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Abstract. In many cases the security of a cryptographic scheme based on computa-
tional Diffie–Hellman does in fact rely on the hardness of the decision Diffie–Hellman
problem. In this paper we construct concrete examples of groups where the stronger
hypothesis, hardness of the decision Diffie–Hellman problem, no longer holds, while
the weaker hypothesis, hardness of computational Diffie–Hellman, is equivalent to the
hardness of the discrete logarithm problem and still seems to be a reasonable hypothesis.
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1. Introduction

The discrete logarithm (DL) problem is, together with factorization, one of the main
problems upon which public-key cryptosystems are built. Thus, efficiently computable
groups where the DL problem is hard are very important in cryptography. However,
proving the hardness of the DL problem in any group is a difficult open question. As
a consequence, in order to decide if a group can be used in cryptography, one usually
checks whether known algorithms can break the DL problem in that group. This is done
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by taking into account two classes of algorithms, generic algorithms which works for any
group and do not take advantage of the specific representation and nongeneric algorithms
whose scopes are limited to specific groups. The complexity of generic algorithms for
computing discrete logarithms in a group grows as the square root of the largest prime
factor of the cardinality. One well-known algorithm with such a complexity is Pollard’s
Rho method. Nongeneric algorithms, such as index calculus, need to be evaluated on a
case by case basis. However, taking into account the hardness of the DL problem is not
usually sufficient. Indeed, the proofs of security of many cryptosystems rely on either
the computational Diffie–Hellman CDH problem or the decision Diffie–Hellman DDH
problem. It is well known that these two problems are no harder than the DL problem
itself. Moreover, there are known cases where DDH is easy while DL is still presumably
hard. Indeed, whenever the group size has a small prime factor, computing discrete
logarithms modulo this factor is easy. Of course, this does not help to compute the rest
of the discrete logarithm, however, it suffices to decide DDH with probability better than
1/2. A good survey about these three problems and their applications in cryptography
is given in [3]. Moreover, Shoup proved in [15] that in the generic group model (i.e., in
groups where no nongeneric algorithms may exist), no algorithm faster than the known
square-root approach can exist for any of the three problems DL, CDH, and DDH.

In 1994 Maurer used a variation of the elliptic curve factoring method to give strong
evidence that CDH and DL are probably equivalent (see [9]). This approach was formal-
ized by Maurer and Wolf in [10] and finally appeared as a journal version in [11]. More
recently, a class of groups where DDH becomes easy was used to construct cryptosys-
tems. This class of groups is based on elliptic curves and pairings. It was used in [5] to
construct a tripartite Diffie–Hellman protocol and it perfectly fits in the framework of
gap problems as introduced in [14]. Our goal in this paper is to merge the two approaches
and to construct a family of groups where CDH and DL are equivalent and presumably
hard, while DDH is provably easy. Under the hypothesis that DL is indeed hard in our
family of groups, such a construction separates CDH from DDH. Moreover, we propose
to build this family in a way that does not rely on the unproven smoothness assumption
from [11], but on known properties of the density of prime numbers in arithmetic se-
ries. In order to show that the construction is realistic, we give, in Section 4, a concrete
example of such groups.

2. Notations and Background Ideas

2.1. Diffie–Hellman and Related Assumptions

When doing cryptography using discrete logarithms in a group G, there are three related
complexity assumptions on which the security usually relies. We now describe these
three problems for an additive group (G,+). For simplicity, we assume that G has prime
order.

– The DL problem. The DL (discrete logarithm) problem can be stated as follows.
Given two group elements g and h, find an integer n, such that h = ng whenever
such an integer exists.
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– The CDH problem. The CDH (computational Diffie–Hellman) problem can be
stated as follows. Given three group elements g, ag, and bg, find an element h of
G such that h = (ab)g.

– The DDH problem. The DDH (decision Diffie–Hellman) problem can be stated
as follows. Given four group elements g, ag, bg, and cg, decide whether c = ab
(modulo the order of g).

Clearly, DDH is no harder than CDH and CDH is no harder than DL. However, in the
general case, we do not know more than that about the relations between these three
problems. The goal of this paper is to separate DDH from CDH, i.e., to describe a group
where DDH becomes easy while CDH becomes equivalent to DL and presumably hard.
Indeed, we want to avoid the trivial cases where the three problems DL, CDH, and DDH
are easy, such as the additive group of a finite field.

2.2. The Case of Elliptic Curves

Among the groups that populate cryptosystems, elliptic curves are frequently encoun-
tered. An elliptic curve defined over a finite field Fps forms a group G. In general, no
nongeneric algorithm is known for solving the DL problem on elliptic curves. However,
in some specific cases, there exists a fast algorithm that moves the DL problem from
the curve to the multiplicative group of an extension Fprs of its field of definition. This
algorithm makes use of bilinear functions called pairings.

These functions map pairs of �-torsion points (P, Q) to the �-th roots of unity 〈P, Q〉.
The bilinearity simply means that

〈a P, bQ〉 = 〈P, Q〉ab.

These pairings take their values in an extensionFprs of the field of definition of the elliptic
curve. Two constructions of pairing are frequently encountered. The first construction,
called the Weil pairing, was introduced in cryptography in [12] to show that the DL
problem can be transported from a supersingular curve over a finite field to a small
extension of this field. The second construction, called the Tate pairing, was proposed
in [4] as a more efficient alternative to the Weil pairing.

The pairings can be defined for all elliptic curves. However, they can be efficiently
computed only when r is small enough, by using an algorithm which was originally
proposed by Miller in [13]. It is known that a pairing can be defined in an extension of
degree r , where r is the smallest integer such that � divides prs−1.The easiest case, often
encountered in pairing-based applications, is the case of supersingular curves, where
r = 2 in large characteristic and can go up to 6 in small characteristic (the maximum
occurs for curves in characteristic 3). In recent years pairing-based cryptography has
been a fast growing new field; a survey of this growth can be found in [6].

2.3. Where CDH and DL Become Equivalent

In [9] the relation between DL and CDH in groups of known order was studied. The main
result gives conditions for the equivalence of the two problems when the factorization
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of the group order is known. For a group with prime order, the theorem can be restated
as follows:

Theorem 1. Let G be a (cyclic) group of prime order q . If E is an elliptic curve
defined over Fq whose order O is B-smooth for some smoothness bound B, then dis-
crete logarithms in G can be computed using O(log2 q) calls to a DH-oracle and
O((B/log(B)) log2 q) group operations.

We recall that a number is said to be B-smooth when all its prime factor are no larger
than B.

In [9] and in the related papers [10] and [11] the existence of a good elliptic curve
satisfying the condition of the theorem was considered. However, all the general state-
ments are conjectural and depend on the existence of sufficiently smooth integers near
q . Moreover, even if such a number O exists near q, constructing a curve over Fq with
cardinality O is a hard problem and thus the theorem does not lead to an effective algo-
rithm proving the equivalence of DL and CDH. However, if a family of groups is given
together with their auxiliary curves (as in Theorem 1), we can use the result of Maurer
and Wolf to prove polynomial-time equivalence between DL and CDH; assuming that
the smoothness bound B is polynomial in log q. We use this fact in Section 3.

2.4. Where DDH Becomes Easy

Let G be the group of prime order � generated by an �-torsion point P of an elliptic curve.
When considering the DDH problem in this group, it is natural to view pairings as tools
to solve this problem. Indeed, whenever (P, a P, bP, cP) is a decision Diffie–Hellman
instance, we have

〈a P, bP〉 = 〈P, P〉ab,

〈P, cP〉 = 〈P, P〉c.

We known that 〈P, P〉 is either 1 or a primitive �-th root of unity. In the first case the
pairing does not help to solve DDH. However, in the second case we know that c = ab
if and only if 〈a P, bP〉 = 〈P, cP〉. Thus, whenever 〈P, P〉 �= 1 computing DDH is
easy. However, the known properties of pairings and more precisely the nondegeneracy
properties are not sufficient to prove 〈P, P〉 �= 1. With the Weil pairing, the situation is
even worse, since the definition of this pairing implies that 〈P, P〉 is always equal to 1.
How can we construct a pairing with a strong nondegeneracy property 〈P, P〉 �= 1?

The case of supersingular curves. A first construction of curves with a pairing and
a point P such that 〈P, P〉 �= 1 involves supersingular curves. With a supersingular
curve defined over Fp, the properties of the usual Weil and Tate pairing imply that
any �-torsion point P with coordinates in Fp satisfies 〈P, P〉 = 1. However, Verheul
proposed in [16] to use some special endomorphisms that he calls distortions to build
modified pairings. These distortions map points defined over the ground field to points
defined over an extension field. For such an endomorphism � we get the nice property
〈P,�(P)〉 �= 1. As a consequence, we can use the modified pairing 〈·,�(·)〉 to solve
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Table 1. Distortions in some supersingular curves (p > 3).

Field Curve Morphism Conditions Group order

Fp y2 = x3 + ax (x, y) 	→ (−x, iy) p ≡ 3 (mod 4) p+ 1

i2 = −1

Fp y2 = x3 + a (x, y) 	→ (ζ x, y) p ≡ 2 (mod 3) p+ 1

ζ 3 = 1

Fp2 y2 = x3 + a (x, y) 	→
(
ω

x p

r (2p−1)/3
,

y p

r p−1

)
p ≡ 2 (mod 3) p2 − p + 1

a �∈ Fp r2 = a, r ∈ Fp2

ω3 = r, ω ∈ Fp6

DDH in the group generated by P . Table 1 describes some distortions � for frequently
encountered supersingular curves over finite fields.

Trace 2 curves. Another construction of curves with a pairing and a point P such that
〈P, P〉 �= 1 was mentioned without proof in [5]. It involves trace 2 curves, i.e., curves
with p − 1 points. Assume that we are given a trace 2 curve defined over Fp, with a
large prime � dividing p−1 such that �2 does not divide p−1. In that case the �-torsion
contains exactly � points that are defined over Fp, the rest of the �-torsion being in some
extension of Fp. As a consequence, there exists an �-torsion point P that generates the
subgroup of the �-torsion defined over Fp. According to the main theorem in [4], the
Tate pairing is a surjective map. This implies that there exist two �-torsion points Q and
R such that 〈Q, R〉 �= 1. Since P generates the subgroup of �-torsion points defined
over Fp, we can write Q = a P and R = bP . As a consequence, we conclude that
〈P, P〉 �= 1.

However, constructing such curves is an open problem. Indeed, the only known method
to build curves of trace 2 efficiently is by complex multiplication techniques [1], [7]. Yet,
with this construction p−1 is necessarily equal to dn2 where d is a small number. Thus,
�2 divides p − 1 and we cannot guarantee that the �-torsion has exactly � points. When
�2 points of �-torsion are present, the relation 〈P, P〉 �= 1 will not hold for all (nonzero)
�-torsion points. However, since the Tate pairing is nondegenerate, it can be shown that
when the Tate really differs from the Weil pairing, then among the � + 1 subgroups of
order �, at most two will contain points which are self-degenerate. First, note that the
Tate pairing can be written as a product of a symmetric and an antisymmetric pairing.
The symmetric pairing S is

S(P, Q) = (〈P, Q〉 · 〈Q, P〉)1/2

and the antisymmetric pairing A is

A(P, Q) =
( 〈P, Q〉
〈Q, P〉

)1/2

.

Note that since � is an odd prime, the above square roots are well defined in the group
of �-th roots of unity. Moreover, the antisymmetric pairing is the Weil pairing raised to
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some constant power. Assume that the Tate pairing itself is not antisymmetric, then S is
nondegenerate and symmetric. Moreover, for any point P , we have 〈P, P〉 = S(P, P).
Thus, without loss of generality, to analyze the behavior of the Tate pairing on single
point evaluation, we can assume that the Tate pairing is symmetric.

With this hypothesis in mind, assume that P and Q are two linearly independent
�-torsion points. Then all �-torsion points can be expressed as R = a P + bQ. By
bilinearity and symmetry of the pairing, we see that

log(〈R, R〉) = a2 log(〈P, P〉)+ 2ab log(〈P, Q〉)+ b2 log(〈Q, Q〉),

where log is the discrete logarithm in the finite field. Thus, log(〈R, R〉) can be expressed
as a homogeneous polynomial in a and b of degree at most two. Thanks to the nonde-
generacy of the pairing, this polynomial is nonzero. Therefore, the polynomial has at
most two homogeneous roots. Thus, at most two of the �+ 1 possible subgroups can be
self-degenerate.

3. A Family of Groups that Separate CDH and DDH

In this section we merge the ideas from Sections 2.3 and 2.4, in order to construct groups
where the DDH problem is easy and where CDH and DL are provably equivalent.
Moreover, the groups are such that DL is presumably hard. The trick is to use a family
of elliptic curves that have a single point pairing as in Section 2.4, in a way that allows
us to exhibit a good auxiliary curve as explained in Section 2.3.

Since we use supersingular curves in this construction, the technique from [12] that
transports the discrete logarithm from the main elliptic curve to Fp2 can be applied. This
means that the best known algorithm for the computation of discrete logarithms on the
curve will be subexponential in size p2. With this in mind, we can either choose to use a
relatively small q to balance the runtime of generic and nongeneric algorithms or use a
value of q near p. For simplicity of exposition, we choose the latter possibility. However,
the reader should keep in mind that in practical applications it is probably better to choose
q much smaller than p.

The first step is to choose a size parameter B. Then we randomly pick prime numbers
smaller than B and multiply them together until their product ω0 becomes larger than
2B and thus lies in the interval [2B, B · 2B]. Let ω = 3ω0 and search for the smallest
prime q in the arithmetic sequences kω − 1. Once q is found, search for the smallest
prime p in the arithmeric sequence 4lq − 1. Assume for the moment that k and l are
smaller than B. Then, since p ≡ 3 (mod 4), the elliptic curve defined by the equation
y2 = x3 + x over Fp is supersingular. It defines a group of cardinality p + 1 = 4lq . In
this group the DL problem reduces to the DL problem in the subgroup Gq of order q.
Indeed, computing DL in the subgroup of order 4l can be done in polynomial time in p,
since 4l is of the order of the logarithm of p. Since q2 does not divide p + 1, we know
from Section 2.4 that the DDH problem is easy in Gq .

Moreover, since q ≡ 2 (mod 3), the elliptic curve y2 = x3+1 overFq is supersingular
and has order q + 1 = kω. We can check that q + 1 is B-smooth, with B of the order of
log(q). As a consequence, we can use the result of Maurer and Wolf to get a polynomial
time reduction between the DL and the CDH problems in Gq .
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Note that as it is stated this construction is heuristic, since we did not prove that k and l
are small enough. However, the repartition of prime numbers in arithmetic sequences and,
according to Dirichlet’s theorem, when a and b are coprime, means there are infinitely
many primes in the sequence a+b ·k. Moreover, the density of primes in these sequences
has been well studied and the above sequence asymptotically contains n/(ϕ(b) log(n))
primes. Thanks to this result, we expect k and l to be polynomial in the size of the
numbers we are generating. Thus, our generation algorithm is efficient.

4. Examples

In this section we give concrete examples of the construction from the previous section, in
the range of interest of cryptographic groups, i.e., with a prime p of more than 1024 bits.
With this choice, the discrete logarithm algorithm of Menezes et al. from [12] is in term
of performance roughly equivalent to the factorization of a 2048-bit number. While much
faster than generic algorithms, this is clearly out of reach.

Let ω be the following 1025-bit number:

ω = 28614152364758670754979783444264950724447325424621817219022377

98118285353898731383055715293731110481311224301068506150248137

70577172500713174603375895936535479551488189551415389394380573

34010503210028199274963755950022335547173968127510867339122042

4646740707183462605944682323813171989151636937749129493684324

= 22 · 33 · 7 · 113 · 172 · 19 · 23 · 31 · 372 · 43 · 53 · 67 · 71 · 732 · 832 · 1073 · 113

· 131 · 137 · 139 · 151 · 1572 · 163 · 167 · 173 · 1792 · 191 · 193 · 2273 · 2292

· 239 · 2412 · 251 · 257 · 269 · 2812 · 293 · 307 · 311 · 313 · 317 · 3373 · 347 · 353

· 367 · 401 · 409 · 4313 · 4332 · 443 · 4572 · 4612 · 463 · 467 · 487 · 5032 · 521

· 523 · 541 · 547 · 557 · 571 · 587 · 593 · 599 · 6074 · 6132 · 641 · 6532 · 659 · 673

· 6772 · 733 · 739 · 743 · 769 · 7872 · 8092 · 821 · 829 · 839 · 853 · 857 · 863 · 877

· 8812 · 883 · 911 · 919 · 9372 · 947 · 9532 · 997

From ω, we can now compute q = 90 ·ω−1 and p = 4 ·10 ·q−1. We can check that
p and q are primes and verify the conditions of the construction proposed in Section 3.
These numbers were generated using the following GP-PARI code (see [2]):

w=3;while(w<2ˆ1024,w=w*prime(random(168)+1))
k=1;while((isprime(k*w-1))==0,k=k+1);print("k=",k);q=k*w-1
l=1;while(((isprime(4*l*q-1))==0),l=l+1);
print("l=",l);p=4*l*q-1

Experiments show that this code usually runs in a minute or less (more precisely 1000
experiments on a Pentium II at 450 Mhz took 760 minutes) and frequently gives values
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of k and l under 1000. Among our 1000 experiments, 12 values of k and 60 values of
l were above 1000. No value of k was greater than 2000 and no value of l was greater
than 3000.

Therefore, the theoretical construction proposed in Section 3 leads to practical in-
stances of groups that separate DDH and CDH (assuming that DL is hard in our groups).

5. Conclusion

The above construction of reasonably looking cryptographic groups where DDH is easy,
while CDH is known to be as hard as DL has both positive and negative consequences
in cryptography. On the negative side, we have shown that real groups may behave quite
differently than generic groups. As a consequence, when proposing new systems based
on “exotic” groups, some care needs to be taken. On the positive side, we can exhibit
groups with a gap between DDH and CDH and thus use pairing-based cryptosystems
with a good level of confidence. At present, the abundance of new systems relying
on the properties pairings and even on the easiness of DDH (e.g., an application to
verifiable random functions was proposed in [8]) is clearly in favor of the positive
side.
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