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Abstract. The differentiation of figure from ground plays an important role in the perceptual 
organization of visual stimuli. The rapidity with which we can discriminate the inside from the 
outside of a figure suggests that at least this step in the process may be performed in visual 
cortex by a large number of neurons in several different areas working together in parallel. We 
have attempted to simulate this collective computation by designing a network of simple 
processing units that receives two types of information: bottom-up input from the image 

containing the outlines of a figure, which may be incomplete, and a top-down attentional input 
that biases one part of the image to be the inside of the figure. No presegmentation of the image 

was assumed. Two methods for performing the computation were explored: gradient descent, 
which seeks locally optimal states, and simulated annealing, which attempts to find globally 
optimal states by introducing noise into the computation. For complete outlines, gradient 
descent was faster, but the range of input parameters leading to successful performance was 

very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of 
attention parameters and a wider range of outlines, including incomplete ones. Our network 
model is too simplified to serve as a model of human performance, but it does demonstrate that 
one global property of outlines can be computed through local interactions in a parallel 

network. Some features of the model, such as the role of noise in escaping from nonglobal 
optima, may generalize to more realistic models. 

1 Introduction 

The visual system is capable of transforming a noisy incomplete two-dimensional input 

into a relatively clear-cut and complete three-dimensional interpretation of a scene. For 
a single fixation, the interpretive process does not appear to involve conscious infer- 

ence, and yet, as Helmholtz (1909/1962) pointed out, it must have many of the 

properties that we normally associate with inference. Pieces of evidence in the input 
(like T junctions) must be used to support hypotheses about the three-dimensional 

scene (like one bounding contour occluding another). For any real image there will be 

many pieces of evidence and many competing hypotheses, so it is essential to have a 
mechanism that can rapidly decide which mutually consistent subset of the hypotheses 

is best supported by the evidence. According to this view, the visual system is a parallel 

statistical inference engine, but to make this convincing it is necessary to specify, in 

detail, just how this engine works. 
The Gestalt psychologists identified many of the principles and constraints used by 

the interpretive process. Gestalts were viewed as organizations that emerged from 

multiple interactions (Attneave 1982), but the closest they came to a mechanism was a 

weak analogy with fields in physics. They were unable to produce a convincing 
mechanism for applying the constraints and making the necessary trade-offs between 

conflicting constraints when interpreting an image. 
The inferential view of perception was rejected by Gibsonian psychologists, who 

pointed out that with very complex image features it is possible to find cues that act as 
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very strong evidence for properties of the visible three-dimensional surfaces, so it may 

not be necessary to combine many weak sources of evidence (Gibson 1966). In their 

language, the complex properties of the optic array speciSy the properties of visible 

surfaces. This is an important point which had led to the discovery of many interesting 

complex features, but we suspect that the problem of conflicting evidence will always 

remain in any task involving the interpretation of real input. Gibsonians are unhappy 

with the idea that perception involves inference, but seem happy with underspecified 

notions like 'resonance' between the image and its interpretation. The mechanism we 

propose for parallel statistical inference is actually far more similar to a resonance 

mechanism than to the kind of serial logical inference that Gibson found so distasteful 

(personal communication, Gibson 1979). 

The aim of this paper is to suggest a new mechanism for unconscious perceptual 

inference and, by applying it to a visual task that requires the coordination of top-down 

and bottom-up influences, to demonstrate that the mechanism is effective. The strong 

relationship between the proposed mechanism and correct Baysian inference has been 

described elsewhere (Hinton and Sejnowski 1983; Geman and Geman 1984). The 

simulations we present involve many simplifications and some ad hoc choices of 

parameters: this may lead some readers to wonder what the simulation proves. It does 

not prove that the theory is correct, nor does it prove that the particular parameters we 

used are of psychological interest. What it does show is that the proposed mechanism is 

well-specified and internally consistent. Many proposed mechanisms are not, and as 

theories of perception become more complex, checking for internal consistency may 

become as important as experimental data for eliminating incorrect theories. 

One class of theories that has been proposed to account for early visual processing is 

based on parallel networks of neuron-like processing units. The present approach is 

similar in spirit to other recent network models (Arbib 1975; Dev 1975; Marr and 

Poggio 1976; Feldman and Ballard 1982; Marr 1982; Hopfield and Tank 1985). In this 

type of model, each local hypothesis about an object in the image is represented by a 

processing unit and the constraints between these hypotheses, whether innate or 

learned, are implemented by connections between the units (Ballard et a1 1983; Hinton 

and Sejnowski 1983). This computational method is similar to relaxation labeling 

methods (Waltz 1975; Zucker and Hummel 1979; Prager 1980; Danker and Rosenfeld 

1981), but the algorithm used for updating the processing units is stochastic rather than 

deterministic. Surprisingly, it is easier to analyze the convergence properties of net- 

works of binary units if the update rule is stochastic. A generalization of this approach 

has recently been applied to stereopsis (Sperling 1970; Julesz 1971; Schulten 1986). 

Preliminary results have been reported previously (Sejnowski and Hinton 1986). 

1.1 Figure- ground separation 

When a closed outline is flashed briefly, an observer can report within a few hundred 

milliseconds whether or not a small spot was on the inside or the outside of the outline 

(Ullman 1984). This discrimination probably requires two steps: a separation of figure 

from ground, and a subsequent decision about whether the spot was located in the 

figure. The speed with which the decision can be made compared with the time scale of 

neural processing suggests that figure - ground separation is computed in parallel over 

the visual field. However, most of the connections between neurons in visual cortex are 

limited in range, so that global decisions such as the assignment of figure to a region are 

probably made on the basis of local interactions. The question addressed here is how 

such global decisions can be successfully made on the basis of local nonlinear inter- 

actions that occur in parallel. 

Information in an image formed on the retina is transformed as it passes through the 

retina, the lateral geniculate nucleus, and primary visual cortex. We are interested in 
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understanding how the processed visual information at the level of primary visual 
cortex is used at higher levels of the visual system where it is combined with other 
sources of information, such as expectation and attention, to pr,oduce a perceptual 

interpretation of the image. Rubin's vase (shown in figure 1) illustrates how the dif- 
ferentiation of figure from ground can affect the perceptual interpretation of an image 

(Rock 1983). The shape of the border can be perceived in two different ways but only 
one of these interpretations can be seen at a time. The perceptual decision is in part 

under conscious control, and can be loosely described as a shift in 'attention'. There- 
fore, the part of the visual system in which the figure and ground regions of an image 

are differentiated must combine information both from the image and from other 
regions of the brain which control attention. The focus of the present study is on how 

information from these two different sources can be combined to give an optimal 

interpretation. 
We do not intend to analyze real images or to model in detail processing in the early 

stages of the visual system; rather, we will start with information about an image that 
would be available in visual cortex given what we know about the response properties 

of cortical neurons. It should be borne in mind that the computation of figure-ground 

separation is a relatively advanced one. Also, we do not intend to model real neurons, 
but to study simple processing units that have some of the characteristics of neurons. 

The goal is to understand how a network of these simple processors can be designed to 

solve a particular problem in visual perception. The neural networks responsible for 
separating figure from ground in the visual system are probably distributed in several 

different areas and at several different levels. Therefore our model should not be 

compared with processing in a single cortical area, but with processing by distributed 

'modules' such as those discussed by Mountcastle (1979). 

Figure 1. Rubin's (1915) demonstration of visual reversal of figure and ground. The outline can 
be perceived as either a vase or a pair of faces, but not both at the same time (from Gregory 
1970). 

2 Network model 

The network that will be described in this section is a single module that receives two 

types of information: that obtained from the image about the positions and orientations 
of boundaries in the image, and information originating centrally about where to focus 

attention in the image. The goal of the computation is to segment the image into two 

regions, figure and ground. We assume that only a single object appears in the image, 
but that its boundary may be discontinuous owing to noise in the image or to obstruc- 

tions. Thus, the problem is specialized to distinguishing the inside from the outside of 

closed, but not necessarily continuous, outlines. 
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2.1 Processing units 

The processing units were used to represent the variables known to be important for 

the computation, and the connections between the units were used to implement 

directly the constraints between the variables (Hinton and Sejnowski 1983). We used 

our intuition about the problem to help design the network, and in turn used the 

performance of the network to test our intuition. The units have only two output 

values, 0 or 1, and represent hypotheses about the image that are either false or true. 

The connection strengths have integer values between - 15 and + 15. 

The units are assigned positions in the image and are arranged in a repeated pattern 

in register with the image. Each unit has a restricted receptive field that does not 

overlap with neighboring units. The connections between units are also limited to a 

local neighborhood around each unit and the pattern of connectivity is repeated 

uniformly over the image. There are several types of units and if each type, for 

convenience, is restricted to separate planes in register with each other, then the planes 

can be considered intrinsic images (Barrow and Tenenbaum 1978), as illustrated in 

figure 2. 
Information about the position of the outline in the image provides the input to one 

class of units called the 'edge' units. These units are similar to orientation-sensitive 

neurons in visual cortex, but in addition the edge units carry information about the 

location of the figure relative to the orientation of the edge. A line segment between two 

regions can be interpreted in many ways. It could be the bounding edge with the figure 

region on one side, or a bounding edge with the figure region on the other side, or both 

if it is a crack. We avoid cracks, shadow boundaries, surface markings, and edges where 

two visible noncoplanar three-dimensional surfaces -join, and only allow the two 

alternative bounding-edge possibilities. These two possibilities are implemented by 

having two rival edge units at each position and each orientation. 

The goal of the computation is to separate the image into two regions representing 

the figure and the ground. The hypothesis that a patch of the image is part of the figure 

will be represented by another type of unit called a 'figure' unit. Whether a small patch 

is part of the figure or the ground depends not only on the outline in the image, but also 

on the focus of attention. Hence the array of figure units receives direct input from 

attention 

9 

figure units KFPT/ A 

image 

Figure 2. Schematic illustration of figure-ground network. Each plane represents a layer of 

neuron-like processing units that are interconnected within and between layers. The edge units 
receive external information about the location of contrast boundaries in the image (shown 
below) and the figure units receive external information from a spotlight of attention (shown 
above). The computation is performed by maintaining constant inputs from the image and 
attention and allowing the interacting processing units to relax to a steady state. 
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some higher level which can bias some of the figure units to the true state. This bias 

cannot be dominant, otherwise information about the position of the outline provided 

by the edge units will be ignored; the 'bottom-up' information from the image must be 

balanced with the 'top-down' information from the attention. 

During a computation the outline in the image and the attentional bias are held fixed 

and the network, shown schematically in figure 2, must find the states of all the 

processing units that are maximally consistent with the top-down and bottom-up inputs. 

This can be considered a search for the best interpretation of the image from amongst 

the large set of all possible internal models that can be represented by the units. In 

general, the more that is known about the regularities of objects in the image, the more 

constraints can be implemented as connections between the units, and the faster the 

search will be. It should be kept in mind that in separating figure from ground the 

human visual system is taking into account many more constraints than are incor- 

porated into our model. These additional constraints, had they been implemented, 

would make the solution to the problem easier. The module in figure 2 is only meant to 

be a small part of a much larger system. 

Cohen and Grossberg (1984) have recently analyzed a network model of early visual 

processing similar in style to the one studied here. They distinguish two types of 

variables in their representation of the image: boundary variables, which are associated 

with contours, and feature variables, which are defined between contours, such as color. 

In terms of this nomenclature, our edge units could be classified as boundary variables, 

and our figure units as feature variables. 

2.2 Connectivity 

The figure units form a square lattice over the image, as shown in figure 3a where they 

are symbolized by small squares. All the simulations reported here were on a 20 x 20 

array, a total of 400 figure units. To implement the constraint that figures tend to be 

connected, each figure unit supported all of its eight neighboring figure units with 

mutually excitatory connections; ie when one of the figure units was on it helped all its 

(a) (b)  (c)  

Figure 3. Summary of the connections and weights between units in the figure-ground network. 
(a) Each figure unit (square) is reciprocally connected to each of its eight nearest neighbors with 
an excitatory weight of strength + 10. (b)  Each edge unit (arrowhead) has excitatory connections 
with the figure unit it points toward ( +  12) and the two flanking figure units ( +  10) as well as 

reciprocal inhibitory connections with the figure unit it points away from (-12)  and the two 
flanking units ( - 10). Because the pattern of connectivity is isotropic only the weights for a 
single edge unit are shown. (c) The two types of edges units at each position, which point away 
from each other, have mutually inhibitory connections with a weight of - 15. Other connections 

between edge units are shown in figure 5.  
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neighbors to be on. To avoid boundary effects, the edges of the square array were 

identified, so that the surface had the topology of a torus. Attention was implemented 

by top-down excitatory inputs which decreased in strength with distance, d, from the 

centre of the attention. The input from the Gaussian 'spotlight' had two parameters 

specifying the center of attention, and two more parameters specifying the amplitude, 

A, and width, a ,  of the spotlight: 

17 = Aexp ( -  dla) '  . (1) 

The attentional input for a typical problem is illustrated in figure 4a. 

Between every pair of figure units there was a pair of edge units, oriented as shown in 

figure 3b. An edge unit is symbolized by an arrowhead, with the direction of the 

arrowhead pointing toward the figure region it supports. Only horizontal and vertical 

orientations were represented, giving a total of 1600 edge units. Wherever a line 

segment occurred in the image, the two relevant edge units received strong excitatory 

input. This insured that the line segment would be interpreted, but only one edge unit of 

the pair would be active since cracks were not allowed. Mutual inhibition was therefore 

provided between the two edge units, as in figure 3c, so that when one of the pair was 

on it would tend to suppress the other, and vice versa. Edge units were given a high 

threshold to insure that they would not be inserted into implausible locations without 

direct support from the outline. 

The only information about which of the two edge interpretations was preferred at a 

given location of the outline came indirectly from the attentional input via the figure 

units. Each edge unit had excitatory connections with the adjacent figure unit with 

which it was consistent (pointing toward), and inhibitory connections with the adjacent 

figure unit with which it was inconsistent (pointing away from). Both of these con- 

nections were reciprocal, so that the activation of a figure unit would support all four of 

the adjacent edge units that point toward it. 

Figure 4. (a) Represe~ltation of the input to the figure-ground network for the outline of a C. 
The arrowheads represent the edge units that receive strong external input of strength f60. All 
the edge units have a threshold of +45, so there is a strong bias for the edge units composing 
the outline to be  on. The  squares represent input to the figure units and their area is propor- 

tional to the magnitude of external input from the spotlight of attention, as given by equation ( 1 )  
with A = 15 and a = 1.2. The input falls off exponentially wirh the distance of the unit from 

the center of attention. (b) State of the network after following gradient descent starting from a 
random state and with inputs given in (a). The cross-hatched squares represent figure units that 
are on. 
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In circumstances where the outline is incomplete, edges should tend to support the 

continuity of the figure through the gap. This can be accomplished in two ways: either 
by directly connecting parallel edges of the same type, or by extending the interaction 

between the edge and figure units to the next nearest neighbor along its orientation. The 

latter was found empirically to be more effective, and the continuity constraint was 

implemented according to the scheme shown in figure 3b. 
Certain combinations of edge units can never occur in a final solution owing to the 

topology of corners. For example, two edge units to the west and north of a figure unit 

can both be pointed toward it or away from it, as shown on the left side of figure 5, but 
it cannot be the case for any shape that one of these two edge units points toward it and 

the other away from it, as shown on the right side of figure 5. This constraint on corner 
pairs can be implemented by excitatory and inhibitory weights between the edge units 

according to the pattern shown in figure 5. 

Since the pattern of units and their connectivity were homogeneous throughout the 

image, it was only necessary to specify one strength of connection for each type of 
interaction, and one threshold for each type of unit. The precise strengths were 

chosen by trial and error with a variety of outlines. The two considerations were first, 

that the region within the attentional spotlight should tend to be figure and the region 

outside should tend to be ground, and second, that the discontinuity between figure 

and ground should normally appear as a line in the image, so there should be a 

penalty for 'open frontier' where the figure region ends without there being a line in 
the image. Whenever the spotlight of attention does not align precisely with the lines 

in the image, these two considerations are antagonistic and it is the competition 
between them that must be resolved by the search for the most consistent global state 

of the network. In the physics of spin glasses, this phenomenon is called 'frustration' 

(Hopfield 1982). The values for all the parameters used in the simulations reported 

here are given in the captions to figures 3 and 5. 

Possible Impossible 

Figure 5. Connectivity between edge units representing corner constraints. Possible combina- 
tions of edge units, shown on the left, were connected by excitatory weights of strength +5, and 
impossible combinations, shown on the right, were connected by inhibitory weights of strength 
-5. The same pattern was repeated for all four corners at every position of the 20 X 20 array. 

2.3 The updating algorithm 
A simple algorithm for updating the network is to choose a unit at random, to sum up 

the weighted inputs from all the active units, to add in the external input from the 

outline or the attentional spotlight, and to adopt the 1 state if and only if the sum 

exceeds the threshold of the unit (see figure 6). This type of binary threshold unit was 
introduced by McCulloch and Pitts in 1943 and has been used in network models such 
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as the Marr-Poggio (1976) model of stereopsis. In general, it is very difficult to analyze 

the convergence properties of nonlinear relaxation algorithms of this type [eg, Marr 

et a1 (1978) suggested that a general analysis of algorithms in the class was not 

possible]. 

There is a special class of nonlinear relaxation algorithms that can be analyzed, as 

first suggested by Hopfield (1982). The network of units described above has the 

property that every connection between a pair of units is reciprocal, so that the matrix 

of weights w, between unit i and unit j is symmetric, w, = w,,. Hopfield pointed out 

that for a symmetric network the sequence of random updates must eventually stop, 

so that the network converges to some fixed state. This happens because the dyna- 

mics of a symmetric network is governed by a function which always decreases or 

stays constant whenever a unit is updated by the binary threshold rule: 

where s, is the state of unit i, q, is the external input to the unit, and Bi is the threshold 

of the unit. This function is called the 'energy' of the network in analogy to the energy 

of a mechanical system, but for a network it is a measure of the inconsistency 

between the states of the units in the network. If many pairs of active units are on 

which are joined by inhibitory weights, then the network is highly inconsistent and it 

has a high energy; when most pairs of active units are joined by excitatory weights 

then the inconsistency is low and the energy is low. The energy is therefore a useful 

measure of how well all the constraints are being satisfied by the network, and since 

Binary threshold unit 

0 
- 5  - 3  - 1  1 3 5 

Energy gap, AE 

inputs output 

Binary Boltzmann unit 

2 0.5 

E 
PI 0 l . O K  - 5  -3  -1 1 3  5 

A E / T  

Figure 6 .  Input-output relationships for a binary threshold unit (top) and binary Boltzmann 
unit (bottom). The energy gap AE is the sum of all the weights from input units that are on, as 
shown schematically in the center. For the binary threshold unit, which is used for gradient 
descent, the output is 1 if the total input is greater than 0, and for the binary Boltzmann unit 
the output is 1 with probability given by the sigmoidal function [equation (4)]. The thresholds 
can be implemented as connections to a true unit that is always on, with the strength of the 
connection representing the negative of the threshold. 
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the energy decreases when the binary threshold rule is applied, it will tend to evolve 
with time into a more consistent state. 

Given a set of inputs, the state with the globally minimum energy is the best solution 

to the problem. The binary threshold rule only guarantees convergence to a local 
minimum, so the network may get trapped in states that represent suboptimal inter- 

pretations of the image. An example of a suboptimal state of a network for a typical 
input is illustrated in figure 4b. These 'frustrated' states can be avoided if the binary 

threshold rule is modified to allow the system sometimes to increase in energy and jump 
out of the local energy minimum. A probabilistic algorithm with this property was 

introduced by Metropolis et a1 (1953) to simulate thermodynamic systems. An addi- 
tional parameter called the 'temperature', T, is introduced, that corresponds to the 

amount of noise that is added to the update decision. 
The 'heat bath' form of the Metropolis algorithm (Binder 1978) that we use is: 

(i) Select a unit at random from the network. 

(ii) Calculate the total input to the unit, 

AE, = ~ w , , s l  - 6, + 11,. (3) 
I 

This is also the difference in the energy of the system when the state of unit i changes 

from 0 to 1, and is called the energy gap. 

(iii) Turn the unit on with probability 

This sigmoidal relation between the input AEi and the probability of update is graphed 

in figure 6. 

Although this updating algorithm is probabilistic, the actual probability of update is 

never transmitted to other units: only the binary outcome of the decision is transmitted. 

This relaxation algorithm therefore differs from previous relaxation labeling schemes 

(Hanson and Riseman 1978; Zucker and Hummel 1979; Peleg 1980; Hummel and 

Zucker 1983) in which the probabilities are directly represented and deterministically 

computed. Our relaxation algorithm more closely resembles that of Geman and Geman 

(1984), which uses more general Markov random fields, and that of Cerny (1983) and 

Smolensky (1 983). 
The units in the network will fluctuate on and off, more so at higher than at lower 

temperatures, as in thermodynamic systems governed by statistical mechanics (Schroe- 

dinger 1946). Starting from an arbitrary state and applying the Metropolis update 

algorithm, the network will eventually reach a state of equilibrium where the lowest 

energy state has the highest probability of occurring. However, the number of updates 
required to reach equilibrium and the relative probability of being in the ground state 

depend on the temperature: at low temperature there is a strong bias in favor of states 

with a low energy, but the time required to reach equilibrium may be long. At higher 

temperatures the bias is not so favorable, but equilibrium is reached faster. The 
difficulty of jumping out of a local energy minimum depends on the heights of the energy 

barriers separating it from other minima: at high temperatures these barriers are easily 
jumped, and lowering the temperature increases the time required to make the jump. 

This parallel stochastic architecture, called the Boltzmann machine (Fahlman et a1 

1983), is generally applicable to constraint satisfaction problems and other problems in 

perceptual inference (Hinton and Sejnowski 1983). A learning algorithm has been 

developed for improving the performance of a Boltzmann machine with experience in 

the task domain (Ackley et a1 1985; Sejnowski et a1 1986), but this learning algorithm 
will not be discussed further in this paper. 
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3 Results 

3.1 Performance of simulated annealing 

A variety of shapes was used to test the performance of the network, ranging in 

difficulty from very easy (9 x 6 rectangle) to very difficult (spiral). The letter C was 

moderate in difficulty and is used to illustrate the different stages of the annealing, as 

shown in figure 7. The spotlight of attention was centered on the neck of the C and 

spilled over into the inlet, as shown in figure 4a. When the network was run at very low 

temperature (equivalent to gradient descent) the network often was trapped in local 

energy minima, such as that shown in figure 4b. 

A good strategy for finding the global energy minimum, suggested by Kirkpatrick 

et a1 (1983), is to start at a high temperature in order to reach equilibrium quickly, and 

gradually to reduce the temperature. If the temperature is reduced slowly enough for 

the system to remain in equilibrium, then the state of the network will 'anneal' to fhe 

state with the lowest energy (Geman and Geman 1984). However, the cooling schedule 

Figure 7. States of the figure-ground network at different stages during simulated annealing. 
With the center of attention on the waist of the C, as given in figure 4a, the state of the network 
is shown (a)  at T = 13 after 5 iterations, (b) at T = 7 after 11 iterations, and (c) at T = 3 after 
41 iterations. When the center of attention was shifted to the region of the tongue outside the 
outline, the state of the network is shown in (d) at  T = 3.6 after 46 iterations. 
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required to reach the global minimum depends on the shape of the energy landscape, 

and not all problems can be efficiently solved using simulated annealing. 
The following annealing schedule was found to be effective in achieving the correct 

separation of figure from ground for many shapes: 
(i) Start the network in a random state at temperature T = 20. 

(ii) Perform 2000 random updates with the Metropolis algorithm. This will be called 
one iteration since on average each unit is updated once. 

(iii) If the energy is the global energy minimum (previously determined) then stop. 
(iv) If 4 < T < 20, multiply T by 0.9 and return to step (ii). 

If 1 < T < 4, multiply by 0.99 and return to step (ii). 

If T < 1, then stop. 

This schedule allows up to 148 iterations to occur. The annealing was usually 

terminated earlier because the correct solution was achieved, often at a temperature 
that was still fairly high('). If the global energy minimum was not achieved by the end of 

the cooling schedule then the run was considered a failure. The performance of the 
network for a particular input was tested by annealing 1000 times and finding the 

median number of iterations required to reach the correct solution. For an unknown 

shape, the global energy would not be given a priori as provided in this testing 

procedure and the annealing schedule would be allowed to run its course. 
The correct solution was found most of the time when the above annealing schedule 

was followed. At the high temperatures shown in figure 7a the relatively weak bias 

provided by the spotlight of attention had little effect compared to the random fluc- 
tuations in the figure units. The edge units on the boundary of the C, even at this high 

temperature, have a strong tendency to be on, reflecting the strong input from the image. 
However, many pairs of edges are on simultaneously and there is not yet any tendency 

for the edges to align toward the inside. As the temperature falls, isolated figure units 
coalesce into islands both inside the C and outside of it, as shown in figure 7b; however 

only the ones on the inside are stabilized by the edge units, and the islands on the 

outside always 'evaporate'. The decision whether or not to fill in the inlet was some- 

times made quite late in the cooling schedule, reflecting the difficulty in resolving the 

conflicting constraints that must be satisfied. Toward the end of the cooling schedule 

the figure units on the inside filled in the remaining holes, as in figure 7c, though small 
inconsistencies sometimes remained for a long time. When the center of attention was 

moved to the outside of the outline, figure - ground reversals occurred, as shown in the 

bottom right panel of figure 7d where the center of attention was located just outside 
the tongue of the C. 

Histograms giving the performance of the annealing algorithm on several shapes of 

input figures are given in figure 8. Some failures occurred, but the overall performance 
was good. In general, the more complex the shape the more iterations were required to 

reach the correct solution, and the higher the variance in the distribution. Discon- 

tinuous outlines also took longer, although one or two missing edges caused only a 
small degradation. In figure 8b, only the corners of the rectangle were provided, yet the 

network was able to find the most plausible completion with less than half of the edges 

remaining in the rectangle. 

Although the network was able to deal successfully with incomplete outlines, edges 

were not spontaneously generated to fill in the gaps. When the weights were adjusted to 
fill in the gaps, the performance of the network on simpler problems was hampered 

(')Terminating the annealing as soon as the solution is achieved seldom affects the final outcome. 

If allowed to continue, the network does not fluctuate far from the correct solution and almost 
always returns to it. This behavior indicates that the global solution is a fairly deep energy 
minimum. 
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Number of iterations 

Figure 8. Correct final states for three different outlines (left) and histograms of the number of 
trials that reached the correct final states as a function of the number of iterations required. 
(a) 9 X 6 rectangle, (b) corners of 9 x 6 rectangle, and (c) letter C. The annealing schedule for 
all three outlines was the standard schedule given in section 3.1. Failures to reach the state with 
minimum energy are indicated in the far right bin of each histogram at 148 iterations, the 
maximum number allowed. 
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because edge units spontaneously stabilized islands of figure units that should not have 

been stabilized, and prevented figure units from properly filling in regions. 

3.2 Comparison with gradient descent 

The deterministic binary threshold update rule is a gradient descent procedure because 

the energy is reduced at each step. If the right choice of parameters is made for the 
spotlight of attention then this is equivalent to a coloring algorithm, which usually can 

find the correct solution if the figure does not have any holes in its outline. However, 

the performance is critically dependent on the parameters of the spotlight, and if there 
is any spillover the network will not be able to recover. The performance of the gradient 

descent procedure is compared in figure 9 with the annealing algorithm as a function of 

the most critical parameter, the width of the spotlight of aqention. 
The performance of simulated annealing and gradient descent are summarized in 

table 1 for the 9 x 6 rectangle and the letter C .  Two measures of performance are 
given: the median number of iterations required to reach the correct solution at the 

optimal size of the spotlight of attention, and the width of the curve for percent failure 
over which the performance is better than twice the best median. Although a particular 
size of the spotlight could be found for which the performance of gradient descent was 

satisfactory, the range of the widths over which gradient descent worked at all was very 

narrow. Thus, for gradient descent to be effective, the position and size of the spotlight 
had to be finely tuned to the details of the image. 

- annealing - gradient descent 

Width of spotlight of attention 

Figure 9. Percent of trials failing to fill in correctly the outline of a C as a function of the width 
a of the spotlight of attention given in equation (1). Curves on the left are for the inside of the 
outline (attention centered on the waist of the C)  and curves on the right are for the outside of 
the outline (attention centered on the bottom left-hand corner). The edges of the array were 
connected together so that the array had the topology of a torus. 
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Table 1. Performance of gradient descent versus annealing. 

Outline Focus of Gradient descent Simulated annealing 
attention 

best range of a at best range of a at 
mediana twice best median mediana twice best median 

9 X 6 rectangle inside 12 0.9 24 2.5 
outside 15 1.1 3 8 3.0 

Letter C inside 37 0.4 53 2.5 
outside 32 1.1 67  3.2 

Wedian number of iterations required to reach the correct solution at the optimal size of 
the spotlight of attention. 

3.3 Failure of the annealing algorithm 
The standard annealing schedule failed most of the time when applied to a spiral, as 

shown in figure lob. This is a problem for which the energy landscape has many nearly 

equally good energy minima. The energy cost incurred by switching from one arm of 

Figure 10. Figure-ground separation for the outline of a spiral. (a)  Inputs for the figure units 
and edge units (see figure 4 for explanation). (b)  State of the network after gradient descent 
starting at a random initial state. (c) State of the network at T = 12 after 48 iterations during 
simulated annealing. (d) Final state of the network at T = 4 after 961 iterations. 
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the spiral to the adjoining arm is very small. This problem is also very difficult for 

humans, and typically requires several fixations to patch together smaller continuous 

regions. There apparently is a level of complexity that even our visual systems cannot 

handle in a single parallel step. 
In principle, the spiral could be solved in a single annealing if the cooling schedule 

were slow enough, as shown by Geman and Geman (1984). Consequently, we modified 
the schedule given in section 3.1 by exponentially decrementing the temperature by 

0.999 on each iteration from an initial temperature of 12. Figure 10c shows the state of 

the network at an intermediate temperature during the very slow annealing schedule, 
and figure 10d shows the final state of the network; the correct solution was obtained in 

17/20 trials. 
The iterations at the highest temperatures serve mainly to randomize the network 

and are not particulary helpful in the search process, and, similarly, most of the 
iterations at the lowest temperatures are ineffective because the fluctuations are small. 

More time should be spent at intermediate temperatures, particularly those at which 

decisions are being made by large blocks of units. This range can be determined by 
measuring the specific heat of the network, defined as the change in the average energy 

of the network per unit change in the temperature (Schroedinger 1946). The specific 

heat curve for the figure-ground network had a significant peak around T = 10, as 
shown in figure 11, indicating that more time should have been spent in the tem- 

perature range T = 12 to T = 15. 

Temperature 

Figure 11. Specific heat as a function of temperature for the C outline. The network was 
allowed to reach equilibrium and both the mean and variance of the energy were averaged over 
time. The specific heat can be computed either from the derivative of the average energy as a 
function of temperature (filled circles) or from the variance (open circles) (Schroedinger 1946). 
The peak occurs between T = 12 and T = 15, the temperature range over which the network 
starts 'freezing in'. 
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3.4 Nonuniformity, simultaneity, and delay 

Some of the assumptions that have been made are not likely to be strictly true in a real 

physical system, so we attempted to test the sensitivity of the results to several of these 

assumptions. For example, the assumption that all of the processing units are always at 

the same temperature was tested by introducing variability into the temperature in two 

different ways. In the first test, a random factor uniformly distributed between 0.5 and 

1.0 was assigned to every unit. During the annealing procedure the temperature of each 

unit was multiplied by this random factor, which was kept constant through the 

annealing. In a second test, a new random factor was chosen for each unit before each 

update. 

The performance of the network was not significantly affected by either of these 

procedures. The only anomaly was an occasional unit that would become locked into an 

incorrect state because it had been assigned a low temperature factor; otherwise, the 

effect of the randomness in the temperature fluctuations was inconsequential compared 

with the other sources of randomness in the update algorithm. The test with a constant 

temperature factor was also a test of random variations in the weights, because, in the 

update algorithm, multiplying the temperature for a unit by a factor k is equivalent to 

multiplying all the weights, inputs, and the threshold of the unit by k-l. This also shows 

that the performance of the system is not sensitive to the assumption of perfect 

symmetry of the interactions. 

In some simulations synchronous updates of the processing units and transmission 

delays were both included to test the sensitivity of the performance to the assumption 

that updates were asynchronous and transmission was instantaneous. The effect of 

simultaneous updates was negligible even when up to half the units were updated at the 

same time. This is in part a consequence of the local connectivity: two units that do not 

have a direct connection between them can be simultaneously updated without violating 

the Markov assumption that the updates occur independently. In contrast, the effect of 

transmission delay was very significant and state dependent. 

We tested the effect of delay by introducing a delay of 2000 updates (one iteration of 

the network) between probing a unit and transmission of the new state to neighboring 

units. At low temperatures the effect of delay was less pronounced because the rate of 

flipping is lower; if a unit did not flip when its state was updated then delay had no 

consequence. However, at high temperature the rate of flipping was high and the effect 

of the delay was effectively to add more noise to the update algorithm. Even when 

running the network at a constant low temperature, T = 1, and starting from a random 

state, the noise introduced by the delay was sufficient to overcome local energy minima 

and find the correct solution. The state dependence of the effective temperature 

introduced by the delay was thus able to mimic simulated annealing, as suggested to us 

by Francis Crick (personal communication). 

4 Neural networks 

The binary units used in the model share some properties with neurons, such as the 

summation of excitatory and inhibitory inputs and a threshold, but the binary output 

does not resemble an action potential because it is a sustained value of 1 or 0 rather 

than a spike. If, however, the average time between updates is identified with the 

average duration of a postsynaptic potential then the shape of the output between 

updates can be considered an approximation to the shape of postsynaptic potentials. 

Thus, the output of a unit can be identified with postsynaptic potentials rather than with 

action potentials if for each postsynaptic unit we scale the magnitude of the output by 

the weight of the connection. 

How can the probabilistic update algorithm be implemented by neurons, and in 

particular, how can the temperature be controlled? The membrane potential of a 
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neuron is graded, but if it exceeds a fairly sharp threshold an action potential is 
produced followed by a refractory period lasting several milliseconds, during which 

another action potential cannot be elicited. If Gaussian noise is added to the membrane 
potential, then even if the total synaptic input is below threshold, there is a finite 

probability that the membrane potential will reach threshold. The amplitude of the 

Gaussian noise will determine the width of the sigmoidal probability distribution for the 
neuron to fire during a short time interval, and it therefore plays the role of temperature 

in the model. Surprisingly, a cumulative Gaussian is a very good approximation to the 

required probability distribution, never differing by more than about 2% over the entire 

range of inputs. 
Intracellular recordings in the central nervous system reveal stochastic variability in 

the membrane potential of most neurons, in part due to fluctuations in the transmitter 

released by presynaptic terminals. Other sources of noise may also be present and 

could be controlled by cellular mechanisms (Verveen and Derksen 1968; Holden 1976). 

If some sources of noise in the central nervous system are gated or modulated, it should 
be possible to identify them experimentally. For example, the noise could be regularly 

cycled and this would be apparent in the massed activity. Alternatively, noise may 

always be present at a low level and be increased irregularly whenever there is an 

identified need. 
In the visual cortex of primates, single neurons respond to the same visual stimulus 

with different sequences of action potentials on each trial (Sejnowski 1981, 1986). In 
order to measure a repeatable response, spike trains are typically averaged over ten 

trials. The result, called the poststimulus time histogram, gives the probability for a 

spike to occur as a function of the time after the onset of the stimulus. However, this 

averaging procedure filters out all information about the variance of the noise, so that 
there is no way to determine whether the noise varies systematically during the 

response to the stimulus or perhaps on a longer time scale, while the stimulus is being 
attended to. Such measurements of the noise variance over a range of time scales could 

provide evidence that this parameter has an active role in neural processing. 
Neurophysiologists typically average the spike train from a neuron to reduce the 

variability in the pattern of spikes. Under stationary conditions the spike train can be 
averaged over time to obtain a time-averaged firing rate, but during nonstationary 

conditions the ensemble average of spike trains must be used to obtain a poststimulus 

time histogram. These two methods of averaging represent two ways to view the 

sigmoidal probability function used to update units (figure 6): over a short time interval 

it represents the probability for a single unit to fire, and can be estimated by the 
poststimulus time histogram; over longer time intervals and stationary conditions, it 

represents the time-average firing rate of a unit. However, the time-average firing rate 

of a neuron cannot be accurately measured over short time intervals, particularly during 
nonstationary conditions, which suggests that the probabilistic interpretation of spike 

firing defined as an ensemble average may be of more general usefulness than the time- 

average firing rate. 
Our analysis depended on the symmetric connectivity of the network. Symmetric 

connections appear in many network models that perform constraint satisfaction by 

optimization (Marr and Poggio 1976; Ballard et a1 1983; Hopfield and Tank 1985). 

Symmetric connectivity stabilizes processing in networks and might be found where 

stability is essential. Lateral inhibition is common in many areas of the brain and is 

generally symmetric, but evidence for symmetric excitatory connections is weak. 
Recurrent collaterals from projection neurons could provide reciprocal excitation, but a 

test of the symmetry assumption will await a more detailed knowledge of connectivity 

between neurons in the visual system. 
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5 Discussion 

Whether a particular patch in an image is part of the figure or ground depends on 

global patterns in the image and on what is being attended. This problem cannot be 
solved without several iterations of the network because the global information must be 

propagated through local interactions. In general it is not possible to predict whether a 
nonlinear network will converge to the correct state, but in the special case of a 

symmetric network and stochastic updating it is now possible to construct and study 
particular networks that are guaranteed to solve global problems such as figure -ground 

separation. 
The performance of simulated annealing in separating figure from ground in the 

parallel network presented here compares favorably with that of gradient descent. 
Although many iterations are generally required to achieve a solution, the effective time 

is only a few hundred milliseconds, if each iteration can be performed in a few milli- 

seconds. The chief advantage of simulated annealing is an increase in the robustness of 

the network to noise in the inputs, such as missing segments in the outline and variation 
in the size and position of the attentional spotlight. Most of the benefit of simulated 

annealing can be obtained from running the network at a constant moderate tem- 
perature, so that temperature control is not crucial for effective use of stochastic 

relaxation. 

Our network model of figure -ground separation is much too simplified to serve as a 

model for how this computation is performed in the nervous system. A more realistic 

network model would need to take into account a greater range of orientations and 

multiple levels of resolution (Rosenfeld and Vanderbrug 1977; Hanson and Riseman 
1978; Marr and Poggio 1979; Terzopoulos 1984). It would also have to introduce 

distinctions between low-level edge labeling and higher-level attentional phenomena 
that have been glossed over in the examples presented here. However, general features 

of more sophisticated models may already be reflected in this simple network model. 

Other relaxation schemes that attempt to find globally optimal solutions with local 
connectivity also have the problem of getting trapped in local optima. The addition of 

noise to the processing units might be helpful to many of these algorithms. 

The model of figure-ground separation only used information from the outlines of 
figures. Other cues, such as optical flow, may also provide information for separating 

figure from ground, which would require other modules. We can analyze the per- 
formance of several modules working together in parallel by simply adding together 

their energy functions. One of the consequences of this additivity is that different 
sources of evidence are weighed together linearly. Sperling and his colleagues have 

recently shown that several factors affecting the perception of depth in a rotating wire 
cube, including proximity, luminance, and perspective, are linearly additive (Dosher 

et a1 1986). This result is in agreement with our approach and suggests that linear 

additivity of evidence may be a general property of perceptual systems (Sperling et a1 
1983). 

During the relaxation of the network the inputs were kept fixed as well as all the 

weights and parameters in the network. The perception of ambiguous figures such as 
Rubin's vase in figure 1 usually undergoes spontaneous reversal which we have not 

attempted to model. One possible extension of the model would be to incorporate 

fatigue into the weights or some other change to the parameters on a time scale greater 
than the relaxation time of the network. This approach has been taken by Kawamoto 

and Anderson (1985) to model spontaneous reversal in the perception of the Necker 
cube. 

Simulated annealing has been useful in solving difficult NP-complete problems 

(Kirkpatrick et a1 1983; Johnson et a1 1985) and it has also been applied to problems 
such as image restoration (Geman and Geman 1984). However, it can be a very slow 
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procedure and may not be the method of choice if a better algorithm is known. We have 

shown in this paper that a parallel implementation of simulated annealing can be  very 

effective, reasonably efficient, and more robust than gradient descent in separating 

figure from ground for simple outlines. This architecture may be  applicable to  a wide 

variety of problems in perception that require the simultaneous satisfaction of a very 

large number of constraints (Hinton and Sejnowski 1983). 
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