (6.1) can be also written in the form

Z =
2m

m+ 1
−m

[
Y +

2N + σ − 2

4m
X

]2
− (2N + σ − 2)(σ + 6− 2N)

16m
X2, (7.1)

becoming an elliptic paraboloid and we can properly speak about interior and exterior of it.
A surface having similar geometric form is represented in Figure 3 below. It is then easy to
check that the proof of Theorem 1.2 (done in Section 5) simply applies also to dimensions
N = 2 and N = 3 and moreover, it can be extended also to the limit case σ = σc. Indeed,
for σ < σc the approximations to the two-dimensional manifolds of P0 and P1 given in (5.8)
and (5.2), and the fact that the orbits entering P1 do that from the exterior of the surface
(6.1) as it follows from (5.7), respectively the ones going out of P0 do that in the interior
of the surface (6.1) as it follows from (5.9), hold true. But as a significant difference with
respect to dimensions N ≥ 4, the same holds true also for σ = σc. This is due to the fact
that the coefficient

F = −
4(N − 1)(mN + 2m−N + 2)[m(N − 4) +N − 2]

√
2(m+ 1)

(5m− 1)(3m+ 1)2

appearing in (6.6) changes sign and becomes positive for N = 2 and N = 3 (and in fact for
any fractional dimension N < (4m + 2)/(m + 1) if we consider N as a parameter in Eq.
(1.4)). This implies that also for σ = σc the orbits entering P1 remain in the exterior of
the surface (6.1), while the ones going out of P0 remain in the interior (as it follows from
(6.7)), and the proof of the existence of a good orbit entering P1, done in Section 5, can be
directly extended to σ = σc. We moreover deduce that there can be no connection P0−P1

for any σ ∈ (0, σc], since the orbits are separated by the surface (6.1). The same happens
for the orbits going out of P2. Indeed, we recall from (6.3) that Z(X(P2), Y (P2)) is strictly
decreasing with σ > 0 and that for σ = σc we get

Z(X(P2), Y (P2)) = −(N − 1)(m− 1)2[m(N − 4) +N − 2]

(mN −N + 2)(3m+ 1)2(m+ 1)
> 0,

since now m(N − 4) +N − 2 < 0. This important change implies that P2 is in the interior
region of the surface (6.1) and thus the orbit going out of it cannot cross the surface in
order to enter P1. By elimination, it follows that all the good orbits entering P1, for any
σ ∈ (0, σc], come from Q1.
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As a remark, the proof of existence of a good orbit entering P1 can be extended above
σ = σc. This follows from the fact that, for σ = σc there exist still orbits entering P1 and
coming from the unstable nodes Q2 and Q5, as it comes out by an inspection of the proof
of Theorem 1.2 (see Section 5) together with the adaptations for σ = σc explained above.
Thus, we can extend the existence of such connections by standard continuity up to some
σ2 > σc, and the three sets argument proving that there exists at least a good orbit (Step
5 in Section 5) is still available for any σ ∈ (σc, σ2).

8 Non-existence of good blow-up profiles for σ large

This final section is devoted to the proof of Theorem 1.5. To show that no good profiles
with interface exist, we have to rule out, for σ sufficiently large, connections P2−P1, Q1−P1

and P0−P1. The approach will be similar for all these points, since we will follow, for σ > 0
sufficiently large, the orbits starting from their crossing point with the plane {Y = 0} in
the phase space, a plane that all of them must cross at least once. As usual, we divide the
proof into several steps for simplicity.

Proof of Theorem 1.5. Step 1. A change of variable. In order to simplify the presen-
tation, since we are dealing with σ very large, we let U = σX and we transform the system
(2.3) into 

U̇ = m−1
2 UY − λU2,

Ẏ = −m+1
2 Y 2 + 1− Z − (N − 1)λUY,

Ż = Z[(m− 1)Y + U ],

(8.1)

with λ = 1/σ. We thus have to study trajectories of the system (8.1) for λ sufficiently
small. Notice that the flow of the system (8.1) over the surface (6.1) becomes

F (U) =
K(λ)

2(m+ 1)
U − (2λ+ 1)(2λN − 2λ+ 1)(2λN − 6λ− 1)

16m
U3, (8.2)

as it readily follows from (5.6), where

K(λ) = 2λ(m− 1)(N − 1)− (3m+ 1).

We remark here that for σ > 2(N−3) if N ≥ 4 or for σ > 0 if N < 4, the surface (6.1) is an
elliptic paraboloid, a fact that can be seen immediately from (7.1) since the only thing that
counts is the sign of σ + 6− 2N which is now positive. We further observe that F (U) < 0
in (8.2) if U ∈ (0, U0), where

U2
0 =

8mK(λ)

(m+ 1)(2λ+ 1)(2λN − 2λ+ 1)(2λN − 6λ− 1)
> 0. (8.3)

The intersection of the surface (6.1) with the plane {U = U0} is a parabola

Z(U0, Y ) =
2m

m+ 1
−mY 2 −

√
2m(2λN − 2λ+ 1)K(λ)

(m+ 1)(2λ+ 1)(2λN − 6λ− 1)
Y

− K(λ)

(m+ 1)(2λN − 6λ− 1)
,
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having a maximum equal to

M(λ) =
2λmN + 6λm− 2λN + 2λ+m− 1

2(2λ+ 1)(m+ 1)
,

and we infer that

M(λ)− 1 =
2λ(m− 1)(N + 1)− (m+ 3)

2(2λ+ 1)(m+ 1)
< 0, for λ ∈

(
0,

m+ 3

2(m− 1)(N + 1)

)
.

It follows that the intersection between the surface (6.1) and the plane {U = U0} lies
strictly below the plane {Z = 1} for λ > 0 sufficiently small as above and, since the surface
is an elliptic paraboloid, the same holds true for the surface (6.1) for any U ≥ U0.

Step 2. An orbit cannot cross the surface (6.1) in the region {Y > 0}. To prove
this statement, we find that the intersection of the surface (6.1) with the plane {Y = 0} is
given by

Z(U, 0) =
2m

m+ 1
− (2λ+ 1)(2λN − 2λ+ 1)

8m
U2 > 0

provided that

0 < U2 < U2
1 =

16m2

(m+ 1)(2λ+ 1)(2λN − 2λ+ 1)
.

Recalling that U0 is given in (8.3), we notice that

U2
1 − U2

0 =
8m[2λ(mN − 5m+N − 1) +m+ 1]

(m+ 1)(2λ+ 1)(2λN − 2λ+ 1)(2λN − 6λ− 1)
< 0

for λ > 0 sufficiently small, due to the sign of 2λN − 6λ− 1 < 0. Since the amplitude with
respect to the component U of the surface (6.1) for some {Y > 0} is smaller than the one
attained in the intersection with the plane {Y = 0} and the latter is smaller than U0 as
shown above, it follows that the part of the surface included in the half-space {Y > 0} is
also included in the strip {0 ≤ U ≤ U0} where the direction of the flow does not allow for
the surface to be crossed from the exterior towards its interior.

Step 3. Crossing the plane {Y = 0}. We already have seen in the proof of Proposition
6.2 that the orbits going out of P0, P2 and Q1 are above the surface (6.1) near their starting
points. It then follows from Step 2 that they cannot cross the surface before reaching the
plane {Y = 0}. The direction of the flow on this plane is given by the sign of 1−Z, thus the
orbits have to cross the plane {Y = 0} at points with height Z > 1. If the crossing point
of such orbit with the plane {Y = 0} finds itself in the strip {0 ≤ U ≤ U0}, it will forever
remain in this strip after crossing since the component U is decreasing in the half-space
{Y < 0}, as we infer from the first equation in (8.1). Thus, such an orbit cannot cross the
surface (6.1) in order to go to P1. If an orbit intersects the plane {Y = 0} at a point with
U > U0 and Z > 1, then this orbit has to cross first the plane {Z = 1} in order to cross
afterwards the surface (6.1), since we have shown in Step 1 that the region {U > U0} of the
surface (6.1) lies below the plane {Z = 1}, and this intersection with the plane {Z = 1}
should still lie in the region {U > U0}, as otherwise we are already in the strip in which the
surface cannot be crossed. But in order to intersect the plane {Z = 1}, the component Z
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of the trajectory must start to decrease. This can only happen in the region where Ż < 0,
that is, (m− 1)Y + U < 0, which writes

Y < − U

m− 1
< − U0

m− 1
. (8.4)

Step 4. Point of no return. We consider now the plane {Y = −U0/(m − 1)} that the
orbits have to cross in order to allow component Z to decrease, according to (8.4). The
flow of the system (8.1) on this plane is given by the sign of

H(Z,U) = 1− m+ 1

2(m− 1)2
U2
0 − Z +

(N − 1)λ

m− 1
U0U.

Noticing that

1− m+ 1

2(m− 1)2
U2
0 = B(λ,m,N) =

A(λ,m,N)

(m− 1)2(2λ+ 1)(2λN − 2λ+ 1)(2λN − 6λ− 1)
,

where

A(λ,m,N) = 8(N − 1)(N − 3)(m− 1)2λ3 + 4(N2 − 4N + 1)(m− 1)2λ2

− 2(m− 1)(4mN −N − 3)λ+ 11m2 + 6m− 1,

we get that H(Z,U) < 0 for λ sufficiently small since

lim
λ→0

B(λ,m,N) = −11m2 + 6m− 1

(m− 1)2
< 0.

We end the proof by also noticing that −U0/(m − 1) < −h0 for λ > 0 sufficiently small.
This is obtained from the fact that

U2
0

(m− 1)2
− h20 = − 2

m+ 1
B(λ,m,N) > 0

for λ > 0 small. It then follows that once crossed, the plane {Y = −U0/(m − 1)} cannot
be crossed again by a trajectory from the left to the right, and that the point P1 lies in the
region {Y > −U0/(m − 1)}, thus no trajectory crossing the plane {Y = 0} can enter this
point.

We end this final section by plotting in Figure 3 the phase space for σ > σc sufficiently
large. We see some orbits entering P1 and coming from Q5, while the orbits going out of
P0 and P2 stay above the elliptic paraboloid and go away from P1.
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Figure 3: The phase space and the separatrix surface, in form of an elliptic paraboloid, for
σ sufficiently large. Numerical experiment for m = 2, N = 4 and σ = 5
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