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Abstract. The contribution of meteorology and emissions to

long-term PM2.5 trends is critical for air quality manage-

ment but has not yet been fully analyzed. Here, we used

the combination of a machine learning model, statistical

method, and chemical transport model to quantify the me-

teorological impacts on PM2.5 pollution during 2000–2018.

Specifically, we first developed a two-stage machine learn-

ing PM2.5 prediction model with a synthetic minority over-

sampling technique to improve the satellite-based PM2.5 es-

timates over highly polluted days, thus allowing us to better

characterize the meteorological effects on haze events. Then

we used two methods to examine the meteorological contri-

bution to PM2.5: a generalized additive model (GAM) driven

by the satellite-based full-coverage daily PM2.5 retrievals

and the Weather Research and Forecasting/Community Mul-

tiscale Air Quality (WRF/CMAQ) modeling system. We

found good agreements between GAM estimations and the

CMAQ model estimations of the meteorological contribu-

tion to PM2.5 on a monthly scale (correlation coefficient be-

tween 0.53–0.72). Both methods revealed the dominant role

of emission changes in the long-term trend of PM2.5 concen-

tration in China during 2000–2018, with notable influence

from the meteorological condition. The interannual variabil-

ities in meteorology-associated PM2.5 were dominated by

the fall and winter meteorological conditions, when regional

stagnant and stable conditions were more likely to happen

and when haze events frequently occurred. From 2000 to

2018, the meteorological contribution became more unfavor-

able to PM2.5 pollution across the North China Plain and

central China but were more beneficial to pollution con-

trol across the southern part, e.g., the Yangtze River Delta.

The meteorology-adjusted PM2.5 over eastern China (de-

noted East China in figures) peaked in 2006 and 2011, mainly

driven by the emission peaks in primary PM2.5 and gas pre-

cursors in these years. Although emissions dominated the

long-term PM2.5 trends, the meteorology-driven anomalies

also contributed −3.9 % to 2.8 % of the annual mean PM2.5

concentrations in eastern China estimated from the GAM.

The meteorological contributions were even higher region-

ally, e.g., −6.3 % to 4.9 % of the annual mean PM2.5 concen-

trations in the Beijing-Tianjin-Hebei region, −5.1 % to 4.3 %

in the Fenwei Plain, −4.8 % to 4.3 % in the Yangtze River
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Delta, and −25.6 % to 12.3 % in the Pearl River Delta. Con-

sidering the remarkable meteorological effects on PM2.5 and

the possible worsening trend of meteorological conditions in

the northern part of China where air pollution is severe and

population is clustered, stricter clean air actions are needed

to avoid haze events in the future.

1 Introduction

Air pollution, especially PM2.5 pollution, has become a se-

rious problem in China in the past decades. Variations in air

pollution are primarily driven by two factors: emissions and

meteorology. Anthropogenic emissions dominate the long-

term trend of air pollution (Q. Zhang et al., 2019; N. Cheng

et al., 2019), and meteorological conditions also notably

influence the daily, seasonal, interannual, and interdecadal

air pollution variations (Zhang et al., 2018; Z. Chen et al.,

2020; P. Wang et al., 2019; Zhai et al., 2019). In China, the

PM2.5 pollution dropped remarkably since the implementa-

tion of strict clean air policies, e.g., “the Air Pollution Pre-

vention and Control Action Plan” (denoted “Action Plan”,

2013–2017; State Council of the People’s Republic of China,

2020a) and the Blue Sky Protection Campaign (2018–2020;

State Council of the People’s Republic of China, 2020b).

Previous studies reported that the PM2.5 and other air pollu-

tant emissions dropped significantly during this period (Bian

et al., 2019; Liu et al., 2015). Previous studies also estimated

the contribution of meteorology to the air quality improve-

ment. X. Zhang et al. (2019) reported that about 13 % and

20 % of total PM2.5 decline during 2013–2017 are due to

meteorological effects in Beijing-Tianjin-Hebei (BTH) and

Yangtze River Delta (YRD), respectively, estimated from the

Parameter Linking Aerosol pollution and Meteorological el-

ements (PLAM) (Yang et al., 2009). Q. Zhang et al. (2019)

reported that meteorological changes led to a 16 % decrease

and a 4 % increase in PM2.5 changes during 2013–2017 in

BTH and YRD, estimated from chemical transport model

(CTM) simulations. Zhai et al. (2019) reported that after ad-

justment of meteorological effects, the PM2.5 decline during

2013–2018 was 14 % weaker in BTH and 3 % stronger in

YRD, respectively, estimated from a statistical model. Previ-

ous studies further analyzed the long-term trend of effects of

meteorological systems and climate change on PM2.5 pollu-

tion, especially in the context of global warming (Liu et al.,

2017; Wang and Chen, 2016; Yi et al., 2019). For example,

Feng et al. (2020) reported a trend of negative meteorological

effects on air quality improvements in northern China during

1980–2018, but the effects dropped during 2013–2018. Xu

et al. (2020) also reported a trend of negative meteorological

effects during 2000–2017 in Beijing but an overall trend of

beneficial meteorological effects in some provinces in north-

ern China. Distinguishing the contributions of emission and

meteorology is critical for the evaluation of clean air poli-

cies, projection of the future air quality, and understanding

of pollution processes.

Various methods have been reported to separate the contri-

butions of emissions and meteorology (Z. Chen et al., 2020;

L. Chen et al., 2020). CTMs simulate the atmospheric pro-

cesses with emission inventory and meteorology fields as in-

puts, thus allowing researchers to assess the changes in air

pollution attributable to one factor when controlling another

factor (P. Wang et al., 2019; Xu et al., 2020; Zheng et al.,

2017). CTM simulations have been widely used to separate

the contributions of meteorology and anthropogenic emis-

sions to air pollution variations. However, these model sim-

ulations require considerable computation resources, and the

quality of inputs (e.g., emission inventory and meteorology)

affects the quality of simulations. Uncertainties in the his-

torical emission inventory as well as in the simulated mete-

orological fields affected the modeling results. Researchers’

selection of chemical reaction mechanisms as well as param-

eter optimization could also lead to varying results (Z. Chen

et al., 2020). Moreover, due to the interactions between emis-

sions and meteorology, the simulations in the fixed emission

scenarios and the fixed meteorology scenarios may not fully

reflect real-world conditions.

Other studies have applied statistical methods to assess

the meteorology-associated changes in air pollution and to

quantify the contribution of emissions. Multiple linear re-

gression (MLR) has been adopted to describe the relation-

ships between meteorology and air pollutant concentrations

(N. Cheng et al., 2019; Sá et al., 2015). For example, Zhai et

al. (2019) constructed deseasonalized and deseasonalized–

detrended time-series data and assessed the meteorological

effects by MLR. Since the linear model may not fully char-

acterize the nonlinear associations and interactions between

air pollution and meteorology, some studies also employed

machine learning algorithms that better describe the complex

relationships between meteorology and air pollution (Grange

et al., 2018; Vu et al., 2019; Zhang et al., 2020; Qu et al.,

2020). As such methods require continuous PM2.5 data as in-

puts, previous studies relied on PM2.5 ground measurements

that were limited to certain locations (e.g., ground monitor-

ing stations) and times (e.g., after 2013 in China). The limited

sample size not only affected the model quality by introduc-

ing sampling bias but also hampered the analyses on spatial

heterogeneity and long-term trend of meteorology contribu-

tions across China. The analysis of the complete-coverage

long-term trends of meteorology and emission contributions

to air pollution is urgently needed to support further evalua-

tion of clean air policies and region-specific air quality man-

agement within the context of climate change.

In this study, we aimed to analyze the spatiotemporal

trends in meteorology- and emission-associated PM2.5 vari-

ations across China during 2000–2018. The meteorologi-

cal impacts on PM2.5 trends were assessed with data-fusion

PM2.5 predictions and chemical transport model simula-

tions, taking advantage of the complete spatiotemporal cov-
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erage and long data records of these two datasets. The data-

fusion PM2.5 predictions were derived by combining satel-

lite data, chemical transport model simulations, ground mea-

surements, and ancillary data with an optimized two-stage

machine learning model that improved the PM2.5 estimates

during highly polluted days. Then we assessed the long-term

variations in meteorology-associated PM2.5 using a general-

ized additive model (GAM) that better described the nonlin-

ear associations between PM2.5 and meteorology. We also

estimated the meteorological impacts on PM2.5 trends with

chemical transport model simulations under different scenar-

ios coupled with a recent emission inventory. We showed that

the temporal trends of meteorology-associated PM2.5 esti-

mated from the GAM method and from the chemical trans-

port model were highly consistent. The trend analysis of the

meteorology and emission contributions to PM2.5 could sup-

port air quality management plans in the future.

2 Data and methods

This study employed simulations from the Weather Re-

search and Forecasting/Community Multiscale Air Quality

(WRF/CMAQ) modeling system as well as gridded PM2.5

predictions fused from multiple data sources to assess the

meteorological effects on PM2.5 (Fig. 1). The study domain

covers eastern China (east of 105◦ E), and the PM2.5 concen-

trations during 2000–2018 were analyzed.

2.1 Satellite-based PM2.5 retrievals

Previously reported satellite-based PM2.5 data tended to un-

derestimate high-pollution events (Xiao et al., 2018; Xue et

al., 2019), because these events rarely occurred in the model

training dataset and were less characterized by the model.

Since high-pollution events were largely affected by meteo-

rological conditions (Zhang et al., 2015; T. Liu et al., 2017),

correctly capturing these events was critical for the assess-

ment of meteorological contributions. Thus, we developed

a two-stage model to improve the prediction accuracy of

PM2.5 estimates, especially over highly polluted days, and

obtained a spatiotemporally continuous daily PM2.5 dataset

during 2000–2018. The updated near real-time PM2.5 predic-

tions during 2000–current can be downloaded in our Track-

ing Air Pollution in China (TAP) website (http://tapdata.org/,

last access: 17 March 2020).

2.1.1 Data for PM2.5 modeling

We assimilated the daily PM2.5 measurements, WRF/CMAQ

simulations, satellite aerosol optical depth (AOD) from Aqua

and Terra MODIS Level 2 products (https://ladsweb.modaps.

eosdis.nasa.gov/, last access: 7 September 2020), meteoro-

logical parameters from the Modern-Era Retrospective anal-

ysis for Research and Applications Version 2 (MERRA-2)

(Randles et al., 2017; Buchard et al., 2017), elevation data

from the Global Digital Elevation Model (GDEM) (https:

//earthexplorer.usgs.gov/, last access: 15 September 2018),

gridded population distributions (Xiao et al., 2021b), and

land cover classification data (http://data.ess.tsinghua.edu.

cn, last access: 9 April 2020) (Gong et al., 2019a, b) to

train the PM2.5 prediction model and predicted PM2.5 con-

centrations during 2000–2018. The detailed data collection

and processing methods are summarized in Appendix A.

2.1.2 The two-stage prediction model

A two-stage prediction model was developed to estimate

PM2.5 concentrations over China (Fig. 1). The first-stage

model described high-pollution events that were underesti-

mated in previous models, and the second-stage model pre-

dicted residuals of CMAQ PM2.5 simulations with the esti-

mated high-pollution indicator from the first-stage model.

Since high-pollution events relatively rarely occur in the

model training dataset, models may not appropriately char-

acterize the associations between high PM2.5 concentrations

and predictors, leading to underestimation of high-pollution

levels (Wei et al., 2020). In this study, we first defined a high-

pollution indicator, describing whether the daily PM2.5 ob-

servation was higher than the monthly average PM2.5 con-

centration plus 2 standard deviations at each location. We

noticed that only 3.9 % of the daily data were assigned as

high-pollution levels. To balance high-pollution samples and

normal samples, the synthetic minority oversampling tech-

nique (SMOTE) (Torgo, 2010) that improved classifiers’ per-

formance in previous studies (Ghorbani and Ghousi, 2020;

Saputra and Suharjito, 2019) was applied. The SMOTE al-

gorithm oversampled the high-pollution data (the minority)

by artificially generated new synthetic samples along the line

between the high-pollution data and their selected nearest

neighbors (Chawla et al., 2002, 2003). This method also un-

dersampled the normal data (the majority) to better balance

the model training dataset. After SMOTE resampling, high-

pollution data accounted for 23 % in the new model training

dataset.

The balanced model training dataset was adopted to train

the first-stage extreme gradient boosting (XGBoost) model

that built the relationship between the high-pollution indica-

tor and all the predictors, excluding CMAQ simulations. The

predicted high-pollution indicator from the first-stage model

was passed to the second-stage model as a predictor. We

adopted the residual between the PM2.5 measurement and

the CMAQ PM2.5 simulation as the dependent variable to

train the second-stage model, thus enhancing the response of

predictors to PM2.5 variations and improving the prediction

accuracy.

To fill any missing satellite data, in both the first- and

second-stage model, we assigned the availability of satellite

retrievals as a dichotomous predictor and constructed it as

the cutoff point of the first layer of the decision tree to sep-

arate the training data, thus mining the association between
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Figure 1. Methodology framework of this study. The green process shows the two methods that separate emission and meteorology contri-

butions to PM2.5 in this study. The first method assesses the meteorology-associated PM2.5 from WRF/CMAQ simulations with the fixed

emissions at the 2000 level and varying meteorological inputs. The second method assesses the meteorology-associated PM2.5 with satellite-

based PM2.5 estimations and a generalized additive model (GAM). The processing of satellite-based PM2.5 estimation includes two stages.

In stage 1 (blue), we constructed a measurement-based high-pollution indicator and trained an extreme gradient boosting (XGB) model to

predict the high-pollution indicator. In stage 2 (yellow), we trained a XGB model to predict the residuals of WRF/CMAQ simulations with

high-pollution indicator as well as satellite AOD, meteorology, and land use data as predictors.

the availability of satellite retrievals and the PM2.5 concen-

tration. This method that fills missing PM2.5 predictions with

a decision tree outperformed other gap-filling methods in our

previous evaluation study (Xiao et al., 2021a). The inclusion

of CMAQ simulations also improved the accuracy of the gap-

filled results.

The model’s hyperparameter optimization and perfor-

mance evaluation were conducted through fivefold cross-

validation (CV), by-year CV, and by-location CV (Ap-

pendix A1).

2.2 Assessment of the meteorological effects on PM2.5

using GAM

Following the method described by Zhai et al. (2019), we

constructed time-series data to distinguish the long-term,

seasonal, and short-term trends of PM2.5 concentrations and

meteorological conditions. Then the associations between

PM2.5 and meteorology were fitted with a GAM, using

daily satellite-based PM2.5 predictions as dependent variable.

GAM has been previously used to predict PM2.5 concentra-

tions with meteorology and other predictors (Yanosky et al.,

2014; Liu et al., 2009; Xiao et al., 2018). The meteorological

predictors in the GAM included 10 m wind speed, 2 m spe-

cific humidity, 2 m air temperature, total precipitation, 10 m

eastward wind (U wind), 10 m northward wind (V wind),

U wind at 500 hPa, V wind at 500 hPa, and planetary bound-

ary layer height. These meteorological parameters have been

reported to be strongly associated with PM2.5 concentrations

in various regions in China (Z. Chen et al., 2020; Feng et al.,

2020) and contributed significantly in previous PM2.5 predic-

tion models (She et al., 2020).

Both the PM2.5 data and the meteorology data followed

the same processing protocol. First, we calculated 10 d av-

erage data, 50 d average data, and 19-year (2000–2018) av-

erage data based on the 50 d average data. We constructed

deseasonalized–detrended data by removing the 50 d average

data from the 10 d average data. We also constructed desea-

sonalized data by removing the 19-year average of the 50 d

average data from the 10 d average data. Assuming that the

associations between PM2.5 and meteorological parameters

remained constant, we estimated these associations by a grid-

specific seasonal and year-round GAM (Pearce et al., 2011)

with the deseasonalized–detrended data. The GAM allows

for a nonlinear response of PM2.5 levels to meteorological

conditions, thus providing better fits to the training data (Ta-

ble B1). We also fitted grid-specific seasonal stepwise MLR

in a sensitivity analysis to examine whether the selection of

model affects the assessment of meteorological effects. Ad-

ditionally, normalized meteorological parameters were used

to fit the linear regression. Hence, the estimated coefficients

reflected the relative contribution of each meteorological pa-
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rameter and supported the spatial analysis of the meteorolog-

ical effects. Since the seasonal model attained a higher aver-

age model R2 than the year-round model did (Table A1), the

results obtained with the seasonal model are presented in this

study. Thus, the meteorological effects on PM2.5 long-term

variations were assessed as the GAM-estimated responses of

PM2.5 to variations in the deseasonalized meteorological pa-

rameters.

2.3 Assessment of the meteorological effects on PM2.5

using WRF/CMAQ

We also used the WRF/CMAQ model to separate the contri-

bution of emissions and meteorology on PM2.5 trends. The

CMAQ model version 5.1 driven by the WRF model version

v3.5.1 were used in this study, and the model configurations

were following previous studies (Zheng et al., 2017). The ini-

tial and boundary conditions for WRF were derived from the

National Centers for Environmental Prediction Final Analy-

sis (NCEP-FNL) reanalysis data (National Centers for Envi-

ronmental Prediction/National Weather Service/NOAA/U.S.

Department of Commerce, 2000). The boundary conditions

for CMAQ were taken from the global GEOS-Chem (Bey et

al., 2001) model simulations. We used CB05 (Yarwood et al.,

2005) as the gas-phase mechanism, AERO6 (United States

Environmental Protection Agency, 2012) as the aerosol mod-

ule, and Regional Acid Deposition Model (RADM) as the

aqueous-phase chemistry model in CMAQ. The anthro-

pogenic emissions for mainland China were taken from the

Multi-resolution Emission Inventory of China (MEIC; http:

//meicmodel.org/, last access: 17 March 2019) (Zheng et

al., 2018; Li et al., 2017a), and emissions beyond mainland

China were from the MIX Asian emission inventory (Li et

al., 2017b).

Two scenarios were conducted to estimate the meteoro-

logical impacts on PM2.5 trends: the BASE scenario and the

FixEmis scenario. The BASE scenario was simulated with

year-by-year emissions and meteorology during 2000–2018,

while the FixEmis scenario was conducted using fixed emis-

sions at the 2000 level and year-by-year meteorological in-

puts. The simulations of the FixEmis scenario were calibrated

by multiplying the ratio between the satellite-based PM2.5

estimates in Sect. 2.1 and the BASE scenario PM2.5 simula-

tions. The meteorological effects on PM2.5 long-term trends

were assessed as the 10 d average of daily simulations in the

FixEmis scenario minus the 19-year average of FixEmis sim-

ulations. The PM2.5 simulations from the BASE scenario also

supported the PM2.5 estimates in Sect. 2.1.

The evaluation of meteorological simulations of surface

temperature, surface relative humidity, surface wind speed,

and surface wind direction from WRF against ground-

level observations from the National Climate Data Cen-

ter (NCDC; ftp://ftp.ncdc.noaa.gov/pub/data/noaa/, last ac-

cess: 20 November 2019) were summarized in Fig. A1.

The WRF model well reproduced the near-surface temper-

ature (r = 0.98, normalized mean bias = −1.9 %) and rela-

tive humidity (r = 0.81, normalized mean bias = 5.4 %) but

slightly overestimated surface wind speed (r = 0.57, normal-

ized mean bias = 8.0 %). The WRF simulation quality of

temperature, relative humidity, and wind direction was con-

sistent across years, but the simulation quality of wind speed

showed slightly larger interannual variations. The validation

results showed that the WRF simulations were acceptable to

support further simulation of PM2.5 concentrations. The eval-

uation of PM2.5 simulations from CMAQ during the time pe-

riod when ground measurements are available has been re-

ported in our previous study (Q. Zhang et al., 2019). Com-

pared to the measurements from ground monitoring stations,

our model simulations well reproduced the spatial and tem-

poral distributions of PM2.5 across China. Compared to the

daily PM2.5 measurements in 74 cities, the CMAQ simula-

tions obtained correlation coefficient R higher than 0.6 in 67

cities. The simulated PM2.5 decrease (30 %) during 2013–

2017 over China also well matched the observed PM2.5 de-

crease (33 %).

3 Results and discussion

3.1 Evaluation of the two-stage PM2.5 prediction model

The SMOTE resampling approach improved the prediction

accuracy in the fivefold CV such that the area under the

curve (AUC) increased from 90.7 to 98.7 (Fig. A2). The

two-stage model predictions in the fivefold CV matched the

ground measurements well with an R2 of 0.80 and RMSE of

18.5 µg m−3 (Fig. A2). The prediction accuracies in the by-

location CV (R2 of 0.71 and RMSE of 22.1 µg m−3) and by-

year CV (R2 of 0.58 and RMSE of 27.5 µg m−3) were lower

than that in the fivefold CV, indicating that unobserved tem-

poral and spatial trends contributed to the PM2.5 prediction.

The model performance was comparable to that reported in

previous studies (Xiao et al., 2018; He and Huang, 2018;

Dong et al., 2020).

Specifically, compared to a benchmark model without

SMOTE resampling and setting the PM2.5 concentration as

the dependent variable, the two-stage model in this study bet-

ter predicted high-pollution events (Fig. 2). The density dis-

tribution of the PM2.5 predictions from the two-stage model

was closer to the density distribution of the PM2.5 measure-

ments. The density distribution of the PM2.5 predictions from

the benchmark model showed a higher percentage of low

PM2.5 concentrations and a lower percentage of high PM2.5

concentrations than those revealed by the density distribution

of the measurements. The greater ability of our two-stage

model in capturing the daily variations in PM2.5 concentra-

tions could better support our following analysis about mete-

orological impacts.
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Figure 2. Comparisons between the two-stage model and the benchmark model. (a) The scatter plot of the two-stage model predictions and

the benchmark model predictions against ground observations in the fivefold cross-validation (CV). (b) Density distributions of the two-stage

model predictions, the benchmark model predictions, and the PM2.5 observations in the fivefold CV.

Figure 3. Temporal trends of the annual average satellite-based

PM2.5 concentrations over eastern China and the key regions dur-

ing 2000–2018. BTH: Beijing-Tianjin-Hebei; FWP: Fenwei Plain;

YRD: Yangtze River Delta; PRD: Pearl River Delta.

Figure 3 shows the PM2.5 trends during 2000–2018 in

eastern China, as well as the key regions including BTH,

YRD, the Fenwei Plain (FWP), and the Pearl River Delta

(PRD). The PM2.5 concentrations continuously increased

from 35.4 µg m−3 in 2000 to 48.7 µg m−3 in 2006 over east-

ern China. It then remained relatively constant from 2007 to

2013 and decreased from 46.5 µg m−3 in 2013 to 32.5 µg m−3

in 2018. BTH and FWP showed consistent temporal trends

of PM2.5, with higher pollution levels over BTH. However,

the difference in PM2.5 level between BTH and FWP has

greatly decreased since 2015 due to the higher rate of PM2.5

decrease in BTH resulting from the stricter emission control

policies. The PM2.5 level in the PRD reached its peak in 2006

and decreased thereafter. The observed PM2.5 concentrations

in 2018 were 14.0, 30.9, 18.2, 22.9, and 13.2 µg m−3 lower

than those in 2013 over eastern China, BTH, FWP, YRD, and

PRD, respectively.

3.2 Interannual and seasonal variabilities of

meteorology-associated PM2.5

Figure 4 shows the meteorological contribution in monthly

average PM2.5 concentrations estimated from the GAM and

CMAQ simulations. The temporal trends of meteorology-

associated PM2.5 estimated from these two methods were

consistent across eastern China and in the key regions, with

the correlation coefficients ranging between 0.53 (eastern

China) and 0.72 (BTH). For example, the GAM estimated

typical favorable meteorological conditions in October 2013,

October 2012, and February 2016 in BTH, which are also

captured by the CMAQ model. However, the magnitude of

the meteorological effects estimated by CMAQ were slightly

higher than GAM.

Figure 5 shows the GAM estimated temporal trend in

meteorology-associated PM2.5 across eastern China. Consis-

tent with the CMAQ estimation (Fig. A3), 2012 is a typi-

cal year during which the meteorological conditions were

favorable to PM2.5 pollution control over eastern China,

with an annual meteorology-associated PM2.5 anomaly of

−1.8 µg m−3 (4.07 %) (Fig. 5). Year 2004 is a typical year

during which the meteorological conditions were unfavor-

able to PM2.5 pollution control, with an annual meteorology-

associated PM2.5 increase of 1.2 µg m−3 (2.60 %). The mete-

orological effects changed drastically over a relatively short

time period. For example, in 2005, the meteorological con-

ditions were greatly favorable to pollution control, but in

the previous and following years, i.e., 2004 and 2006, re-

spectively, the meteorological conditions were greatly unfa-

vorable to pollution control. The long-term trend of the an-

nual meteorology-associated PM2.5 fluctuated about 0 across

eastern China, with a decreasing trend (the meteorological

conditions improving) from 2003 to 2010 and an increasing
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Figure 4. Fractional contribution of meteorology to PM2.5 concentrations on the monthly scale during 2000–2018, estimated from CMAQ

(the orange line) and GAM (the blue line).

trend (the meteorological conditions worsening) from 2010

to 2017 (Figs. 5, A3). The CMAQ simulations estimated the

largest unfavorable meteorological contribution in 2018 of

11.0 % and the greatest beneficial meteorological contribu-

tion in 2012 of 7.2 % over eastern China.

The interannual variations in the meteorology-associated

PM2.5 assessed in this study were consistent with those re-

ported in previous studies (Zhang et al., 2018). For example,

Feng et al. (2020) presented the long-term variations in air

stagnation in northern China that characterized the circula-

tion and diffusion in the boundary layer with fixed emissions

to describe the temporal trend of haze-related weather condi-

tions. The temporal pattern of the air stagnation index from

2000 to 2018 closely resembled the temporal trend of the es-

timated meteorological-associated PM2.5 in this study. Addi-

tionally, we observed unfavorable meteorological conditions

in the winters of 2014 and 2016, consistent with the previ-

ously reported climate anomalies in these two years (Yin et
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Figure 5. The GAM-estimated relative impact of meteorology on annual average PM2.5 (top row), relative impact of meteorology on

average PM2.5 in fall–winter (September, October, November, December, January in next year, and February in next year) (middle), and

relative impact of meteorology on average PM2.5 in spring–summer (bottom row) with the long-term trends estimated by polynomial and

linear regressions over eastern China, BTH, FWP, YRD, and PRD.
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al., 2017; Yin and Wang, 2017). We also showed that the

meteorological conditions in 2014 and 2015 were more un-

favorable to PM2.5 pollution control than those in 2013 over

eastern China, as previously reported (X. Zhang et al., 2019;

P. Wang et al., 2019).

Since haze events that greatly affect public health mainly

occur in fall and winter (Zhao et al., 2013), we ana-

lyzed the meteorological effects during fall–winter (Septem-

ber, October, November, December, January, and Febru-

ary) and spring–summer. The meteorological conditions in

fall–winter dominated the annual meteorological effects on

PM2.5. We observed typical unfavorable meteorological con-

ditions in the fall–winter of years 2006 (2.8 µg m−3) and

2016 (2.5 µg m−3). In certain years, e.g., 2018, the spring–

summer meteorological conditions were unfavorable to pol-

lution control, but since the fall–winter meteorological con-

ditions were favorable, the annual meteorological effect was

beneficial. The significant fall–winter meteorological effects

indicated the critical contribution of meteorology to haze

event formation. The fall–winter weather conditions in 2017

were substantially better than the fall–winter weather con-

ditions in 2013, leading to a 3.3 µg m−3 decrease in the

meteorology-associated PM2.5, thereby contributing to the

achievement of pollution control targets of the Action Plan

(X. Zhang et al., 2019; Yi et al., 2019). Since the current

evaluation of clean air policies focuses on changes in pollu-

tion levels over short periods, e.g., 3 or 5 years, policy per-

formance can be largely affected by meteorological changes.

3.3 Spatial heterogeneity in meteorology-associated

PM2.5 trends

We also analyzed the variations in the meteorological influ-

ence on PM2.5 in several populous urban agglomeration re-

gions of China (Figs. 5, A3). In the BTH region, 2014 was a

typically unfavorable year (3.1 µg m−3), and 2010 was a typ-

ically favorable year (−4.9 µg m−3). The shape of the long-

term trend of the meteorology-associated PM2.5 during win-

tertime in BTH was consistent with that in previous studies.

For example, the 2014 and 2017 winter meteorological con-

ditions were greatly favorable, and the 2016 winter meteoro-

logical conditions were considerably unfavorable (Yi et al.,

2019; Wang and Zhang, 2020). The meteorological effects

showed a regional consistency with varying magnitudes. For

example, 2004 was a typical unfavorable year in both the

PRD (6.3 µg m−3) and the YRD (2.7 µg m−3), and 2016 was

a typical favorable year in both the PRD (−7.3 µg m−3) and

the YRD (−2.1 µg m−3). Consistent with previous studies,

the PRD revealed the largest meteorological influence on

PM2.5 among these regions (Zhai et al., 2019).

We observed notable regional heterogeneity in the long-

term trends as well as seasonal trends of the meteorological

effects on PM2.5 (Figs. 5, A3). In the northern part of China,

especially in the North China Plain and central eastern China,

the meteorological conditions worsened and were adverse to

pollution control during 2000–2018 (Yin and Wang, 2018;

Zhang et al., 2018). Multiple climate systems could be as-

sociated with the long-term trend of meteorological effects.

For example, greenhouse-gas-induced warming may result

in a decrease in light-precipitation days and surface wind

speed, which are unfavorable to pollution control (Chen et

al., 2019). In the context of global warming, the unfavorable

meteorological conditions in the northern part of China could

worsen in the future, although previous studies on the projec-

tion of the future effects of climate change on air pollution

showed inconsistent results. For example, Cai et al. (2017)

projected increased frequency and persistence of haze events

in Beijing in the future (2050–2099) and Shen et al. (2018)

found a statistically insignificant trend of haze index in the

future in Beijing. In contrast, in the southern part of China,

especially in the YRD and surrounding regions, the estimated

meteorological conditions were improving and were benefi-

cial to pollution control (Chen et al., 2019). Further studies

are needed to better understand the long-term trend of mete-

orological and climate effects on air pollution across China.

Stricter clean air actions are preferred to avoid haze events in

the future, considering the considerable meteorological ef-

fects on air pollution.

Regarding the seasonal trend of the meteorological effects,

in spring–summer, we observed improving meteorological

effects in the southern part of China and worsening meteo-

rological effects in the northern part of China. This spatially

heterogeneous trend may result from the strengthening of

the East Asian summer monsoon, which enhances the trans-

portation of aerosols from the south to the north of China

(Zhu et al., 2012; R. Liu et al., 2017). In fall–winter, the East

Asian winter monsoon significantly affects air pollution lev-

els that benefit the air quality in northern China but are un-

favorable to air quality in southern China due to the south-

ward transport of pollutant from north to south (Jeong and

Park, 2017; Yin et al., 2015). For example, in the years 2004,

2005, 2007, and 2010 with strong East Asian winter mon-

soon, the BTH and the FWP showed strong favorable mete-

orology contributions to PM2.5, but the YRD and the PRD

showed unfavorable meteorological effects. On the contrary,

in the year 2006 with weak East Asian winter monsoon, the

BTH and the FWP showed unfavorable meteorological ef-

fects (Jeong and Park, 2017).

The large-scale atmospheric circulations in some specific

years also showed notably distinct effects on PM2.5 concen-

trations over the north and south of eastern China, due to the

opposite effects on meteorology parameters. For example, in

2015 and 2016 with strong El Niño, the fall–winter meteo-

rology in the northern part of eastern China was significantly

unfavorable for pollution control, but in the southern part of

eastern China it was considerably favorable. One reason is

that the El Niño leads to excessive precipitation over south-

ern China that favors wet deposition but weakened the East

Asian winter monsoon and led to southern wind anomaly,

weaker surface wind, and high humidity that were favorable
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to pollution events in the northern region of eastern China

(Yin et al., 2015; Yin and Wang, 2016; He et al., 2019; Chang

et al., 2016). On the country, during the years with La Niña,

e.g., 2007 and 2010, we estimated beneficial winter–fall me-

teorology in northern regions but unfavorable meteorology in

the southern region (X. Cheng et al., 2019).

Consistent with previous studies, we also observed spa-

tially and seasonally varying associations between PM2.5 and

meteorological parameters that reflect the varying PM2.5 re-

sponses to meteorological changes (Fig. A4). Temperature

was positively associated with PM2.5 in spring, summer,

and fall across eastern China; however, in winter, the tem-

perature was negatively associated with PM2.5 in northern

China (He and Wang, 2017; Qiu et al., 2015) due to the low-

temperature-related stable atmosphere and decreased evap-

oration loss of PM2.5. Humidity yielded positive effects in

northern China and negative effects in southern China in all

seasons, especially in winter (He et al., 2017; Zhai et al.,

2019). The spatial difference in the effects of humidity on

PM2.5 may occur due to a threshold of the humidity altering

the direction of the humidity influence: from hygroscopic in-

crease to wet deposition. Zhai et al. (2019) also discussed the

north–south contrast in the PM2.5–humidity associations and

indicated that the positive effects of humidity on PM2.5 in the

north were partly attributed to the favorable role of aqueous-

phase aerosol chemistry in secondary PM2.5 formation, and

the negative PM2.5–humidity associations in the south were

partly attributed to the precipitation-related wet deposition.

The boundary layer height and precipitation were negatively

associated with PM2.5 across eastern China in all seasons,

and the effect of precipitation was greater in northern China

than that in southern China (Wang and Chen, 2016). Re-

garding the relative contribution of the different meteorol-

ogy parameters, we found that over the south coast region,

temperature and humidity showed greater effects than the

boundary layer height and precipitation did. In winter, hu-

midity, boundary layer height and precipitation were critical

for the PM2.5 variations in the middle and northern China.

In summer and fall, the temperature and humidity were criti-

cal for the PM2.5 variations across southern China. In spring,

the temperature showed notable effects in the south coast re-

gion, and the precipitation exhibited large effects in the North

China Plain. The seasonal variations in meteorological im-

pacts could be due to the interactions between meteorological

parameters that showed significant seasonal patterns. Further

studies are needed to understand the mechanism of seasonal

differences in the meteorology–pollution relationships.

3.4 PM2.5 trends after adjusting the meteorological

effects

In eastern China, after adjusting for the meteorological influ-

ence, PM2.5 started increasing in 2000 and peaked in 2006

with an increase of 9.6 µg m−3 compared to the 2000 level

(Fig. 6). Then, the PM2.5 varied, with the second highest

PM2.5 level occurring in 2011 (9.4 µg m−3 higher than the

2000 level). After 2013, with the implementation of aggres-

sive emission control policies, PM2.5 notably decreased, with

a 13.1 µg m−3 lower PM2.5 level in 2018 compared to the

level in 2013. After adjusting for the meteorological effects,

the temporal variations in PM2.5 were consistent with the

temporal variations in pollutant emissions retrieved from the

MEIC emissions. The emissions of SO2 and PM2.5 peaked in

2006, and the emissions of NOx peaked in 2012.

In the BTH region, PM2.5 peaked in 2006 and de-

creased by 10.8 µg m−3 in 2008 due to the emission con-

trol policies targeting the air quality during the 2008 Beijing

Olympic Games. After 2008, PM2.5 continuously increased

and peaked in 2013, at an increased rate of 1.0 µg m−3 per

year. Considering the variations in pollutant emissions, the

first PM2.5 peak in BTH was primarily driven by SO2 emis-

sions, and the second PM2.5 peak was driven by NO2 and

PM2.5 emissions. The PM2.5 decreasing trend after 2013 in

BTH was higher than that in the other regions (5.8 µg m−3

per year), mainly driven by the emission reduction in SO2

and PM2.5. The annual average meteorology-adjusted PM2.5

concentration in BTH from 2014 to 2018 was consistent

with that in a previous study (Qu et al., 2020). We found

that the observed high-pollution events in the fall–winter of

years 2006, 2013, and 2016 were partly attributable to unfa-

vorable meteorological conditions that led to a 5.9, 3.4, and

11.1 µg m−3 PM2.5 increase, respectively. Since the meteo-

rology contributed up to 25 % of the observed PM2.5 level in

fall–winter, further emission control measures are needed to

improve the winter air quality and avoid violations of the air

quality standards under unfavorable meteorological condi-

tions. In FWP, the highest PM2.5 level occurred in 2005, and

the average decrease rate after 2013 was 2.8 µg m−3 per year.

The high pollution in the 2016 fall–winter period attributable

to unfavorable meteorological conditions was also observed

in FWP, although the meteorological effects in FWP were

smaller than those in the BTH region, with up to 10 % of

the meteorology contribution in PM2.5 in fall–winter. In the

YRD, PM2.5 peaked in 2011 and 2015. The unfavorable me-

teorological conditions observed in the fall–winter of 2016

did not occur in either the YRD or the PRD, showing a spatial

difference in the meteorological system. In the PRD, PM2.5

peaked in 2006 and continuously decreased from 2006 to

2018, at an average decrease rate of 2.8 µg m−3 per year. This

decreasing trend was consistent with the trend of the PM2.5

emissions. The temporal variations in NOx and SO2 emis-

sions contributed to the trends in the meteorology-adjusted

PM2.5 from 2010–2011.

It is observed that although emissions dominated the long-

term variations in PM2.5, meteorological conditions signifi-

cantly affected the observed PM2.5 concentration in all key

regions, especially in fall and winter. We observed as much

as 25.6 %, 6.3 %, 5.1 % and 4.8 % annual average meteo-

rological effects, estimated from GAM, in the PRD, BTH,

FWP, and YRD, respectively, during the study period. The
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Figure 6. Time series of the annual average (left column) and fall–winter average (middle column) PM2.5 concentrations before (the orange

line) and after (the gray line) the adjustment of the meteorological effects from 2000 to 2018 using GAM. The gray shadow shows the

potential range of the observed PM2.5 due to meteorological effects. The right column shows the MEIC emissions of PM2.5, NOx , and SO2.
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Figure 7. (a) Spatial distribution of the PM2.5 decrease rate during 2013–2018 after adjusting for the meteorological effects using GAM.

(b) Spatial distribution of the PM2.5 decrease rate during 2013–2018 after adjusting for the meteorological effects using CMAQ. (c) The

difference in the PM2.5 decrease rate before and after the adjustment for the meteorological effects using GAM.

meteorological contributions in fall–winter were even higher.

The CMAQ simulations estimated as much as 17.5 %, 8.8 %,

26.6 %, and 6.6 % annual average meteorological effects in

the PRD, BTH, FWP, and YRD, respectively. From 2015

to 2016, the winter–fall meteorological conditions consider-

ably changed to unfavorable for pollution control in north-

ern China, leading to a 2.8 µg m−3 increase in the winter–

fall average PM2.5 concentration across eastern China. BTH

and FWP showed 9.8 and 8.1 µg m−3 increases, respectively.

Such increases may weaken the effects of emission control

policies during this period. In 2018, the PM2.5 concentration

in Beijing was reported to be 51 µg m−3. However, if 2018

had been a typical year with unfavorable meteorological con-

ditions, the annual PM2.5 concentration could have reached

54 µg m−3.

The meteorology-adjusted PM2.5 trend from 2013 to 2018

showed varying spatial patterns. The highest decrease oc-

curred in Beijing, Tianjin, south of Hebei, and the capi-

tal cities, including Xi’an, Wuhan, Zhengzhou, and Chang-

sha (Fig. 7), indicating the more efficient implementation

of clean air policies in these regions. As described above,

the effects of meteorology also showed spatial differences.

Over the Northeast China Plain, North China Plain, and

Sichuan Basin, the adjusted PM2.5 decreasing trend was

weaker than the observed trend. Over Shanxi, the intersection

of Hubei-Henan-Anhui, and south of Jiangsu, the adjusted

PM2.5 decreasing trend was stronger than the observed trend.

The interquartile range of the meteorological effects on the

PM2.5 trend varied between −17.2 % and 1.8 % across east-

ern China. From 2013 to 2018, the decreasing trend of the

meteorology-adjusted PM2.5 level was weaker than the de-

creasing trend of the observed PM2.5 level by 8.4 % in east-

ern China, 7.9 % in the BTH region, 3.3 % in the YRD, and

7.5 % in the PRD, while the adjusted trend was greater than

the observed trend by 2.01 % in the FWP.

3.5 Sensitivity analysis

To evaluate whether the selection of statistical models affects

the assessed associations between meteorology and PM2.5,

we compared the meteorology-associated PM2.5 estimated

by GAM and MLR. The estimated meteorology-associated

PM2.5 levels from the MLR and GAM matched well, with

correlation coefficients larger than 0.98 across eastern China

(Fig. A5). Hence, the results of this study are robust and not

affected by the selection of PM2.5 meteorology model.

To examine the effects of length of the time window when

constructing the deseasonalized PM2.5, we conducted a sen-

sitivity analysis with a 90 d averaging window in the BTH

region, and the estimated PM2.5 concentrations after adjust-

ing for meteorological effects were almost identical to the

results using a 50 d time window (Fig. A5). Thus, this statis-

tical method was not sensitive to the averaging time window.

Compared to previous studies, we employed the GAM to

better describe the nonlinear associations between PM2.5 and

meteorology in this study. We observed consistent temporal

trends of the meteorological effects and the meteorologically

adjusted PM2.5 concentrations compared to previous studies,

but the magnitude of the assessed meteorological effects and

adjusted PM2.5 concentrations varied. Thus, when compar-

ing the meteorological effects of a specific year, the conclu-

sion may be inconsistent (Xu et al., 2020; Zhai et al., 2019;

Q. Zhang et al., 2019; X. Zhang et al., 2019). Assessing the
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meteorology-associated PM2.5 with different methods may

also lead to varying long-term trends (Xu et al., 2020). Sev-

eral factors may affect the uncertainty of the assessed me-

teorological contributions in this study. First, as reported

by previous studies (Xiao et al., 2018; Xue et al., 2019),

the satellite-based PM2.5 prediction model suffered from in-

creasing prediction error when hindcasting historical pollu-

tion levels a long time before the model training time period.

One reason could be that some unobserved parameters, e.g.,

PM2.5 composition, modify the associations between PM2.5

and predictors, leading to model overfitting. The satellite-

driven PM2.5 prediction model used in this study is a state-of-

the-art prediction model with improved prediction accuracy

for high-pollution events, but its hindcast prediction qual-

ity could be further improved to better describe the histori-

cal PM2.5 spatiotemporal distribution. Second, we obtained

meteorological information from the MERRA-2 reanalysis

dataset with a spatial resolution lower than that of the PM2.5

predictions. This resolution mismatch with smooth spatial

variations in the meteorological fields may not fully describe

the meteorological effects at the local scale.

4 Conclusions

In this study, we analyzed the meteorology- and emission-

driven variations in the PM2.5 concentration during 2000–

2018 across eastern China by the GAM-based method and

CMAQ simulations. To support the GAM-based analysis,

we combined satellite data, CMAQ simulations, and ground

observations to predict complete-coverage PM2.5 concentra-

tions with a two-stage machine learning model that attained

improved prediction accuracy of high-pollution events. Both

methods showed significant meteorological influences on

PM2.5 dominated by the meteorological conditions in fall

and winter. The greatly varying meteorological effects on

PM2.5 concentration over a relatively short time period may

remarkably affect the evaluation of clean air policies during

a certain period. We also observed distinct regional differ-

ences in the long-term and seasonal trends of the meteoro-

logical effects. The meteorology-associated PM2.5 tended to

increase in the North China Plain and central China but de-

creased across southern China, e.g., in the YRD. After ad-

justing for the meteorological effects, the average PM2.5 con-

centration decreased by 13.1 µg m−3 from 2013 to 2018 over

eastern China, and the BTH region showed the greatest de-

crease (28.5 µg m−3) among the studied urban agglomeration

regions. The decreasing trend of PM2.5 after adjusting for the

meteorological effects was 8.4 % weaker than the observed

PM2.5 decreasing trend in eastern China, 7.9 % weaker in the

BTH region, 3.3 % weaker in the YRD, and 7.5 % weaker in

the PRD, while the adjusted trend was 2.0 % greater than the

observed trend in the FWP. Considering the remarkable me-

teorological contributions to PM2.5, further emission reduc-

tion measures are required to avoid the occurrence of haze

events under unfavorable meteorological conditions.
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Appendix A: Data collection and processing

We collected hourly PM2.5 measurements from 2013 to 2018

from both the Chinese national air quality monitoring net-

work (∼ 1593 stations) and local air quality monitoring sta-

tions (∼ 1700 stations) mainly located in eastern China. Con-

tinuous identical measurements over at least 3 h were re-

moved due to instrument malfunction. Daily average concen-

trations were calculated based on at least 12 hourly measure-

ments.

We obtained Aqua and Terra MODIS Collection 6 Level

2 aerosol products at a 0.1◦ resolution from https://ladsweb.

modaps.eosdis.nasa.gov/ (last access: 7 September 2020).

Since the aerosol optical depth (AOD) retrieved with the

Deep Blue (DB) algorithm and the Dart Target (DT) algo-

rithm (Levy et al., 2013; Hsu et al., 2013) exhibit differ-

ent coverage and retrieval accuracy (Y. Wang et al., 2019),

we fitted daily linear regressions to fill the missing retrievals

when only DT or DB AOD was presented. Then, we calcu-

lated the average of the DT AOD and DB AOD separately

for each sensor. Similarly, since the Aqua AOD and Terra

AOD are observed at different pass-over times, to improve

the data coverage, we fitted daily linear regressions to fill the

missing retrievals when only Aqua AOD or Terra AOD was

presented. We calculated the average of the Aqua and Terra

AODs to characterize the daily aerosol loadings (Jinnagara

Puttaswamy et al., 2014).

We also used daily PM2.5 simulations at a spatial reso-

lution of 36 km during 2000–2018 from the WRF/CMAQ

model as an important predictor. The inverse distance

weighting (IDW) method was applied to interpolate the

CMAQ simulations to match the grid of 0.1◦. Detailed de-

scription of the WRF/CMAQ simulations can be found in

Sect. 2.3.

Meteorological parameters were extracted from the

Modern-Era Retrospective analysis for Research and Appli-

cations Version 2 (MERRA-2) dataset at a resolution of 0.5◦

latitude × 0.625◦ longitude (Randles et al., 2017). We ex-

tracted parameters including surface albedo, cloud area frac-

tion for low clouds, total cloud area fraction, surface net

downward longwave flux, surface incoming shortwave flux,

surface net downward shortwave flux, total incoming short-

wave flux, total net downward shortwave flux, surface pres-

sure, 2 m specific humidity, 2 m air temperature, 2 m dew

point temperature, total column ozone, total column odd oxy-

gen, total precipitable ice water, total precipitable liquid wa-

ter, total precipitable water vapor, 2 m eastward wind (U

wind), 2 m northward wind (V wind), 10 m U wind, 10 m

wind speed, 10 m V wind, U wind at 500 hPa, U wind at

850 hPa, V wind at 500 hPa, V wind at 850 hPa, total latent

energy flux, evaporation from turbulence, planetary bound-

ary layer height, snowfall, and bias-corrected total precipi-

tation. These parameters have been reported to be strongly

associated with the PM2.5 concentration in various regions in

China (Z. Chen et al., 2020). The inverse distance weighting

method was applied to estimate the daily smooth surface of

meteorological data and to match with the modeling grid at a

0.1◦ spatial resolution.

Elevation data from the Global Digital Elevation Model

version 2 (GDEM; https://earthexplorer.usgs.gov/, last ac-

cess: 15 September 2018) at a 30 m resolution were av-

eraged to match the modeling grid. We calibrated the

gridded population distribution data from the LandScan

Global Population Database (https://landscan.ornl.gov/, last

access: 10 October 2019), the Gridded Population of the

World (GPW; https://beta.sedac.ciesin.columbia.edu/data/

set/gpw-v4-population-count, last access: 10 October 2019)

dataset, and the WorldPop dataset (https://www.worldpop.

org/, last access: 10 October 2019) at the county level with

the total population reported in China City Statistical Year-

book. These calibrated gridded population data were fused to

better characterize the population distribution across China

(Xiao et al., 2021b). The land cover classification data of ur-

ban and rural regions at a 30 m resolution for 2000–2017

were downloaded from http://data.ess.tsinghua.edu.cn (last

access: 9 February 2019; Gong et al., 2019a, b). The fraction

of urban/rural region at the 30 m resolution was averaged ac-

cording to the modeling grid.

A1 Model performance evaluation

The hyperparameters of XGBoost, including the maximum

number of boosting iterations, the learning rate, the max-

imum depth of a tree, the minimum sum of the instance

weight needed in a child, the subsampling ratio of a train-

ing instance, and the subsampling ratio of columns when

constructing each tree, were optimized by grid search with

the fivefold cross-validation (CV) root-mean-square error

(RMSE) as a performance evaluation statistic.

The model performance was evaluated through fivefold

CV, by-year CV, and by-location CV. The fivefold CV ap-

proach randomly selects 20 % of the data for model testing

and trains the model with the remaining data. This process is

repeated five times, and each record is selected once as test-

ing data. The by-year CV approach validates the model hind-

cast ability by sequentially selecting 1 year of data for testing

and using the remaining yearly data for model training such

that each year is selected once for testing. The by-location

CV approach validates the model ability for spatial predic-

tion by using the data at 20 % randomly selected locations

for testing and uses the remaining data for model training.

This process is repeated five times until each location has

been selected once for model testing.
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Table A1. Model fitting average R2 value of the seasonal generalized additive model (GAM), year-round GAM, seasonal stepwise multiple

linear regression (MLR), and year-round MLR.

Spring Summer Fall Winter Year-round

Seasonal GAM 0.39 0.45 0.42 0.48

Year-round GAM 0.32

Seasonal MLR 0.34 0.40 0.37 0.42

Year-round MLR 0.26

Figure A1. Evaluation of the WRF model simulations. The correlation coefficient and normalized mean bias were calculated by comparing

WRF simulations with ground observations from the National Climate Data Center.

Figure A2. Model evaluation of the first-stage model trained with the original dataset and the SMOTE-resampled dataset in fivefold cross-

validation (CV) and scatter plots comparing the ground measurements and model predictions in fivefold CV, by-location CV, and by-year

CV.
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Figure A3. The CMAQ estimated relative impact of meteorology on annual average PM2.5 (top row), relative impact of meteorology on

average PM2.5 in fall–winter (September, October, November, December, January in next year, and February in next year) (middle), and

relative impact of meteorology on average PM2.5 in spring–summer (bottom row) with the long-term trends estimated by polynomial and

linear regressions over eastern China, BTH, FWP, YRD, and PRD.
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Figure A4. Distribution of the estimated seasonal coefficients of the normalized meteorological parameters.
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Figure A5. Meteorology-associated PM2.5 variations estimated with the MLR and GAM (a) and meteorologically adjusted PM2.5 with 50 d

seasonal averaging window and 90 d seasonal averaging window (b).
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