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In this paper, we discuss the existence and uniqueness of solutions for new classes of separated boundary value problems of
Caputo-Hadamard and Hadamard-Caputo sequential fractional di	erential equations by using standard 
xed point theorems. We
demonstrate the application of the obtained results with the aid of examples.

1. Introduction

Fractional di	erential equations have been of increasing
importance for the past decades due to their diverse appli-
cations in science and engineering such as biophysics,
bioengineering, virology, control theory, signal and image
processing, blood �ow phenomena, etc.; see [1–6]. Many
interesting results of the existence of solutions of various
classes of fractional di	erential equations have been obtained;
see [7–15] and the references therein.

Sequential fractional di	erential equations are also found
to be of much interest [16, 17]. In fact, the concept of sequen-
tial fractional derivative is closely related to the nonsequential
Riemann-Liouville derivatives, for details, see [3]. For some
recent results on boundary value problems for sequential
fractional di	erential equations; see [18–22] and references
cited therein.

In this paper, we discuss existence and uniqueness of solu-
tions for two sequential Caputo-Hadamard and Hadamard-
Caputo fractional di	erential equations subject to separated
boundary conditions as

��� (����) (�) = � (�, � (�)) , � ∈ (	, 
) ,

�1� (	) + �2 (����) (	) = 0,
�1� (
) + �2 (����) (
) = 0,

(1)

and

��� (����) (�) = � (�, � (�)) , � ∈ (	, 
) ,
�1� (	) + �2 (����) (	) = 0,
�1� (
) + �2 (����) (
) = 0,

(2)

where ��� and��� are the Caputo andHadamard fractional
derivatives of orders 
 and �, respectively, 0 < 
, � ≤ 1, � :[	, 
]×R �→ R is a continuous function, 	 > 0 and��, �� ∈ R,� = 1, 2.

It can be observed that the sequential Caputo-Hadamard
and Hadamard-Caputo fractional di	erential equations in (1)
and (2) are di	erent type when 
 = 1 and � = 1, since

�
�� (�

�
��� (�)) = ��2� (�)

��2 + �� (�)
�� = � (�, � (�)) , (3)
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and

� ��� (
�
��� (�)) = ��2� (�)

��2 = � (�, � (�)) , (4)

for � ∈ (	, 
), respectively.
�e rest of the paper is arranged as follows. In Section 2,

we establish basic results that lay the foundation for de
ning a

xed point problem equivalent to the given problems (1) and
(2).�emain results, based on Banach’s contraction mapping
principle, Krasnoselskii’s 
xed point theorem, and nonlinear
alternative of Leray-Schauder type, are obtained in Section 3.
Illustrating examples are discussed in Section 4.

2. Preliminaries

In this section, we introduce some notations and de
nitions
of fractional calculus [4, 5] and present preliminary results
needed in our proofs later.

De�nition 1 (see [5]). For an at least �-times di	erentiable
function� : [	,∞) �→ R, the Caputo derivative of fractional
order � is de
ned as

���� (�) = 1
Γ (� − �) ∫�

�
(� − �)	−�−1 �(	) (�) ��,

� − 1 < � < �, � = [�] + 1,
(5)

where [�] denotes the integer part of the real number �.
De�nition 2 (see [5]). �e Riemann-Liouville fractional inte-
gral of order � of a function � : [	,∞) �→ R is de
ned as


� �� (�) = 1
Γ (�) ∫�

�

� (�)
(� − �)1−� ��, � > 0, (6)

provided the integral exists.

De�nition 3 (see [5]). For an at least �-times di	erentiable
function � : [	,∞) �→ R, the Caputo-type Hadamard
derivative of fractional order � is de
ned as

���� (�) = 1
Γ (� − �) ∫�

�
(log ��)

	−�−1 #	� (�) ��� ,
� − 1 < � < �, � = [�] + 1,

(7)

where # = �(�/��), log(⋅) = log�(⋅).
De�nition 4 (see [5]). �e Hadamard fractional integral of
order � is de
ned as

� �� (�) = 1
Γ (�) ∫�

�
(log ��)

�−1 � (�) ��� , � > 0, (8)

provided the integral exists.

Lemma 5 (see [5]). For � > 0, the general solution of the

fractional di
erential equation ���%(�) = 0 is given by

% (�) = &0 + &1 (� − 	) + ⋅ ⋅ ⋅ + &	−1 (� − 	)	−1 , (9)

where &� ∈ R, � = 0, 1, 2, . . . , � − 1 (� = [�] + 1).

In view of Lemma 5, it follows that


� � (���%) (�) = % (�) + &0 + &1 (� − 	) + ⋅ ⋅ ⋅
+ &	−1 (� − 	)	−1 , (10)

for some &� ∈ R, � = 0, 1, 2, . . . , � − 1 (� = [�] + 1).
Lemma 6 (see [23]). Let % ∈ '*	
[	, 
] or *	
[	, 
] and � ∈ C,

where -	
[	, 
] = {� : [	, 
] �→ C : #	−1�(�) ∈ -[	, 
]}.
�en, we have

� � (���) % (�) = % (�) − 	−1∑
�=0

&� (log ( �
	))
� , (11)

where &� ∈ R, � = 0, 1, 2, . . . , � − 1 (� = [�] + 1).
In order to de
ne the solution of the boundary value

problem (1), we consider the linear variant

��� (����) (�) = 4 (�) , � ∈ (	, 
) ,
�1� (	) + �2 (����) (	) = 0,
�1� (
) + �2 (����) (
) = 0,

(12)

where 4 ∈ *([	, 
],R).
Lemma 7. Let

Ω fl �1�2 − �1 (�1 (log (
/	))
�

Γ (� + 1) + �2) ̸= 0. (13)

�en, the unique solution of the separated boundary value
problem of sequential Caputo and Hadamard fractional di
er-
ential equation (12) is given by the integral equation

� (�) = �1Ω (�1 (log (�/	))
�

Γ (� + 1) − �2)� � (
� �4) (
)

+ �2Ω (�1 (log (�/	))
�

Γ (� + 1) − �2) 
� �4 (
)
+ � � (
� �4) (�) , � ∈ [	, 
] .

(14)

Proof. Taking the Riemann-Liouville fractional integral of
order 
 to the 
rst equation of (12), we get

(����) (�) = &1 + 
� �4 (�) , &1 ∈ R. (15)

Again taking the Hadamard fractional integral of order � to
the above equation, we obtain

� (�) = &2 + &1 (log (�/	))
�

Γ (� + 1) + � � (
� �4) (�) ,
&2 ∈ R.

(16)

Substituting � = 	 in (15)-(16) and applying the 
rst boundary
condition of (12), it follows that

�2&1 + �1&2 = 0. (17)
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For � = 
 in equations (15)-(16) and using the second
boundary condition of (12), it yields

&1 (�1 (log (
/	))
�

Γ (� + 1) + �2) + �1&2
= −�1� � (
� �4) (
) − �2
� �4 (
) .

(18)

Solving the linear system of (17) and (18) for 
nding two
constants &1, &2, we get

&1 = �1�1Ω � � (
� �4) (
) +
�1�2Ω 
� �4 (
) (19)

and

&2 = −�1�2Ω � � (
� �4) (
) −
�2�2Ω 
� �4 (
) . (20)

Substituting constants &1 and &2 in (16), we get the integral
equation (14). �e converse follows by direct computation.
�e proof is completed.

In the same way, we can prove the following lemma,
which concerns a linear variant of problem (2):

��� (����) (�) = 9 (�) , � ∈ (	, 
) ,
�1� (	) + �2 (����) (	) = 0,
�1� (
) + �2 (����) (
) = 0,

(21)

where 9 ∈ *([	, 
],R).
Lemma 8. Let

Ω∗ fl �1�2 − �1 (�1 (
 − 	)�
Γ (
 + 1) + �2) ̸= 0. (22)

�en, the unique solution of the separated boundary value
problem of sequential Caputo and Hadamard fractional di
er-
ential equation (21) is given by the integral equation

� (�) = �1Ω∗ (�1 (� − 	)�
Γ (
 + 1) − �2) 
� � (� �9) (
)

+ �2Ω∗ (�1 (� − 	)�
Γ (
 + 1) − �2)� �9 (
)

+ 
� � (� �9) (�) , � ∈ [	, 
] .

(23)

3. Main Results

We set some abbreviate notations for sequential Riemann-
Liouville and Hadamard fractional integrals of a function
with two variables as

� � (
� � (��)) (;) = 1
Γ (�) Γ (
)

⋅ ∫�
�
∫�
�
(log;� )

�−1 (� − ?)�−1 � (?, � (?)) �?��� ,
(24)

and


� � (� � (��)) (;) = 1
Γ (
) Γ (�)

⋅ ∫�
�
∫�
�
(; − �)�−1 (log �?)

�−1 � (?, � (?)) �?? ��,
(25)

where ; ∈ {�, 
}. Also we use this one for a single Riemann-
Liouville and Hadamard fractional integrals of orders 
 and�, respectively.

In this section, we will use 
xed point theorems to prove
the existence and uniqueness of solution for problems (1) and
(2). To accomplish our purpose, we de
ne the Banach space
C = *([	, 
],R), of all continuous functions on [	, 
] to R

endowed with the norm ‖�‖ = sup{|�(�)|, � ∈ [	, 
]}. In
addition, we de
ne the operatorK : C �→ C by

K� (�)
= �1Ω (�1 (log (�/	))

�

Γ (� + 1) − �2)� � (
� � (��)) (
)

+ �2Ω (�1 (log (�/	))
�

Γ (� + 1) − �2) 
� � (��) (
)
+ � � (
� � (��)) (�) ,

(26)

where Ω ̸= 0 is de
ned by (13) and ��(�) = �(�, �(�)). Note
that the separated boundary value problem (1) has solutions
if and only if � = K� has 
xed points.

For computational convenience we put

Ω1
= AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)� � (
� � (1)) (
)

+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))
�

Γ (� + 1) + AAAA�2AAAA) 
� � (1) (
)
+ � � (
� � (1)) (
) .

(27)

To prove the existence theorems of problem (2), we de
ne the
operatorA : C �→ C by

A� (�)
= �1Ω∗ (�1 (� − 	)�

Γ (
 + 1) − �2) 
� � (� � (��)) (
)

+ �2Ω∗ (�1 (� − 	)�
Γ (
 + 1) − �2)� � (��) (
)

+ 
� � (� � (��)) (�) .

(28)

Now, we prove the existence and uniqueness result for
problem (1). For problem (2) the proof is similar and
omitted.
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�eorem 9. Suppose that(B1) there exists a function C(�) > 0, � ∈ [	, 
], such that
AAAA� (�, �) − � (�, 4)AAAA ≤ C (�) AAAA� − 4AAAA

for all � ∈ [	, 
] and �, 4 ∈ R. (29)

If C∗Ω1 < 1, where C∗ = sup{C(�) : � ∈ [	, 
]}, then the
separated boundary value problem (1) has a unique solution
on [	, 
].
Proof. Firstly, we de
ne a ball D� as D� = {� ∈ C : ‖�‖ ≤ ?},
where the constant ? satis
es

? ≥ FΩ11 − C∗Ω1 , (30)

where F = sup{�(�, 0) : � ∈ [	, 
]}. Next, we will show that
KD� ⊂ D�. For any � ∈ D� and using the triangle inequality|��| ≤ |�� − �0| + |�0|, we have

|K� (�)| ≤
AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ � � (
� � (AAAA��AAAA)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA) 
� � (AAAA��AAAA) (
)
+ � � (
� � (AAAA��AAAA)) (�)
≤ AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ � � (
� � (AAAA�� − �0AAAA + AAAA�0AAAA)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ 
� � (AAAA�� − �0AAAA + AAAA�0AAAA) (
)
+ � � (
� � (AAAA�� − �0AAAA + AAAA�0AAAA)) (
)
≤ AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ � � (
� � (C∗? + F)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA) 
� � (C∗? + F)
⋅ (
) + � � (
� � (C∗? + F)) (
) = C∗Ω1? + FΩ1
≤ ?,

(31)

which implies thatKD� ⊂ D�. Let �, 4 ∈ D�, then
AAAAK� (�) −K4 (�)AAAA ≤

AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))
�

Γ (� + 1) + AAAA�2AAAA)
⋅ � � (
� � (AAAAA�� − ��AAAAA)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA) 
� � (AAAAA�� − ��AAAAA)
⋅ (
) + � � (
� � (AAAAA�� − ��AAAAA)) (�)
≤ AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA) C∗ HHHH� − 4HHHH
⋅ � � (
� � (1)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)C∗ HHHH� − 4HHHH
⋅ 
� � (1) (
) + C∗ HHHH� − 4HHHH� � (
� � (1)) (�)
= C∗Ω1 HHHH� − 4HHHH ,

(32)

which yields that ‖K�−K4‖ ≤ C∗Ω1‖�−4‖. SinceC∗Ω1 < 1,
we deduce that the operator K is a contraction. By Banach
contraction mapping principle the operator K has a unique

xed point, which leads that problem (1) has a unique solution
on [	, 
].
�eorem 10. Let (B1) in�eorem 9 holds. IfC∗Ω∗1 < 1, where
Ω∗1 =

AAAA�1AAAA|Ω∗| (AAAA�1AAAA (
 − 	)�
Γ (
 + 1) + AAAA�2AAAA) 
� � (� � (1)) (
)

+ AAAA�2AAAA|Ω∗| (AAAA�1AAAA (
 − 	)�
Γ (
 + 1) + AAAA�2AAAA)� � (1) (
)

+ 
� � (� � (1)) (
) ,

(33)

then the separated boundary value problem (2) has a unique
solution on [	, 
].

Our second existence result is based on Krasnoselskii’s

xed point theorem.

�eorem 11 ((Krasnoselskii’s 
xed point theorem) [24]). LetI be a closed, bounded, convex, and nonempty subset of a
Banach space -. Let ', D be operators such that

(a) '� + D4 ∈ I where �, 4 ∈ I;
(b) ' is compact and continuous;

(c) D is a contraction mapping.

�en there exists 9 ∈ I such that 9 = '9 + D9.
�eorem 12. Let� : [	, 
]×R �→ R be a continuous function
satisfying (B1) in �eorem 9. In addition, assume that

(B2) |�(�, �)| ≤ J(�), ∀(�, �) ∈ [	, 
] × R and J ∈*([	, 
],R+).
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If

C∗ [� � (
� � (1)) (
)] < 1, (34)

then the separated boundary value problem (1) has at least one
solution on [	, 
].
Proof. Let D� = {� ∈ C : ‖�‖ ≤ N}, where a constant N
satisfying N ≥ J∗Ω1 and J∗ = sup{J(�) : � ∈ [	, 
]}. We
decompose the operator K into two operators K1 and K2
on D� with
K1� (�)

= �1Ω (�1 (log (�/	))
�

Γ (� + 1) − �2)� � (
� � (��)) (
)

+ �2Ω (�1 (log (�/	))
�

Γ (� + 1) − �2) 
� � (��) (
) ,
� ∈ [	, 
] ,

K2� (�) = � � (
� � (��)) (�) , � ∈ [	, 
] .

(35)

Note that the ball D� is a closed, bounded, and convex subset
of the Banach spaceC.

Now, we will show that K1� + K24 ∈ D� for satisfying
condition (a) of �eorem 11. Setting �, 4 ∈ D�, then we have

AAAAK1� (�) + K24 (�)AAAA
≤ AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ � � (
� � (AAAA��AAAA)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA) 
� � (AAAA��AAAA) (
)
+ � �
� � (AAAAA��AAAAA) (�)
≤ J∗ (AAAA�1�1AAAA|Ω|

(log (
/	))�
Γ (� + 1) + AAAA�1�2AAAA|Ω| )� �
� � (1)

⋅ (
) + J∗ (AAAA�1�2AAAA|Ω|
(log (
/	))�
Γ (� + 1) + AAAA�2�2AAAA|Ω| ) 
� � (1)

⋅ (
) + J∗� � (
� � (1)) (
) = J∗Ω1 ≤ N.

(36)

�is means that K1� + K24 ∈ D�. To prove that K2 is a
contraction mapping, for �, 4 ∈ D�, we have

HHHHK2� −K24HHHH ≤ � � (
� � (AAAAA�� − ��AAAAA)) (
)
≤ C∗ [� � (
� � (1)) (
)] HHHH� − 4HHHH

(37)

by condition (B1), which is a contraction, by (34). �erefore,
the condition (c) of�eorem 11 is satis
ed. Next we will show
that the operatorK1 is compact and continuous. By using the

continuity of the function � on [	, 
] × R, we can conclude
that the operatorK1 is continuous. For � ∈ D�, it follows thatHHHHK1�HHHH ≤ J∗Ω2, (38)

where

Ω2
= AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)� � (
� � (1)) (
)

+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))
�

Γ (� + 1) + AAAA�2AAAA) 
� � (1) (
) ,
(39)

which implies that the setK1D� is uniformly bounded. Now
we are going to prove that K1D� is equicontinuous. For O1,O2 ∈ [	, 
] such that O1 < O2 and for � ∈ D�, we haveAAAAK1� (O2) −K1� (O1)AAAA

≤ AAAA�1�1AAAA|Ω| Γ (� + 1)
AAAAAAA(log (

O2	 ))� − (log (O1	 )�)AAAAAAA
⋅ � � (
� � (��)) (
)
+ AAAA�1�2AAAA|Ω| Γ (� + 1)

AAAAAAA(log (
O2	 ))� − (log (O1	 )�)AAAAAAA

⋅ 
� � (��) (
)
≤ J∗Ω2 AAAAAAA(log (

O2	 ))� − (log (O1	 )�)AAAAAAA ,

(40)

which is independent of � and also tends to zero as O1 �→O2. Hence the set K1D� is equicontinuous. �erefore the set
K1D� is relatively compact. By applying the Arzelá-Ascoli
theorem, the operator K1 is compact on D�. �erefore the
operatorsK1 andK2 satisfy the assumptions of �eorem 11.
By the conclusion of �eorem 11, we get that the separated
boundary value problem (1) has at least one solution on [	, 
].
�is completes the proof.

�eorem 13. Assume that (B1) and (B2) are ful�lled. IfC∗[
� �(� �(1))(
)] < 1, then the separated boundary value
problem (2) has at least one solution on [	, 
].

�e above theorem can be proved by applying Krasnosel-
skii’s 
xed point theorem to the operatorA de
ned in (28).

Remark 14. If the operators K1 and K2 are interchanged,
then we have the existence results as follows:

(i) IfC∗Ω2 < 1, then problem (1) has at least one solution
on [	, 
].

(ii) If C∗Ω∗2 < 1, then problem (2) has at least one
solution on [	, 
], where

Ω∗2 =
AAAA�1AAAA|Ω∗| (AAAA�1AAAA (
 − 	)�

Γ (
 + 1) + AAAA�2AAAA) 
� � (� � (1)) (
)

+ AAAA�2AAAA|Ω∗| (AAAA�1AAAA (
 − 	)�
Γ (
 + 1) + AAAA�2AAAA)� � (1) (
) .

(41)



6 Journal of Function Spaces

However, in application to existence theory, the computation

of values � �(
� �(1))(
) and 
� �(� �(1))(
) is easier thanΩ2 and Ω∗2 , respectively.
�e third existence result will be proved by applying

Leray-Schauder nonlinear alternative.

�eorem 15 ((nonlinear alternative for single valued maps)
[25]). Let P be a Banach space, * a closed, convex subset of

P,Q an open subset of*, and 0 ∈ Q. Suppose thatD : Q �→ *
is a continuous; compact (that is,D(Q) is a relatively compact
subset of *) map. �en either

(i) D has a �xed point inQ or

(ii) there is a � ∈ RQ (the boundary of Q in *) and ] ∈(0, 1) with � = ]D(�).
Let us state and prove the existence theorem.

�eorem 16. Suppose that
(B3) there exist a continuous nondecreasing function S :[0,∞) �→ (0,∞) and a function T ∈ *([	, 
],R+) such that

AAAA� (�, �)AAAA ≤ T (�) S (|�|) for each (�, �) ∈ [	, 
] ×R; (42)

(B4) there exists a constant V > 0 such that
VHHHHTHHHH S (V)Ω1 > 1. (43)

�en the separated boundary value problem (1) has at least one
solution on [	, 
].
Proof. Let the operator K be de
ned in (26). Let us prove
that the operatorKmaps bounded sets (balls) into bounded
sets in C. For a constant W > 0, we de
ne a bounded ballD� = {� ∈ C : ‖�‖ ≤ W}. �en for � ∈ [	, 
], one has

|K� (�)| ≤
AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ � � (
� � (AAAA��AAAA)) (
)
+ AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA) 
� � (AAAA��AAAA) (
)
+ � � (
� � (AAAA��AAAA)) (�) ≤ HHHHTHHHH S (|�|)
⋅ AAAA�1AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)� � (
� � (1)) (
)

+ HHHHTHHHH S (|�|)
AAAA�2AAAA|Ω| (AAAA�1AAAA (log (
/	))

�

Γ (� + 1) + AAAA�2AAAA)
⋅ 
� � (1) (
) + HHHHTHHHH S (|�|)� � (
� � (1)) (
) ≤ HHHHTHHHH
⋅ S (W)Ω1,

(44)

which implies that

‖K�‖ ≤ HHHHTHHHH S (W)Ω1. (45)

A�er that we will show that the operator K maps bounded
sets into equicontinuous sets ofC. Let O1, O2 be any two points
in [	, 
] such that O1 < O2. �en for � ∈ D�, we have

AAAA(K�) (O2) − (K�) (O1)AAAA
≤ AAAA�1�1AAAA|Ω| Γ (� + 1)

AAAAAAA(log (
O2	 ))� − (log (O1	 ))�AAAAAAA

⋅ � � (
� � (AAAA��AAAA)) (
)
+ AAAA�1�2AAAA|Ω| Γ (� + 1)

AAAAAAA(log (
O2	 ))� − (log (O1	 ))�AAAAAAA

⋅ 
� � (AAAA��AAAA) (
)
+ AAAAA� � (
� � (��)) (O2) − � � (
� � (��)) (O1)AAAAA
≤ HHHHTHHHH S (W) AAAA�1�1AAAA|Ω| Γ (� + 1)

AAAAAAA(log (
O2	 ))� − (log (O1	 ))�AAAAAAA

⋅ � � (
� � (1)) (
)
+ HHHHTHHHH S (W) AAAA�1�2AAAA|Ω| Γ (� + 1)

AAAAAAA(log (
O2	 ))� − (log (O1	 ))�AAAAAAA

⋅ 
� � (1) (
) + HHHHTHHHH S (W)
⋅ AAAAA� � (
� � (1)) (O2) − � � (
� � (1)) (O1)AAAAA .

(46)

As O1 �→ O2, the right-hand side of the above inequality
tends to zero independently of � ∈ D�. Hence, by applying
the Arzelá-Ascoli theorem, the operator K : C �→ C is
completely continuous.

�e result will be followed from the Leray-Schauder
nonlinear alternative if we prove the boundedness of the set
of the solutions to equation � = ]K� for ] ∈ (0, 1). Let � be a
solution of the operator equation� = K�.�en, for � ∈ [	, 
],
by directly computation, we have

|� (�)| ≤ HHHHTHHHH S (‖�‖)Ω1, (47)

which leads to

‖�‖HHHHTHHHH S (‖�‖)Ω1 ≤ 1. (48)

From the assumption (B4), there exists a positive constant V
such that ‖�‖ ̸= V. Let us set

Q = {� ∈ C : ‖�‖ < V} . (49)

It is easy to see that the operator K : Q �→ C is continuous
and completely continuous. From the choice of Q, there is
no � ∈ RQ such that � = ]K� for some ] ∈ (0, 1).
�erefore, by the nonlinear alternative of Leray-Schauder
type (�eorem 15), we deduce that the operatorK has a 
xed

point � ∈ Q which is a solution of problem (1). �e proof is
completed.
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�eorem 17. Assume that the condition (B3) in�eorem 16 is
satis�ed. If a positive constant V1 satisfying

V1HHHHTHHHH S (V1)Ω∗1 > 1, (50)

then the separated boundary value problem (2) has at least one
solution on [	, 
].

�e next two special cases can be obtained by settingT(�) = 1, � ∈ [	, 
] and S(4) = P4 + X, 4 ∈ [0,∞) with
two constants P ≥ 0, X > 0.
Corollary 18. Let � : [	, 
] × R �→ R be a continuous
function satisfying |�(�, �)| ≤ P|�| + X, for all � ∈ R. �en

(i) ifPΩ1 < 1, then the separated boundary value problem
(1) has at least one solution on [	, 
];

(ii) ifPΩ∗1 < 1, then the separated boundary value problem
(2) has at least one solution on [	, 
].

4. Examples

In this section, we present some examples to illustrate our
results.

Example 1. Consider the following sequential Caputo-
Hadamard fractional di	erential equations with separated
boundary conditions

��1/2 (��1/3�) (�) = � (�, � (�)) ,
� ∈ (1

2 ,
5
2) ,

1
4� (1

2) + 3
5 (��1/3�) (1

2) = 0,
5
8� (5

2) + 7
9 (��1/3�) (5

2) = 0.

(51)

Here 
 = 1/2, � = 1/3, 	 = 1/2, 
 = 5/2, �1 = 1/4,�2 = 3/5, �1 = 5/8, and �2 = 7/9. From given information,

we 
nd that Ω = −0.0244992447, � 1/3(
� 1/2(1))(5/2) =
1.622871815, and 
� 1/2(1)(5/2) = 1.595769121 which yieldΩ1 = 87.06444876.

(i) Let � : [1/2, 5/2] ×R �→ R with

� (�, �) = cos2 b�
2 ((� − 1/2) + 90) (

�2 + |�|
|�| + 1 ) + 1

2 . (52)

It follows that

AAAA� (�, �) − � (�, 4)AAAA ≤ cos2 b�
((� − 1/2) + 90) AAAA� − 4AAAA

fl C (�) AAAA� − 4AAAA .
(53)

�en condition (B1) is satis
edwithC∗ = 1/90.�usC∗Ω1 =0.9673827640 < 1. Hence, by �eorem 9, problem (51) with
(52) has a unique solution on [1/2, 5/2].

(ii) Given � : [1/2, 5/2] × R �→ R by

� (�, �) = cos2 b�
2 ((� − 1/2) + 2) (

�2 + |�|
|�| + 1 ) + 1

2. (54)

Observe that the function � de
ned in (54) satis
es (B1)
with C∗ = 1/2. But the �eorem 9 can not be applied
to this case because the value of C∗Ω1 = 43.53222438 >1. However, by the bene
t of �eorem 12, we have

C∗[� 1/3(
� 1/2(1))(5/2)] = 0.8114359075 < 1. By the
conclusion of �eorem 12, problem (51) with (54) has at least
one solution on [1/2, 5/2].
Example 2. Consider the following sequential Hadamard-
Caputo fractional di	erential equations with separated
boundary conditions

��3/4 (��2/5�) (�) = � (�, � (�)) ,
� ∈ (1

8 ,
7
8) ,

3
11� (1

8) + b
4 (��2/5�) (1

8) = 0,
√2
9 � (7

8) + 2
13 (��2/5�) (7

8) = 0.

(55)

Here � = 3/4, 
 = 2/5, 	 = 1/8, 
 = 7/8, �1 = 3/11, �2 =b/4, �1 = √2/9, and �2 = 2/13. From above information, we

can 
nd that Ω∗ = 0.03840540910, 
� 2/5(� 3/4(1))(7/8) =
1.526044488, and � 3/4(1)(7/8) = 1.792656288which can be
computed the value of Ω∗1 = 15.74791264.

(i) �e function � : [1/8, 7/8] ×R �→ R is de
ned by

� (�, �) = 8 sin4 b�
263 + 8� ( �6

�4 + 1 + 1) . (56)

Setting T(�) = (8 sin4 b�/(263 + 8�)) and S(4) = 42 + 1,
we see that the condition (B3) of �eorem 16 is satis
ed
with the above function �(�, �). In addition, we can 
nd
that ‖T‖ = 1/33. �en there exists a constant V such thatV ∈ (0.7350333746, 1.360482441) satisfying inequality (50).
�erefore, applying �eorem 17, problem (55) with (56) has
at least one solution on [1/8, 7/8].

(ii) Let � : [1/8, 7/8] ×R �→ R by

� (�, �) = d−(�−1/8)2
16 ( �8

|�|7 + 1) + 3
4 (1 + �2) . (57)

It is easy to see that the function �(�, �) de
ned in (57) can be
expressed as |�(�, �)| ≤ (1/16)|�| + (3/4). �en (1/16)Ω∗1 =0.9842445400 < 1. Using (ii) of the Corollary 18, the problem
(55) with (57) has at least one solution on [1/8, 7/8].
Data Availability

No data were used to support this study.



8 Journal of Function Spaces

Conflicts of Interest

�e authors declare that there are no con�icts of interest
regarding the publication of this paper.

Acknowledgments

�is research was funded by King Mongkut’s University of
Technology North Bangkok, Contract no. KMUTNB-60-
ART-105.

References

[1] K. Diethelm, �e Analysis of Fractional Di
erential Equations,
vol. 2004 of Lecture Notes in Mathematics, Springer, Berlin,
Germany, 2010.

[2] Y. Zhou,Basic�eory of Fractional Di
erential Equations,World
Scienti
c, Singapore, 2014.

[3] K. S.Miller and B. Ross,An Introduction to the Fractional Calcu-
lus and Fractional Di
erential Equations, A Wiley-Interscience
Publication, John Wiley & Sons, New York, NY, USA, 1993.

[4] I. Podlubny, Fractional Di
erential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, �eory and
Applications of Fractional Di
erential Equations, New York, NY,
USA, Elsevier, 2006.

[6] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional
Integrals and Derivatives, �eory and Applications, Gordon and
Breach, Yverdon, Switzerland, 1993.

[7] J. R. Graef, L. Kong, and Q. Kong, “Application of the mixed
monotone operator method to fractional boundary value prob-
lems,” Fractional Di
erential Calculus, vol. 2, no. 1, pp. 554–567,
2011.

[8] Z. Bai and W. Sun, “Existence and multiplicity of positive
solutions for singular fractional boundary value problems,”
Computers & Mathematics with Applications, vol. 63, no. 9, pp.
1369–1381, 2012.

[9] S. K. Ntouyas, J. Tariboon, and W. Sudsutad, “Boundary value
problems for Riemann-Liouville fractional di	erential inclu-
sions with nonlocal Hadamard fractional integral conditions,”
Mediterranean Journal of Mathematics, vol. 13, no. 3, pp. 939–
954, 2016.

[10] B. Ahmad, A. Alsaedi, S. K. Ntouyas, and J. Tariboon,
Hadamard-type fractional di
erential equations, inclusions and
inequalities, Springer, Cham, 2017.

[11] T. A. Maraaba, F. Jarad, and D. Baleanu, “On the existence
and the uniqueness theorem for fractional di	erential equations
with bounded delay within Caputo derivatives,” Science China
Mathematics, vol. 51, no. 10, pp. 1775–1786, 2008.

[12] T. Abdeljawad, F. Jarad, andD. Baleanu, “Existence and unique-
ness theorem for a class of delay di	erential equations with le�
and right Caputo derivatives,” J. Math. Phys, vol. 49, Article ID
083507, p. 10, 2008.

[13] Y. Adjabi, F. Jarad, D. Baleanu, and T. Abdeljawad, “On Cauchy
problems with CAPuto Hadamard fractional derivatives,” Jour-
nal of Computational Analysis and Applications, vol. 21, no. 4,
pp. 661–681, 2016.

[14] Y. Y. Gambo, R. Ameen, F. Jarad, and T. Abdeljawad, “Existence
and uniqueness of solutions to fractional di	erential equations

in the frame of generalized Caputo fractional derivatives,”
Advances in Di
erence Equations, Paper No. 134, 13 pages, 2018.

[15] R. P. Agarwal, B. Ahmad, and A. Alsaedi, “Fractional-order
di	erential equations with anti-periodic boundary conditions:
a survey,” Boundary Value Problems, Paper No. 173, 27 pages,
2017.

[16] M. Klimek, “Sequential fractional di	erential equations with
Hadamard derivative,” Communications in Nonlinear Science
and Numerical Simulation, vol. 16, no. 12, pp. 4689–4697, 2011.

[17] C. Bai, “Impulsive periodic boundary value problems for
fractional di	erential equation involving Riemann-Liouville
sequential fractional derivative,” Journal of Mathematical Anal-
ysis and Applications, vol. 384, no. 2, pp. 211–231, 2011.

[18] B. Ahmad, S. K. Ntouyas, R. P. Agarwal, and A. Alsaedi,
“Existence results for sequential fractional integro-di	erential
equations with nonlocal multi-point and strip conditions,”
Boundary Value Problems, vol. 2016, no. article 205, 2016.

[19] A. Alsaedi, S. K. Ntouyas, R. P. Agarwal, and B. Ahmad, “On
Caputo type sequential fractional di	erential equations with
nonlocal integral boundary conditions,” Advances in Di
erence
Equations, vol. 2015, article 33, 2015.

[20] B. Ahmad and S. K. Ntouyas, “Existence results for a cou-
pled system of Caputo type sequential fractional di	erential
equations with nonlocal integral boundary conditions,” Applied
Mathematics and Computation, vol. 266, pp. 615–622, 2015.

[21] B. Ahmad and J. J. Nieto, “Boundary Value Problems for a Class
of Sequential Integrodi	erential Equations of FractionalOrder,”
journal of function spaces and applications, vol. 2013, Article ID
149659, 8 pages, 2013.

[22] B. Ahmad and S. K. Ntouyas, “On Higher-Order Sequential
Fractional Di	erential Inclusions with Nonlocal �ree-Point
Boundary Conditions,” Abstract and Applied Analysis, vol. 2014,
Article ID 659405, 10 pages, 2014.

[23] F. Jarad, T. Abdeljawad, and D. Baleanu, “Caputo-type modi-

cation of the Hadamard fractional derivatives,” Advances in
Di
erence Equations, vol. 2012, article 142, 2012.

[24] M. A. Krasnoselskii, “Two remarks on the method of successive
approximations,”Uspekhi Matematicheskikh Nauk, vol. 10, no. 1,
pp. 123–127, 1955.

[25] A. Granas and J. Dugundji, Fixed Point �eory and Applications,
Springer, New York, NY, USA, 2003.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

