Separating Deterministic from Nondeterministic NOF Multiparty Communication Complexity

(Extended Abstract)

Paul Beame ${ }^{1, \star}$, Matei David ${ }^{2, \star \star}$, Toniann Pitassi ${ }^{2, \star \star \star}$, and Philipp Woelfel ${ }^{2, \dagger}$
${ }^{1}$ University of Washington
${ }^{2}$ University of Toronto

Abstract

We solve some fundamental problems in the number-onforehead (NOF) k-party communication model. We show that there exists a function which has at most logarithmic communication complexity for randomized protocols with a one-sided error probability of $1 / 3$ but which has linear communication complexity for deterministic protocols. The result is true for $k=n^{O(1)}$ players, where n is the number of bits on each players' forehead. This separates the analogues of RP and P in the NOF communication model. We also show that there exists a function which has constant randomized complexity for public coin protocols but at least logarithmic complexity for private coin protocols. No larger gap between private and public coin protocols is possible. Our lower bounds are existential and we do not know of any explicit function which allows such separations. However, for the 3 -player case we exhibit an explicit function which has $\Omega(\log \log n)$ randomized complexity for private coins but only constant complexity for public coins.

It follows from our existential result that any function that is complete for the class of functions with polylogarithmic nondeterministic k-party communication complexity does not have polylogarithmic deterministic complexity. We show that the set intersection function, which is complete in the number-in-hand model, is not complete in the NOF model under cylindrical reductions.

1 Introduction

The question of how much communication is necessary in order to compute a function $f: X_{1} \times \cdots \times X_{k} \rightarrow O$ when its input is distributed between k computationally unbounded players was first introduced in [17] and it has since been shown to have many diverse applications in complexity theory. The case of $k=2$ players has been studied extensively [11]. For two or more players, we are interested in the "number-on-forehead" model (NOF), first introduced by

[^0]Chandra, Furst and Lipton in [7]. In this model, the input is partitioned into k parts, so that player i can see all parts except for the $i^{\text {th }}$ part (since it is 'written on his forehead').

The number-on-forehead communication model is a fascinating and complex model that is not well understood when $k \geq 3$. The complexity of the situation arises from the fact that every part of the input is seen by multiple players. As the number of players increases, the sharing becomes increasingly generous. During the execution of a protocol, the set of inputs consistent with a particular message sequence is described by a so-called cylinder intersection. Cylinder intersections appear difficult to understand combinatorially.

Lower bounds for multiparty complexity in the number-on-forehead model are connected to a major open problem in complexity theory: it has been established that superlogarithmic communication complexity lower bounds in the NOF model for any explicit function with polylogarithmically many players would imply explicit lower bounds for ACC [6, 10]. The best lower bound obtained so far establishes a lower bound of $\Omega\left(n / 2^{k}\right)$, which breaks down when the number of players is greater than logarithmic [3, 8, 16, (9). Lower bounds in this model have many other important applications as well, including: constructions of pseudorandom generators for space bounded computation, constructions of universal traversal sequences, time-space tradeoffs [3], circuit complexity bounds [10, 15, 14, and proof complexity bounds (4].

The motivation for our work is to pursue a broader understanding of the NOF complexity model. In particular, we would like to answer some of the basic questions that are still open for this model, but have well-known solutions in the 2-party model. For $k \geq 3$, we consider the three usual versions of communication complexity: deterministic, randomized and nondeterministic complexity. Are there functions separating these three different complexity measures? Surprisingly, the relationships between these complexity measures have not been resolved previously, even for $k=3$.

Our main result is that for any k that is $n^{O(1)}$ there is a function with n bits on each players' forehead that is computable with a polylogarithmic complexity by a randomized k-party communication protocol with 1 -sided error but which requires linear complexity for deterministic protocols. We obtain this result nonconstructively by showing that deterministic protocols for a certain class of simple functions have a nice normal form and then establishing a lower bound for such function via a counting argument over protocols in normal form. We thus separate the randomized 1 -sided error and deterministic k-party NOF communication complexity classes $\mathrm{RP}_{k}^{c c}$ and $\mathrm{P}_{k}^{c c}$. As a corollary of our lower bounds, we also establish an optimal separation between the public and private coin randomized NOF models.

These bounds are nonconstructive but, for k at most logarithmic in the input size, we can also give explicit families of simple functions with $\Omega(\log n)$ deterministic k-party complexity in the NOF model. (We believe that they have superpolylogarithmic deterministic complexity.) The best previous lower bound for any explicitly defined simple function is the $\Omega(\log \log n)$ lower bound from [5]
for the Exact-T function (originally investigated in [7]) in the special case of $k=3$ players. As a corollary of our bound we obtain that our function families have $\Omega(\log \log n)$ complexity for randomized private coin protocols (with constant error probability) but only $O(1)$ complexity for public coin protocols.

The problem of separating deterministic from nondeterministic NOF complexity is particularly interesting because of its connection to proof complexity. In recent work [4, it has been shown that for $k=3,(\log n)^{\omega(1)}$ lower bounds on the randomized NOF complexity of set intersection, which has nondeterministic NOF complexity $O(\log n)$, implies lower bounds for polynomial threshold proof systems, such as the Lovász-Schrijver proof systems, as well as the Chvátal cutting planes proof system. Moreover, it seems possible that these results can be modified to show that randomized lower bounds for any function with small NOF nondeterministic communication complexity would give lower bounds for related cutting planes proof systems.

This brings us to our second question: is there a 'complete' problem for the class of problems with efficient NOF nondeterministic algorithms under a suitable notion of reduction? Given our separation result, such a function would automatically be hard for deterministic protocols. Following [1, it is not hard to see that set intersection is complete under communication-free reductions for the number-in-hand (NIH) model and in [4] it had been assumed that the same holds for the number-on-forehead (NOF) model. (The number-in-hand model is an alternative generalization of the 2-player model in which each player gets his part of the input in his hand, and thus each player sees only his own part.) However, we prove that under communication-free reductions, set intersection is not complete in the NOF model.

2 Definitions and Preliminaries

In the NOF multiparty communication complexity game [7] there are k parties (or players), numbered 1 to k, that are trying to collaborate to compute a function $f: X_{1} \times \ldots \times X_{k} \rightarrow\{0,1\}$ where each $X_{i}=\{0,1\}^{n}$. The $k n$ input bits are partitioned into k sets, each of size n. For $\left(x_{1}, \ldots, x_{k}\right) \in\{0,1\}^{k n}$, and for each i, player i knows the values of all of the inputs except for x_{i} (which conceptually is thought of as being placed on player i 's forehead).

The players exchange bits according to an agreed-upon protocol, by writing them on a public blackboard. A protocol specifies, for every possible blackboard contents, whether or not the communication is over, the output if over and the next player to speak if not. A protocol also specifies what each player writes as a function of the blackboard contents and of the inputs seen by that player. The cost of a protocol is the maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. A public-coin randomized protocol of cost c is simply a probability distribution over deterministic protocols of cost c, which can be viewed as a protocol in which the players have access to a shared random string. A private-coin randomized protocol is a protocol in which each player has access to a private random string.

A nondeterministic protocol is a randomized private coin protocol with 1 -sided error (only false negatives) and an error probability less than 1.

The deterministic communication complexity of f, written $D_{k}(f)$, is the minimum cost of a deterministic protocol for f that always outputs the correct answer. For $0 \leq \epsilon<1 / 2$, let $R_{k, \epsilon}^{\text {pub }}(f)$ denote the minimum cost of a public-coin randomized protocol for f which, for every input, makes an error with probability at most ϵ (over the choice of the deterministic protocols). We write $R_{k}^{\text {pub }}(f)$ for $R_{k, 1 / 3}^{\text {pub }}(f)$. Let $R_{k, \epsilon}(f)$ denote the minimum cost of a private-coin randomized protocol for f which, for every input, makes an error with probability at most ϵ (over the choice of the private random strings). We write $R_{k}(f)$ for $R_{k, 1 / 3}(f)$. For both public-coin and private-coin complexities we add a superscript 1 if we require that the protocol makes error only on 1-inputs (i.e., false-negatives), and superscript 0 if we require that the protocol makes error only on 0-inputs (i.e., false-positives). For example, $R_{k, \epsilon}^{0, \text { pub }}(f)$ is the minimum cost of a k-player public-coin protocol for f which is always correct on 1 -inputs and makes error at most ϵ on 0-inputs.

Since the general model laid out above is very powerful, we are also interested in communication restrictions. A player is oblivious in a certain protocol if the message he writes on the board is a function of the inputs he sees, but not a function of the messages sent by other players. Since we are interested in the best protocol, we may safely assume that all oblivious players write first, and then non-oblivious players continue to communicate using the information written by the former. A protocol in which all players are oblivious is called simultaneous. The simultaneous multiparty model was studied in [2, who proved new lower bounds, as well as surprising upper bounds in this model.

Since any function f_{n} on $k n$ bits can be computed using only n bits of communication, following [1], for sequences of functions $f=\left(f_{n}\right)_{n \in \mathbb{N}}$, algorithms are considered "efficient" or "polynomial" if only polylogarithmically many bits are exchanged. Accordingly, let $\mathrm{P}_{k}^{c c}$ denote the class of function families f for which $D_{k}\left(f_{n}\right)$ is $(\log n)^{O(1)}$, let $\mathrm{NP}_{k}^{c c}$ denote the class of function families f with nondeterministic complexity $(\log n)^{O(1)}$, and let $\mathrm{RP}_{k}^{c c}$ denote the class of function families f for which $R_{k}^{1}\left(f_{n}\right)$ is $(\log n)^{O(1)}$.

Multiparty communication complexity lower bounds are proven by analyzing properties of functions on cylinder intersections.

Definition 1. An i-cylinder C_{i} in $X_{1} \times \ldots \times X_{k}$ is a set such that for all $x_{1} \in X_{1}, \ldots, x_{k} \in X_{k}, x_{i}^{\prime} \in X_{i}$ we have $\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right) \in C_{i}$ if and only if $\left(x_{1}, \ldots, x_{i}^{\prime}, \ldots, x_{k}\right) \in C_{i}$. A cylinder intersection is a set of the form $\bigcap_{i=1}^{k} C_{i}$ where each C_{i} is an i-cylinder in $X_{1} \times \cdots \times X_{k}$.

3 Separating $\mathbf{P}_{k}^{c c}$ from $\mathbf{R P}_{k}^{c c}$

3.1 Oblivious Players, Simple Functions, and a Normal Form

We will be interested in a special type of Boolean functions for which we can show, that without loss of generality, all but one of the players is oblivious. For
sets X_{1}, \ldots, X_{k} a function $f: X_{1} \times \cdots \times X_{k} \rightarrow\{0,1\}$ is simple for player i if for all $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{k}\right) \in X_{1} \times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_{k}$ there exists at most one $x_{i}^{*} \in X_{i}$ such that $f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{*}, x_{i+1}, \ldots, x_{k}\right)=1$.

If f is simple for player i then it is reducible with no communication to 2 -player n-bit equality EQ. Player i can compute the unique value for the input on its forehead for which the output could be 1 (if it exists), and any other player sees that input. All the players have to do is to decide whether these strings are equal. We know that $R_{2,1 / n}^{0}(\mathrm{EQ})$ is $O(\log n)$ and $R_{2}^{0, \text { pub }}(\mathrm{EQ})$ is $O(1)$. Therefore we get the following.

Lemma 2. For all k and all simple functions f on $k n$ bits, $R_{k, 1 / n}^{0}(f)$ is $O(\log n)$ and $R_{k}^{0, p u b}(f)$ is $O(1)$.

The following theorem shows that if a function is simple for one player then this player can act obliviously with only a small increase in the deterministic communication complexity.

Theorem 3. Let $f: X_{1} \times \cdots \times X_{k} \rightarrow\{0,1\}$ be a function that is simple for player i and has $D_{k}(f)=d$. Then there is a protocol P^{\prime} for f in which player i first sends d bits and then all players $j \in\{1, \ldots, k\}-\{i\}$ simultaneously send exactly one bit b_{j} such that $f\left(x_{1}, \ldots, x_{k}\right)=1$ if and only if all bits $b_{j}=1$.

Proof (Sketch). Let f be simple for player 1. Let P be a protocol for f with complexity d. We describe protocol P^{\prime} on input $\left(x_{1}, \ldots, x_{k}\right)$. Assume that player 1 sees the partial input $\left(x_{2}, \ldots, x_{k}\right)$ on the other players' foreheads. Let x_{1}^{*} be the input in X_{1} such that $f\left(x_{1}^{*}, x_{2} \ldots, x_{k}\right)=1$, if one exists, an arbitrary input in X_{1}, otherwise. Player 1 "simulates" protocol P for the input $\left(x_{1}^{*}, x_{2}, \ldots, x_{k}\right)$; i.e., she writes on the blackboard exactly the string I^{*} that would have been written by players $1, \ldots, k$ if protocol P were executed for that input. Then each player $r, 2 \leq r \leq k$, verifies that I^{*} is consistent with what player r would have sent in protocol P if it had seen $\left(x_{1}, \ldots, x_{r-1}, x_{r+1}, \ldots, x_{k}\right)$ on the other players' foreheads. If player r does not find an error and the output of P is 1 for blackboard contents I^{*}, then he accepts by sending bit $b_{r}=1$. Otherwise he sends $b_{r}=0$.

3.2 Representing Simple Functions by Colorings and Cylinder Intersections

Most lower bound proofs for $D_{k}(f)$ use the fact shown in 3] that any k-party protocol with complexity d for a function f yields a partitioning of the input into $O\left(2^{d}\right)$ disjoint cylinder intersections on which f is constant. For $k \geq 3$ players, the known techniques for proving lower bounds on the number of cylinder intersections needed for such a partitioning are discrepancy-based and inherently yield lower bounds even for nondeterministic and randomized protocols. Therefore, these techniques are not suitable for proving good lower bounds for functions with low nondeterministic communication complexity.

For simple functions we obtain different, although related, structures. These structures seem to be better suited for lower bound proofs for functions in $\mathrm{RP}_{k}^{c c}$, as they will allow us to separate this class from $\mathrm{P}_{k}^{c c}$ and to prove $\Omega(\log n)$ lower bounds for explicit functions.

Throughout this section, $f: X_{1} \times \cdots \times X_{k} \rightarrow\{0,1\}$ is simple for player 1. For any natural number D and a set S, a D-coloring of S is a mapping c : $S \rightarrow[D]$. Since f is simple for player 1 (Alice), there exists a function g : $X_{2} \times \cdots \times X_{k} \rightarrow X_{1} \cup\{\perp\}$, where $g\left(x_{2}, \ldots, x_{k}\right)=\perp$ if $f\left(x_{1}, \ldots, x_{k}\right)=0$ for all $x_{1} \in X_{1}$, and otherwise $g\left(x_{2}, \ldots, x_{k}\right)=x_{1}^{*}$, where x_{1}^{*} is the the unique element in X_{1} with $f\left(x_{1}^{*}, x_{2}, \ldots, x_{k}\right)=1$. In fact, any such mapping g uniquely defines the simple function f.

Assume that f can be computed by a d-bit protocol P. The special protocol P^{\prime} for f, derived in Theorem 3, can be characterized by a coloring of $X_{2} \times \cdots \times X_{k}$ and cylinder intersections in $X_{2} \times \cdots \times X_{k}$: Let c be the 2^{d}-coloring of $X_{2} \times$ $\cdots \times X_{k}$, where $c\left(x_{2}, \ldots, x_{k}\right)$ is the message Alice sends if she sees $\left(x_{2}, \ldots, x_{k}\right)$. Consider a fixed message m from Alice and a fixed value $a \in X_{1}$ on Alice's forehead. The subset of points in $X_{2} \times \cdots \times X_{k}$ for which all other players accept if they see a on Alice's forehead and receive message m is a cylinder intersection $I_{m, a}$. Each such cylinder intersection $I_{m, a}$ may also contain points that are not colored m. However, it is not possible that a point $p=\left(x_{2}, \ldots, x_{k}\right) \in I_{m, a}$ has color m but $g(p) \neq a$ because then Alice would send message m if she saw p and the other players would all accept if they saw a on Alice's forehead. Hence, $\left(a, x_{2}, \ldots, x_{k}\right)$ would be accepted by P^{\prime}, a contradiction. We obtain the following.

Lemma 4. Every function f that is simple for player 1 and has k-player communication complexity d can be uniquely represented by cylinder intersections $I_{m, a} \in X_{2} \times \cdots \times X_{k}, m \in\left[2^{d}\right], a \in X_{1}$, and a 2^{d}-coloring c of $X_{2} \times \cdots \times X_{k}$, such that $\forall a \in X_{1}, y \in X_{2} \times \cdots \times X_{k}: \quad f(a, y)=1 \Leftrightarrow y \in I_{c(y), a}$.

In particular, $I_{m, a}$ contains all points $y \in X_{2} \times \cdots \times X_{k}$ with color $c(y)=m$ and $f(a, y)=1$, but no point y^{\prime} with color $c\left(y^{\prime}\right)=m$ and $f\left(a, y^{\prime}\right)=0$.
Proof. We have already seen how to obtain c and the cylinder intersections $I_{m, a}$ from the function f. This representation is unique because for any input (a, p) with $a \in X_{1}$ and $p \in X_{2} \times \cdots \times X_{k}$ we can retrieve the function value $f(a, p)$ by checking whether $p \in I_{c(p), a}$.

3.3 The Lower Bound

In the following we consider a family of functions which have logarithmic communication complexity for randomized protocols with one-sided error and error probability bounded by $1 / 3$. Using Lemma 4 we give an upper bound on the number of different deterministic protocols for the functions in that class in order to show that at least one such function requires at least linear deterministic communication complexity.

For positive integers n, m and t, let $G_{t, n, m}$ be the set of all mappings g : $\{0,1\}^{n \cdot t} \rightarrow\{0,1\}^{m}$. For any function $g \in G_{k-1, n, m}$, define $f_{g}:\{0,1\}^{m} \times$ $\{0,1\}^{n \cdot(k-1)}$ by $f_{g}\left(x_{1}, \ldots, x_{k}\right)=1$ if and only if $g\left(x_{2}, \ldots, x_{k}\right)=x_{1}$. By the proof
of Lemma2 randomized protocols for functions $f_{g}, g \in G_{k, n, m}$, have complexity at most $O(\log m)$. Hence, it follows that $f_{g} \in \operatorname{co-} \mathrm{RP}_{k}^{c c}$ for all $g \in G_{k, n, n / 2}$.
Theorem 5. There is a $g \in G_{k-1, n, n / 2}$ such that $D_{k}\left(f_{g}\right)$ is $\Omega(n-\log k)$.
Corollary 6. $\mathrm{P}_{k}^{c c} \neq \mathrm{RP}_{k}^{c c}$ for any k that is $n^{O(1)}$.
Proof (of Theorem (5). Any function $g \in G_{k-1, n, m}$ has a domain of size $2^{(k-1) n}$ and a range of size 2^{m}. Therefore, it is not possible to encode every such function g with less than $m \cdot 2^{(k-1) n}$ bits. Note that if two functions g, g^{\prime} are different, then f_{g} and $f_{g^{\prime}}$ are different, too.

Clearly, any function $f_{g}, g \in G_{k-1, n, m}$, is simple for Alice. Assume that any such function f_{g} has $D_{k}\left(f_{g}\right) \leq d$. Then by Lemma 4, every such function f_{g} can be uniquely represented by a 2^{d}-coloring of $\left(\{0,1\}^{n}\right)^{k-1}$ and $2^{m} \cdot 2^{d}$ cylinder intersections in $\left(\{0,1\}^{n}\right)^{k-1}$. The 2^{d}-coloring of $\left(\{0,1\}^{n}\right)^{k-1}$ can be encoded with $d \cdot 2^{(k-1) n}$ bits. The number of i-cylinders in $X_{1} \times \cdots \times X_{t}$ is $2^{\Pi_{j \neq i}\left|X_{j}\right|}$. Hence, $(k-1) \cdot 2^{(k-2) n}$ bits suffice for a unique encoding of any cylinder intersection in $\left(\{0,1\}^{n}\right)^{k-1}$. Thus, the total number of bits in which any function f_{g}, $g \in G_{k-1, n, m}$, can be encoded is bounded above by

$$
d \cdot 2^{(k-1) n}+2^{d+m} \cdot(k-1) \cdot 2^{(k-2) n}=d \cdot 2^{(k-1) n}+(k-1) \cdot 2^{d+m+(k-2) n}
$$

As we have seen above, the number of bits needed to describe a function f_{g} for $g \in G_{k-1, n, m}$ is at least $m \cdot 2^{(k-1) n}$. Therefore, if for all f_{g} a protocol with complexity c exists then

$$
d \cdot 2^{(k-1) n}+(k-1) \cdot 2^{d+m+(k-2) n} \geq m \cdot 2^{(k-1) n}
$$

This is equivalent to $2^{d} \geq 2^{n-m} \cdot(m-d) /(k-1)$. Hence, $d \geq \min \{m-1, n-$ $m-\log (k-1)\}$, which for $m=\lfloor(n-\log k) / 2\rfloor$ is at least $(n-\log k) / 2-O(1)$.

3.4 Separating Public from Private Coins

We now consider the difference between public-coin and private-coin randomized protocols. Trivially, any private-coin protocol can be simulated by tossing the coins in public, so for all f and $k, R_{k}^{\text {pub }}(f) \leq R_{k}(f)$. In the other direction, Newman [13, 11 provides a simulation of a public-coin protocol by a privatecoin protocol. (Although it is stated for the special case of 2 players, the proof works for any number of players.)
Proposition 7 ([13]). There is a $c>0$ such that for every $k \geq 2$ and function $f:\{0,1\}^{k n} \rightarrow\{0,1\}, R_{k}(f) \leq R_{k}^{p u b}(f)+c\left\lceil\log _{2} n\right\rceil$.
We see that the maximum gap between the public-coin and private-coin randomized complexities of f is $\Theta(\log n)$, and it is achieved when $R_{k}^{\text {pub }}(f)$ is $O(1)$ and $R_{k}(f)$ is $\Theta(\log n)$. The natural question arises, is there a function that achieves this gap? Our results allow us to answer this question affirmatively.

In order to obtain lower bounds, we need the following extension of Lemma 3.8 in [11] to k players. We omit the proof due to space constraints.
Lemma 8. If $k^{1 / \delta}<D_{k}(f)$ for some $\delta<1$, then $R_{k}(f)$ is $\Omega\left(\log D_{k}(f)\right)$.

Corollary 9. Let $\delta<1$. For all k such that $k<n^{\delta}$, there exists a $k n$-bit function f such that $R_{k}^{\text {pub }}(f)$ is $O(1)$ and $R_{k}(f)$ is $\Theta(\log n)$.

Proof. By Theorem 5there is a function f that is simple for player 1 such that $D_{k}(f)$ is $\Omega(n)$. By Lemma 8 $R_{k}(f)$ is $\Omega(\log n)$. By Lemma 2 $R_{k}(f)$ is $O(\log n)$ and $R_{k}^{\mathrm{pub}}(f)$ is $O(1)$.

4 Lower Bounds for Explicit Simple Functions

The separations in Section 3.3 are nonconstructive. We conjecture that there also exists an explicit simple function that gives a linear or near linear separation between $D_{k}\left(f_{n}\right)$ and $R_{k}^{0}\left(f_{n}\right)$. In the following we prove $\Omega(\log n)$ bounds for the deterministic complexity of some explicit simple functions. This yields a separation between the deterministic and public coin randomized complexity for explicit simple functions, though this is much weaker than our conjecture.

We give two constructions of explicit functions, one for $k=3$ and, one that holds for all $k \geq 3$. Write \mathbb{F}_{q} for the field of q elements. Let $X=\mathbb{F}_{2^{n}}, Y=\mathbb{F}_{2^{m}}$ for some positive integers m and n. For $(a, b) \in X \times Y$ let the hash function $h_{a, b}: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{m}}$ be defined as $h_{a, b}(x)=\phi(a \cdot x)+b$, where ϕ is a homomorphism from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{m}}$. Let H be the family of hash functions $h_{a, b}$ for $a \in X, b \in Y$. The explicit function for $k=3$ is given by $f: Y \times X \times H \rightarrow\{0,1\}$, where $f(y, x, h)=1$ iff $h(x)=y$ which is clearly simple for player 1 .

For the other construction let $k \geq 3$, let $X_{1}=\mathbb{F}_{2^{m}}$ and $X_{2}=\ldots=X_{k}=\mathbb{F}_{2^{m}}^{n}$ for positive integers n and m with $m \geq \log _{2} n$. Let $\beta_{1}, \ldots, \beta_{n}$ be distinct elements of $\mathbb{F}_{2^{m}}$ and define $v_{i}=\left(\beta_{1}^{i-1}, \ldots, \beta_{n}^{i-1}\right)$ for $1 \leq i \leq n$. The explicit function is f_{g} where $g\left(x_{2}, \ldots, x_{k}\right)=\sum_{i=1}^{n} \prod_{j=2}^{k}\left\langle v_{i}, x_{j}\right\rangle$ and operations are over $\mathbb{F}_{2^{m}}$.

Theorem 10. There is a $\delta<1$ such that
(a) for $m=n^{\delta}$ and $f: Y \times X \times H \rightarrow\{0,1\}$ defined as above, $D_{3}(f)$ is $\Omega(\log n)$, (b) for any $k \geq 3, n \geq 4^{k+1}$, $m=n^{\delta}$, and f_{g} defined as above, $D_{k}\left(f_{g}\right)$ is $\Omega(\log n)$.

Proof. We give the proof for part (a): Let $d=D_{3}(f)$. Fix some ϵ with $0<\epsilon<\delta$ and let $m=n^{\delta}$. Assume for contradiction that $d \leq \epsilon \cdot \log _{2} n$.

Consider the $2^{n+m} \times 2^{n}$ matrix M where rows correspond to hash functions $h \in H$, columns correspond to inputs $x \in X$ and the entry $M_{h, x}$ is the hash function value $h(x)$. Cylinder intersections in $H \times X$ are rectangles. By Lemma 4 , there is a 2^{d}-coloring c of M and there are 2^{d+m} rectangles $R_{\ell, y}, \ell \in\left[2^{d}\right], y \in Y$, such that $\forall(y, x, h) \in Y \times X \times H:(h, x) \in R_{c(h, x), y} \Leftrightarrow h(x)=y$. Call an entry $M_{h, x}$ an (ℓ, y) entry iff $c(h, x)=\ell$ and $h(x)=y$. Correctness of the protocol implies that for $y^{\prime} \neq y, R_{\ell, y}$ does not contain any $\left(\ell, y^{\prime}\right)$ entries.

Consider the coloring c of the matrix entries in M. The proof proceeds inductively decreasing the number of colors that are available and shrinking the matrix. During each such step, we introduce a number of "holes" in the matrix (entries that are colored in the original matrix with one of the removed colors). We show that eventually there are no colors left to use but the matrix still does
not consist only of holes. This will contradict the existence of the initial coloring, hence of the d-bit protocol.

We prove by induction on $i \geq 0$ that, as long as $i \leq 2^{d}=n^{\epsilon}$, the following hold for large enough n :

- there exists a rectangle R_{i} such that $\left|R_{i}\right| \geq 2^{2 n+m-i(d+2)}$,
- R_{i} contains at most $i \cdot 2^{2 n}$ holes,
- non-hole entries in R_{i} can be colored with $2^{d}-i$ colors.

Assuming that we have established this inductive statement, letting $i=2^{d}$ we see that there are no colors left for coloring the rectangle $R_{2^{d}}$. Moreover, for large enough n, this rectangle has size at least $2^{2 n+m-n^{\epsilon}\left(2+\epsilon \cdot \log _{2} n\right)}$. Since $m=n^{\delta}$ and $\delta>\epsilon,\left|R_{2^{d}}\right|>2^{2 n+d}$. The number of holes in this rectangle is bounded above by $2^{d} \cdot 2^{2 n}$, so the rectangle is not empty, which is a contradiction.

We now prove the inductive statement. For $i=0$, let $R_{0}=M$. The existence of a d-bit protocol yields a coloring of R_{0} (with no holes) using 2^{d} colors.

Now assume the inductive statement is true for some $0 \leq i<2^{d}$. The number of non-hole entries in R_{i} is at least $2^{2 n+m} \cdot\left(2^{-i(d+2)}-i \cdot 2^{-m}\right)$. Since $i<2^{d}$ and $m-d>n^{\epsilon}(d+2)>i(d+2)$ (for large enough n), the number of non-hole entries in R_{i} is larger than $2^{2 n+m-i(d+2)-1}$. Let (ℓ, y) be the most popular color-value pair from the non-hole entries in R_{i} and let $R_{i+1}=R_{i} \cap R_{\ell, y}$. The number of color-value pairs is at most 2^{d+m}, so the number of occurrences of the most popular pair (ℓ, y) in R_{i} is at least $2^{2 n+m-i(d+2)-1-(m+d)}=2^{2 n-(i+1)(d+2)+1}$. By construction, $\left|R_{i+1}\right|$ is at least the number of such (ℓ, y) entries. Since R_{i+1} is a rectangle, by the Hash Mixing Lemma [12, for any $y \in Y$,

$$
\operatorname{Pr}[h(x)=y] \leq \frac{1}{|Y|}+\sqrt{\frac{|H|}{\left|R_{i+1}\right| \cdot|Y|}} \leq 2^{-m}+2^{((i+1)(d+2)-n-1) / 2} \leq 2^{-m+1}
$$

since $|H| /\left|R_{i+1}\right||Y| \leq 2^{n-2 n+(i+1)(d+2)-1},(i+1)(d+2) \leq n^{\epsilon} \log n<n^{\delta}=m$ and $n \geq 3 m$ for sufficiently large n. Hence, the number of y-valued entries in R_{i+1} is at most $\left|R_{i+1}\right| \cdot 2^{-m+1}$. By the lower bound from above for the number of (ℓ, y)-pairs in R_{i+1}, we have $2^{2 n-(i+1)(d+2)+1} \leq\left|R_{i+1}\right| \cdot 2^{-m+1}$ and thus we obtain the stronger bound $\left|R_{i+1}\right| \geq 2^{2 n+m-(i+1)(d+2)}$ as required.

Since $R_{i+1} \subseteq R_{\ell, y}$, by Lemma 4 all ℓ-colored entries in R_{i+1} are (ℓ, y) entries. Define the holes in R_{i+1} to be its (ℓ, y) entries along with all holes in R_{i}. Thus, the number of colors available for non-hole entries has been reduced by at least 1. The number of extra holes we introduce is at most the number of entries in M with value y. Hence, at most $2^{2 n}$ new holes can be introduced in a round. This completes the inductive step, and therefore the proof of (a).

The proof for part (b) is similar but requires the following property of g which is a natural analogue of the Hash Mixing Lemma [12] over cylinder intersections. Its proof is in the full paper.

Lemma 11. Let $Z=\mathbb{F}_{2^{m}}^{n}$. For $k \geq 3$ and any cylinder intersection $I \subseteq Z^{k-1}$ and any $y \in \mathbb{F}_{2^{m}}$, choosing $\left(x_{2}, \ldots, x_{k}\right)$ from the uniform distribution on Z^{k-1}, $\mid \operatorname{Pr}\left[g\left(x_{2}, \ldots, x_{k}\right)=y\right.$ and $\left.\left(x_{2}, \ldots, x_{k}\right) \in I\right]-2^{-m}|I| /|Z|^{k-1} \mid \leq 2^{-(m-2) n / 4^{k-1}}$.

By Lemma 2 both f and f_{g} defined above have $O(1)$ public-coin randomized complexity but by Theorem 10 and Lemma 8, we obtain that $R_{3}(f)$ and $R_{k}\left(f_{g}\right)$ are both $\Omega(\log \log n)$. In fact, we conjecture that the $D_{3}(f)$ and $D_{k}\left(f_{g}\right)$ are both $\omega(\log n)$ or even $n^{\Omega(1)}$. Proving the latter would yield explicit examples of function in $\mathrm{RP}_{3}^{c c}$ but not in $\mathrm{P}_{3}^{c c}$.

5 On Complete Problems for $\mathbf{N P}_{k}^{c c}$

An alternative approach to separating $\mathrm{P}_{k}^{c c}$ from $\mathrm{RP}_{k}^{c c}$ with an explicit function is to find a function that is complete in some sense. If we can prove for some explicit function that it is "at least as hard" as any function in $\mathrm{RP}_{k}^{c c}$, then by our separation result we can conclude that it is not in $\mathrm{P}_{k}^{c c}$. Proving a lower bound for a function complete for $\mathrm{NP}_{k}^{c c}$ has the added benefit of potentially separating $\mathrm{NP}_{k}^{c c}$ from $\mathrm{RP}_{k}^{c c}$ as well. (Recall that simple functions are in $\mathrm{RP}_{k}^{c c}$ so they cannot separate $\mathrm{NP}_{k}^{c c}$ from $\mathrm{RP}_{k}^{c c}$.) The set intersection function is complete for the class analogous to $\mathrm{NP}_{k}^{c c}$ in the number-in-hand (NIH) model, and thus also for $\mathrm{NP}_{2}^{c c}$. In this section, we prove that this function is not complete for $\mathrm{NP}_{k}^{c c}$ for $k \geq 3$.

For sets X_{1}, \ldots, X_{k}, write \bar{X} for $X_{1} \times \cdots \times X_{k}$. We write $\bar{x} \in \bar{X}$ to denote a k-tuple $\left(x_{1}, \ldots, x_{k}\right)$ where $x_{i} \in X_{i}$ for all $i \in[k]$. Use $\bar{\varphi}$ to denote a k-tuple of functions $\varphi_{1}, \ldots, \varphi_{k}$. Furthermore, for $i \in[k]$, write $\bar{\alpha}_{-i}$ for the ($k-1$)-tuple obtained from $\bar{\alpha}$ by removing the i-th coordinate.

In two-party communication complexity Babai, Frankl, and Simon [1] defined a natural notion of a reduction between problems called a 'rectangular' reduction that does not require any communication to compute.

Definition 12. For $k=2$, let $f: \bar{X} \rightarrow\{0,1\}$ and $g: \overline{X^{\prime}} \rightarrow\{0,1\}$. A pair of functions $\bar{\varphi}$ with $\varphi_{i}: X_{i} \rightarrow X_{i}^{\prime}$ is a rectangular reduction of f to g, written $f \sqsubseteq g$, if and only if $f\left(x_{1}, x_{2}\right)=g\left(\varphi_{1}\left(x_{1}\right), \varphi_{2}\left(x_{2}\right)\right)$.

Furthermore, they defined an appropriate 'polynomially-bounded' version of rectangular reduction for function families.

Definition 13. For function families $f=\left\{f_{n}\right\}$ and $g=\left\{g_{n}\right\}$ where f_{n}, g_{n} : $\left(\{0,1\}^{n}\right)^{2} \rightarrow\{0,1\}$, we write $f \sqsubseteq_{p} g$ if and only if there is a function $m: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $n, f_{n} \sqsubseteq g_{m(n)}$ and $m(n)$ is $2^{(\log n)^{O(1)}}$.

Proposition 14 ([1]). Let f and g be function families. If $f \sqsubseteq p g$ and $g \in \mathrm{P}_{2}^{c c}$ then $f \in \mathrm{P}_{2}^{c c}$. If $f \sqsubseteq_{p} g$ and $g \in \mathbf{N P}_{2}^{c c}$ then $f \in \mathbf{N P}_{2}^{c c}$.

Definition 15. A function family g is complete for $\mathrm{NP}_{2}^{c c}$ under rectangular reductions if and only if $g \in \mathbf{N P}_{2}^{c c}$ and for all $f \in \mathbf{N P}_{2}^{c c}, f \sqsubseteq_{p} g$.

The set intersection function is $\operatorname{DisJ}_{k, n}:\left(\{0,1\}^{n}\right)^{k} \rightarrow\{0,1\}$ defined by $\operatorname{DiSJ}_{k, n}(\bar{x})=1$ if and only if there is some $i \in[n]$ such that $x_{1, i}=\ldots=x_{k, i}=1$. Clearly, $\operatorname{DISJ}_{k} \in \operatorname{NP}_{k}^{c c}$. Babai, Frankl and Simon observed the following:

Proposition 16 ([1]). DISJ_{2} is complete for $\mathrm{NP}_{2}^{c c}$ under rectangular reductions.

For $k \geq 3$, rectangular reductions extend to cubic reductions in the NIH model of communication complexity. Moreover, it is easy to see that the completeness result of Proposition 16 continues to hold in the NIH model under cubic reductions. One might conjecture that DISJ_{k} is also complete for $\mathrm{NP}_{k}^{c c}$ under a natural extension of rectangular reductions in the NOF model. Such a notion of reduction should not require any communication between the parties. This yields the following definition:
Definition 17. Given $f: \bar{X} \rightarrow\{0,1\}$ and $g: \overline{X^{\prime}} \rightarrow\{0,1\}$ we say that functions $\bar{\varphi}$ are a cylindrical reduction of f to g if and only if for every $\bar{x} \in \bar{X}$ there is an $\overline{x^{\prime}} \in \overline{X^{\prime}}$ such that for all $i \in[k], \varphi_{i}\left(\bar{x}_{-i}\right)=\overline{x^{\prime}}{ }_{-i}$ and $f(\bar{x})=g\left(\overline{x^{\prime}}\right)$. Thus each φ_{i} maps the NOF view of the i-th player on input \bar{x} for f to the NOF view of the i-th player on input $\overline{x^{\prime}}$ for g.
We show that cylindrical reductions must be of a special form, given by the natural no-communication reductions associated with the number-in-hand model. $\bar{A}=A_{1} \times \cdots \times A_{k}$ is a cube, if $A_{i} \subseteq X_{i}$ for all $i \in[k]$.
Lemma 18. If there is a cylindrical reduction of $f: \bar{X} \rightarrow\{0,1\}$ to $\operatorname{DiSJ}_{k, m}$ then $f^{-1}(1)$ is a union of m cubes.

Theorem 19. There is a function $f:\{0,1\}^{3 n} \rightarrow\{0,1\}$ with deterministic 3party NOF communication complexity at most 3 such that any cylindrical reduction of f to DisJ $_{3, m}$ requires $m>2^{n-3}$.

Proof. For $x, y, z \in\{0,1\}^{n}$, define $f(x, y, z)$ to be 1 if and only if x, y, and z are pairwise orthogonal in \mathbb{F}_{2}^{n}. There is a trivial 3-party NOF protocol for f in which 3 bits are exchanged, namely, each party checks that the inputs it sees are orthogonal. We now show that any way to write $f^{-1}(1)$ as a union of cubes must contain exponentially many cubes since each cube can only cover an exponentially small portion of $f^{-1}(1)$.

For $u, v \in\{0,1\}^{n}$, let $h(u, v)=1$ iff $\langle x, y\rangle=0$ in \mathbb{F}_{2}^{n}. Then $f(x, y, z)=$ $h(x, y) h(y, z) h(x, z)$. Consider the uniform distribution μ over $\{0,1\}^{3 n}$.

We first show that $f^{-1}(1)$ is a set of probability more than $1 / 8$. Under μ, for each pair $u, v \in\{x, y, z\}$, the probability that $h(u, v)=1$ is $1 / 2+1 / 2^{n+1}>1 / 2$ (consider whether or not $u=0^{n}$). We claim that the probability that $f(x, y, z)=$ 1 is at least $1 / 8$. Suppose that $x \neq 0^{n}$. Then the probability that y is orthogonal to x is precisely $1 / 2$. Now, z is orthogonal to the span $\langle\{x, y\}\rangle$ with probability at least $1 / 4$. So, conditioned on $x \neq 0^{n}$, the probability that $f(x, y, z)=1$ is at least $1 / 8$. If $x=0^{n}$ then the probability that $f(x, y, z)=1$ is precisely the probability that y and z are orthogonal which is at least $1 / 2$. Therefore the probability that $f(x, y, z)=1$ is more than $1 / 8$ overall.

Now since $f(x, y, z)=h(x, y) h(y, z) h(x, z)$, any cube $C=A_{1} \times A_{2} \times A_{3}$ with $C \subseteq f^{-1}(1)$ must, in particular, have, $A_{1} \times A_{2} \subseteq h^{-1}(1)$. Thus every $x \in A_{1}$ must be orthogonal to every $y \in A_{2}$ and so the dimensions of their spans must satisfy $\operatorname{dim}\left(\left\langle A_{1}\right\rangle\right)+\operatorname{dim}\left(\left\langle A_{2}\right\rangle\right) \leq n$. Therefore $\left|A_{1} \times A_{2}\right| \leq\left|\left\langle A_{1}\right\rangle \times\left\langle A_{2}\right\rangle\right| \leq$ $2^{\operatorname{dim}\left(\left\langle A_{1}\right\rangle\right)+\operatorname{dim}\left(\left\langle A_{2}\right\rangle\right)} \leq 2^{n}$ so $|C| \leq 2^{n}\left|A_{1} \times A_{2}\right| \leq 2^{2 n}$ and the probability that $(x, y, z) \in C$ is at most 2^{-n}. The claimed result follows immediately.

This argument can be extended to other functions $h:\{0,1\}^{2 n} \rightarrow\{0,1\}$ that have only small 1-monochromatic rectangles. It suffices that $h(x, y) h(y, z) h(x, z)$ be 1 on a large fraction of inputs. Also, although the above Lemma is stated only for $k=3$ it is easy to see that the same bounds hold for larger k.

Given that any function $f(x, y, z)$ of the form $h_{1}(x, y) h_{2}(x, z) h_{3}(y, z)$ has communication complexity at most 3 , it seems unlikely that any function is complete for $\mathrm{NP}_{3}^{c c}$ under efficient reductions that do not require communication.

References

[1] Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory (preliminary version). In: FOCS27th, pp. 337-347 (1986)
[2] Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SJCOMP 33, 137-166 (2004)
[3] Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. JCSS 45, 204-232 (1992)
[4] Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for lovász-schrijver systems and beyond follow from multiparty communication complexity. In: ICALP 32nd, pp. 1176-1188 (2005)
[5] Beigel, R., Gasarch, W., Glenn, J.: The multiparty communication complexity of Exact-T: Improved bounds and new problems. In: MFCS31st, pp. 146-156 (2006)
[6] Beigel, R., Tarui, J.: On ACC. In: FOCS 32nd, pp. 783-792 (1991)
[7] Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: STOC 15th, pp. 94-99 (1983)
[8] Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness. SIAMDM 6, 110-125 (1993)
[9] Ford, J., Gál, A.: Hadamard tensors and lower bounds on multiparty communication complexity. In: ICALP 32nd, pp. 1163-1175 (2005)
[10] Håstad, J., Goldmann, M.: On the power of small-depth threshold circuits. CompCompl 1, 113-129 (1991)
[11] Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge (1997)
[12] Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. TCS 107, 121-133 (1993)
[13] Newman, I.: Private vs. common random bits in communication complexity. IPL 39, 67-71 (1991)
[14] Nisan, N.: The communication complexity of threshold gates. In: Proceedings of Combinatorics, Paul Erdos is Eighty, pp. 301-315 (1993)
[15] Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SJCOMP 22, 211-219 (1993)
[16] Raz, R.: The BNS-Chung criterion for multi-party communication complexity. CompCompl 9, 113-122 (2000)
[17] Yao, A.C.C.: Some complexity questions related to distributive computing (preliminary report). In: STOC 11th, pp. 209-213 (1979)

[^0]: * Supported by NSF grant CCR-0514870.
 ** Supported by OGS.
 *** Supported by NSERC.
 ${ }^{\dagger}$ Supported by DFG grant Wo 1232/1-1.

