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Separating Lines of Text in Free-Form Handwritten Historical Documents

Douglas J. Kennard, William A. Barrett

Department of Computer Science

Brigham Young University

Provo, UT 84602 USA

(kennard@cs.byu.edu, barrett@cs.byu.edu)

Abstract

We present an approach to finding (and separating) lines

of text in free-form handwritten historical document im-

ages. After preprocessing, our method uses the count of

foreground/background transitions in a binarized image to

determine areas of the document that are likely to be text

lines. Alternatively, an Adaptive Local Connectivity Map

(ALCM) found in the literature can be used for this step

of the process. We then use a min-cut/max-flow graph cut

algorithm to split up text areas that appear to encompass

more than one line of text. After removing text lines contain-

ing relatively little text information (or merging them with

nearby text lines), we create output images for each line.

A grayscale output image is created, as well as a special

mask image containing both the foreground and informa-

tion flagging ambiguous pixels. Foreground pixels that be-

long to other text lines are removed from the output images

to provide cleaner line images useful for further processing.

While some refinement is still necessary, the result of early

experimentation with our method is encouraging.

1. Introduction

Vast amounts of valuable historical and genealogical in-

formation exists within free-form handwritten documents

such as letters, diaries, and wills. In order for that informa-

tion to be readily accessible to the masses, those documents

need to be transcribed or indexed (annotated) so that they

are searchable.

Handwriting recognition tasks, including indexing as

well as automatic transcription, require the handwritten text

to be localized within images before recognition can be

performed. In many applications, such as reading check

amounts, postal addresses, or forms with a predictable lay-

out, it may be relatively easy to locate and separate the

handwritten text due to the constraints of the layout in those

specific domains. However, many historical documents

(such as letters, diaries, and wills) have a “free-form” lay-

out, in which the handwritten sentences flow across the page

in left to right, top to bottom fashion.

Due to the nature of free-form handwriting, it is difficult

to reliably localize and separate the text in a general manner.

Lines of text are not always exactly parallel to each other—

sometimes they are even slightly curved— and the spacing

between the lines often varies somewhat from one part of

the page to another. In addition, lines of text may touch

each other due to the ascenders or descenders of characters

from one line overlapping with those from another.

When the documents of interest are historical docu-

ments, the difficulties are exacerbated by the problems that

may arise due to degradation and variation in the docu-

ments, themselves. In addition to the noise, skew, dis-

tortion, and uneven lighting that is often introduced into

an image during microfilming or digitization, the original

document is often already plagued with smudges, smears,

faded print, and an uneven or discolored background, be-

fore the document is ever digitized. Bleed-through (or shine

through) of writing from the opposite side of a document

is also common in historical documents, and when severe,

can make it difficult to automatically distinguish the actual

text from the bleed-through. In addition, many handwritten

documents are written on paper that has rules and lines that

intersect or overlap the handwriting, interfering with and

complicating the process of word separation.

While various authors have addressed the topic of sepa-

rating text lines and words, there remains a need to develop

even more robust methods that can handle the difficult prob-

lems that are so often encountered in historical handwritten

documents.

In [14], by Senior and Robinson, the process of locat-

ing lines of text is based solely on the gaps between lines,

thereby making the assumption that lines are well separated.

Yanikoglu and Sandon [18] use projection profiles to de-

termine where the boundary between the baseline of a line

of text should be and the half-line of the line of text below

it. They then apply a contour following algorithm in that
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(a) (b) (c)

Figure 1. Correctly locating lines of text is difficult on this image. a) Original preprocessed image.

b) Black lines show where a profile-based method breaks the lines of text. The highlighted region

shows one of several lines that are handled incorrectly. c) A binarized ALCM before postprocessing.

The highlighted connected components each encompass more than one line of text.

boundary area.

Kavallieratou, et al. [6] also use projection profile meth-

ods to determine the number of lines and estimate where

lines begin. The area of the image corresponding to the

space between lines is then examined to trace the boundary

between text lines. The trace of the line boundary moves

up or down as needed to go around ascenders or descenders

that get in the way, and follows the profile minimum when

there is no clear path due to ascenders/descenders that go

all the way from one line to the other.

Nicolas, et al. [11] use an approach based on the Artifi-

cial Intelligence concept of production systems in order to

search for an optimal alignment of connected components

into text lines. The results and conclusions of the paper

show that more work is required before this method will

work robustly on difficult historical documents.

Manmatha, et al. [9] use a scale space technique for word

separation that produces good results on a large collection

of George Washington’s manuscripts, as well as some other

documents. Segmentation of text lines is performed using

smoothed projection profiles, which typically is sufficient

for the documents used in the tests, since the lines are rel-

atively straight. For some historical documents, however,

profile methods will not suffice due to curvature in the lines

of text, as shown in Figure 1.

Zhixin Shi, et al. [16] use an Adaptive Local Connectiv-

ity Map (ALCM), in which the value at each pixel is the

sum of all pixels from the original image within a specified

horizontal distance of that pixel. The ALCM is then thresh-

olded using Otsu’s Method [12], and the connected compo-

nents represent probable regions for lines of text, or partial

lines of text. Some postprocessing is done to remove small,

redundant components. The method handles slight curva-

ture in lines that profile methods do not handle. However,

this method can still have problems when the characteristics

of the particular handwriting or document being processed

cause the resulting segmentation to have multiple lines of

text encompassed within a single connected component, as

shown in Figure 1.

In this paper, we present a novel method for locating

lines within free-form handwritten historical documents.

Our method uses an approach to find initial text line can-

didates that, although distinct, somewhat resembles the

ALCM method described in [16]. Alternatively, the ALCM

could be used for this step, as we discuss. An additional

post-processing step checks for text line components that

are likely to contain more than one line of handwritten text,

and splits these components using a min-cut/max-flow al-

gorithm described by Boykov and Kolmogorov in [3]. The

splitting process is repeated until no more components ap-

pear likely to encompass multiple lines of text. After merg-

ing or removing lines with little information, we then create

output line images.

In Section 2, we discuss our current preprocessing meth-

ods. In Section 3, we present our algorithm for locating text

lines, merging redundant components, and splitting compo-

nents that encompass multiple lines of text. In Section 4, we

report results of early tests, and we discuss our conclusions

in Section 5. Possible future work is discussed in Section 6.

2. Preprocessing

We preprocess document images to reduce the number of

artifacts that would interfere with text line separation, word

separation, and subsequent handwriting recognition tasks.

Our current preprocessing consists of the following steps:

• Background Removal

• Page Deskewing

• Global Threshold Selection

• Rule/Margin Line Removal
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(a) (b) (c)

Figure 2. Background removal using median

filter. a) Portion of original image. b) Back-

ground image obtained using circular kernel

with 18-pixel radius. c) Image after removing

background and stretching histogram.

2.1. Background Removal

Background removal is performed using the method de-

scribed in [4, 5]. In this method, an image is median filtered

with a circular kernel to remove the foreground elements

(such as handwriting). This, in effect, produces a back-

ground image that can be subtracted from the original to

produce a foreground image. A histogram stretching oper-

ation normalizes the background intensity of the resulting

foreground image to white.

As shown in Figure 2, the resulting image contains the

foreground of the original image (including text and other

small features), but without the variations in background in-

tensity or large blobs. The dark margin areas that often ap-

pear at the edges of images are usually removed by this step,

as well.

Color images are converted to grayscale before back-

ground removal since we do not currently take advantage

of any additional information that could be gained from the

color signal.

2.2. Page Deskewing

Similar to many other deskewing techniques, our method

is based on projection profiles of the images, taken at vari-

ous angles. Initially, we use a vertical Sobel filter to accen-

tuate the tops and bottoms of the text. Then, for each angle,

we compute a slanted projection profile of the pixel values

of the grayscale edge image, normalizing each profile value

by the number of pixels represented in that profile location.

The variance of the profile is calculated, and the angle with

the maximum variance is assumed to be the skew angle. To

reduce computation, we first find the best skew angle esti-

mate at a coarse resolution of angles, then progressively re-

fine the estimate using higher resolution around the coarse

Figure 3. Automatic threshold selection

(after background removal) for an image
from the collection of George Washington

manuscripts used in [7]. a) Otsu’s Method -
notice that words and letters are made up of
many disjoint components. b) Our Method -

notice that letters and words are connected
better.

estimate. The idea of finding a course skew angle estimate

before refining the angle is found elsewhere in the literature

(see [6], for example).

While individual lines of text may still be curved or

skewed, globally deskewing the document serves to at least

bring them close to horizontal to facilitate the text line lo-

cation and separation, which assumes that the text lines will

be fairly horizontal. It also should bring rule lines and lines

at the edges of the page closer to their respective horizontal

or vertical orientations, making line removal easier.

2.3. Global Threshold Selection

We create a binarized version of our background-

removed, deskewed image because several of the steps in

our system require a binarized image. Since background

variations of the document are already removed, a global

threshold suffices for binarization in most cases. Automatic

selection of a proper threshold, however, can be tricky.

Otsu’s [12] algorithm for automatic threshold selection is

widely used in many applications. However, we find that the

Otsu method often selects a threshold that is lower than we

desire for our purposes, especially when the handwritten ink

does not appear consistently dark on the page. On strokes

that are faint, the ink rises above the threshold, and will not

appear in the binary image. This causes words or sequences

of characters that should be connected to become disjoint

components in the binary image (see Figure 3).
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components, and portion of image shown at
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We use the Otsu method to choose an initial threshold

value, t0. We then choose our threshold value, t, to be the
value between t0 and 255 (the maximum grayscale value)
that minimizes the number of connected components in

the binary image image resulting from thresholding at that

value.

Due to the nature of handwritten document images, the

automatically selected value of t tends to strike a good bal-
ance between maximizing the “connectedness” of handwrit-

ten words and reducing extraneous noise, as shown in Fig-

ure 4.

In some extreme cases, such as when there is severe

bleed-through between the text lines, connected compo-

nents that should stay separate can “merge” as the thresh-

old value is increased. Even though the higher threshold

causes more noise (bleed-through) to appear, the number

of components at the higher threshold is lower due to the

fact that the noise being introduced touches what would be

multiple components at the lower threshold. The number of

components can continue to decrease as the value of t be-
comes higher, until almost the entire page becomes one big

component. In order to prevent this erroneous selection of

an excessively high threshold, we limit our choices to those

values of t in which the number of pixels belonging to any
given component does not exceed the total number of pixels

that belonged to all components when t0 was used.

While the advantage of our global thresholding method

is not always as obvious as the example used in Figures 3

and 4, we empirically find that our method usually works

noticeably better than simply using the Otsu method for the

images in our current test set. Only in some rare cases with

severe bleed-through do we see our method perform slightly

worse.

(a) (b)

Figure 5. Compare our thresholding method

in Figure 3 to Niblack adaptive thresholding.

a) Niblack applied to original grayscale image

(no background removal). b) Niblack applied

to image after background removal.

For comparison with our method, Figure 5 shows an

example of Niblack’s adaptive thresholding [10] applied

on the image before background removal, or applied after

background removal. As can be seen, the letters are more

disjoint than our method, and noise is exaggerated in areas

distant from the foreground text.

2.4. Rule/Margin Line Removal

Line removal is performed to suppress lines (such as hor-

izontal rule lines and vertical margin lines) that would likely

interfere with separation of words and lines of text, as well

as subsequent recognition tasks. Various line removal tech-

niques exist in the literature. We choose to perform line

removal based on run-lengths of foreground pixels in the

binarized image.

For vertical line removal, (nearly) vertical runs of fore-

ground pixels exceeding a particular length (currently 1.5

times the median line spacing estimate from Section 3.1)

are considered to belong to vertical lines. Foreground pix-

els within a very small neighborhood of the vertical runs, as

well as pixels with high derivative magnitude (pixels which

are likely to be the line edges blurred with the light back-

ground) are also considered to be vertical line pixels. The

line pixels are removed by linearly interpolating the inten-

sity of the pixels to either side of the line.

Horizontal line removal is similar to vertical line re-

moval, but the run-length threshold is larger because we do

not want long ligatures, “T”-crossings, etc. to be mistakenly

removed.

Our line removal algorithm works relatively well when

the lines show up clearly in the binarized image. If lines

are so faint that they don’t show up in the binarized image,

or show up as short, disjoint segments instead of continu-

ous runs of pixels, then our algorithm does not detect and

remove the lines properly. Thin lines are removed incon-

spicuously, but thick lines tend to leave noticeable smears

when they are directly adjacent to handwriting, due to us-

ing interpolation to fill in where the lines were.
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(a) (b)

Figure 6. Line locations determined using transition information. a) Original preprocessed grayscale

image. b) Binarized transition count map before postprocessing.

3. Text Line Segmentation

The core of our approach for finding and separating lines

of text in a handwritten document consists of five main

parts. First, we estimate the spacing and height of text

lines,as described in Section 3.1. Second, a black/white

transition count map is calculated and binarized as de-

scribed in Section 3.2. Third, the connected components in

the resulting binarized map are analyzed, and those which

appear to contain more than one line of text are split using

a min-cut/max-flow graph cutting algorithm, as described

in Section 3.3. Fourth, line components that encompass

relatively small amounts of character data are merged with

nearby line components, as described in Section 3.4. Last,

a grayscale image of each text line is created, along with a

mask of foreground text and ambiguous components. This

is described in Section 3.5.

3.1. Parameter Estimation

In order to perform some steps of our approach, we use

an estimate of the height (or thickness) of the lines we are

dealing with as a parameter. This allows us to automati-

cally choose the size of window to use when calculating

the black/white transition count map, as well as parameters

used in the splitting and merging of components, for exam-

ple. We estimate the median text line thickness and spacing

by analyzing the peaks of the (smoothed) horizontal projec-

tion profile of the preprocessed grayscale image.

3.2. Text Line Location from Transition
Information

Using the global thresholding method described in Sec-

tion 2.3, we create a binarized version, fb(x, y), of the pre-
processed image. We then create a black/white transition

count map,M(x, y), in which the value of each pixel of the
map is set to the number of transitions (from white to black

or black to white) in the binary image that occur within a

horizontal window centered at that pixel location. Specifi-

cally, using a window size of 2d+1 pixels, the values of the
transition count map are calculated as:

M(x, y) =

x+d
∑

j=x−d

m(j, y),

where

m(j, y) =

{

0 if fb(j − 1, y) = fb(j, y)
1 if fb(j − 1, y) �= fb(j, y).

Like the calculation of the ALCM in [16], the transition

count map can be implemented using a sliding window for

better efficiency. To define the window size used in creating

the map, we currently use d = 3k, where k is the median
line thickness from Section 3.1.

We use Otsu’s Method [12] to binarize the transition

count map, which results in a set of connected components

representing the likely locations of text lines, as shown in

Figure 6. We then remove very small components (those

whose height or width fall below a particular threshold),

and those which encompass few foreground pixels from the

binarized transition count map.

Transition count information is also used elsewhere in

the literature. For example, in [1], transition counts (re-

ferred to as “crossing counts”) are used as a feature to dif-

ferentiate the type of content in a region of a document im-

age (e.g. text or graphics), and also as a stopping condition

to avoid over-segmenting lines of printed text. We are un-

aware, however, of any previous work that directly uses a

map of transition counts to locate lines of text.

In practice, we find that the binarized transition count

map and the binarized ALCM are quite similar in many re-

spects, but each has strengths and weaknesses that we dis-

cuss further in Section 4. The binarized ALCM, calculated

directly from the preprocessed grayscale image, could be

used instead of a binarized transition count map with no

other significant changes to our overall approach for seg-

menting text lines.
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3.3. Splitting Lines using Graph Cut

Components that are likely to include more than one line

of text are detected by analyzing how many pixels “inter-

nal” to the component are not actually part of the compo-

nent. The pixel at (x, y) is internal to the component if there
is at least one component pixel somewhere above the pixel

and also at least one component pixel somewhere below the

pixel. More formally, the pixel (x, y) is internal to com-
ponent C iff ∃y1,y2 where (x, y1) ∈ C AND (x, y2) ∈ C
AND y1 < y < y2. Components that include more than

one line of text are assumed to have a higher percentage

of internal pixels that do not belong to the component (due

to the spacing between the text lines) than components that

only include one line of text.

To split components that have more than one text line,

we use a min-cut/max-flow graph cut implementation that

was made available by Kolmogorov for research use [3, 2].

Given a directed, weighted graph with two special terminal

nodes called the “source” (labeled s) and the “sink” (labeled
t), the algorithm “cuts” the graph (removes edges) so that s
and t end up in disjoint subgraphs. The cut is made so as to
minimize the sum of the weights of the removed edges.

Normal edges, referred to as “n-links” connect normal

nodes in the graph, and their weights represent the cost of

removing that edge. Special “t-links” connect regular nodes

with the terminal nodes, and define the cost of assigning the

pixels to that side of the graph (see Figure 7).

In our graph, each pixel belonging to the component is

represented by one graph node. When the graph is cut, the

assignment of a node to the source or the sink subgraph is

analogous to assigning the corresponding pixel either to the

current component or to a new text line component.

Before the graph is cut, we make a list of pixels that are

likely to belong to the current component’s text line, and

call them the source candidates. We also make a list of the

pixels that should be in the new component, called the sink

candidates. These are the uppermost and lowermost com-

ponent pixels, respectively, of each pixel column that has a

large number of non-component internal pixels.

We form t-links between the candidate pixels and the

terminals. We set up a single n-link between each pair

s

t

Figure 7. Min-cut/max-flow graph cut splits a

graph into two subgraphs. For simplicity, we

show (and use) a non-directed graph. T-links

are shown thicker than n-links.

of nodes that represent neighboring pixels. We want

vertically-aligned pixels to split much more easily than

those aligned horizontally, since pixels next to each other

are likely to be part of the same line. For this reason, we

set the edge cost between vertical neighbors to 1, diagonal

neighbors to 2, and horizontal neighbors to 400. These val-

ues are chosen empirically, and may eventually need to be

chosen as a function of image or text line size.

Figure 8 shows the results of using the graph cut algo-

rithm to split text line components. After each split, the

process of checking for multiple lines (and possibly doing

another split) is repeated in case more than two text lines

were encompassed by the same component.

One caveat of how we use the graph cut method is that it

is possible to choose some erroneous source and sink can-

didates, which results in a bad segmentation– two or more

disjoint components for at least one side of the graph. After

performing a graph cut, if more than one component exists

for a given side, then the top-most component is consid-

ered to be associated with the source and the bottom-most

component is considered to be associated with the sink.

Any candidates from the other disjoint components are dis-

carded, and the graph cut is executed over with the reduced

set of candidates. The process is repeated until a good cut

with one component for each side of the graph is returned.

(a)

(b)

(c)

(d)

Figure 8. Splitting a component using graph

cut. a) Original component. b) New com-

ponent (yellow) for bottom line is formed

by graph cut (light orange pixels along top

of component are source candidates, dark

red pixels along bottom are sink candidates).

c) Graph cut used again to split the top two

lines. d) Final segmentation.
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(a)

(b)

Figure 9. Foreground components assigned

to text lines before merging. a) Text line

components overlaid with foreground com-

ponents. b) Foreground components colored

according to their assignment to text line

components. “Ambiguous” components are

dark red. Black components are unassigned

(not touching any text line).

3.4. Merging Lines

To aid in discussion of our method, we emphasize the

distinction between text line components and foreground

components. Text line components (originating from the

binarized transition count map, or alternatively from a bina-

rized ALCM) are the long, thin components that represent

regions of the image that encompass lines of text. Fore-

ground components (originating from the binary version of

the preprocessed document image) are the connected com-

ponents that make up letters, words, and other foreground

objects in the image.

Each foreground component is assigned to belong to a

particular line of text if any portion of the foreground com-

ponent overlaps the text line component for that line of text.

If a foreground component touches more than one text line

component, it is not clear which line the component should

belong to, so it is considered to be an “ambiguous” compo-

nent. Figure 9 shows an example of the foreground (text)

components assigned to their respective text lines, with am-

biguous components shown in red.

The foreground text pixel area for each text line compo-

nent is calculated as the total number of pixels belonging

to all foreground components assigned to that line, plus the

number of pixels within the boundary of the text line com-

ponent that belong to “ambiguous” components.

Text line components that have a relatively small pixel

area (compared to the pixel area of typical text line com-

ponents in the image) become candidates to be merged

with nearby text line components if they are spatially close

enough. The candidates are merged with neighboring

components only if the resulting merged component will

not be too “tall” relative to the typical thickness of the text

line components in the image, or if the height of the line

will not be increased. When candidates are merged, they

remain spatially disjoint, but the component being merged

(a)

(b)

Figure 10. After merging the text line compo-

nents from Figure 9 that contain little fore-

ground data. a) Notice the three small com-

ponents that have merged into the top line.

b) Foreground components colored accord-

ing to line assignment.

is relabeled to match the component it is being merged into,

as show in Figure 10.

Merging small text line components in this manner re-

duces the number of false text lines. At the same time, the

amount of ambiguous foreground text is often reduced since

some previously ambiguous foreground components may

only touch a single text line component after the merger.

For example, compare the top line of text before and after

merging lines in Figures 9 and 10, respectively.

In preliminary tests, we find that our method of line

merging works quite well in most cases, however, it relies

on a “one size fits all” parameterization to determine both

whether a line should be merged or not, and if so, which

line it should be merged to. In some cases, components that

should be merged are not because they are far enough away

from their nearest neighbor or because they would make

the line too tall if they were merged. In other cases, com-

ponents may be merged that should not be due to the fact

that they are very close to another component and do not

cross the threshold of being too tall. Components may also

be merged with the wrong line, since the closest component

is not always the component that it should be merged with,

especially if the author writes lines close together or uses

long ascenders and descenders.

3.5. Mask and Line Image Creation

The final step in our line segmentation approach is to cre-

ate text line images for output. We create both a grayscale

version of the line image and a special mask of the line im-

age. The mask includes the foreground pixels of the line im-

age in addition to specifying which pixels may not really be

part of the line because they are ambiguous or unassigned.

Since the text line components tend to cover mostly the

area of the base of characters, with ascenders and descen-

ders protruding from the line components, we first expand

the line component regions by morphological dilation re-

peated k times, where k is the median line thickness from
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(c)

(d)

(e)

Figure 11. Output Line image creation. a) Original preprocessed grayscale image. b) Original com-

ponent line assignments (ambiguous components are dark red) c) Region of interest (light gray) and

text line component (dark gray) overlaid with foreground text. Pixels that remain ambiguous are

lighter red. d) Output grayscale line image. e) Output line mask (ambiguous components are red,

unassigned components are dark blue).

Section 3.1. As the region is expanded, the result of the di-

lation is constrained such that the expanded line component

will not overlap any of the other unexpanded line compo-

nents. Any spaces between the top-most and bottom-most

pixel in each column of the expanded line component are

then filled in to eliminate horizontal streaks of whitespace

that protrude into the component. This expanded line com-

ponent defines the region of interest for the line of hand-

written text.

The grayscale values within the region of interest from

the original preprocessed grayscale image are copied into

the grayscale line image, and the foreground components

within the region are copied into the special mask image.

Any foreground components within the region of interest

that are assigned to other lines are eliminated from the

mask, and are also removed from the grayscale line image

by setting the pixels of those components (and also their 4-

connected neighbor pixels) to the background color. Any

“ambiguous” foreground components that do not touch the

original line component area are eliminated in like manner,

as are unassigned components that are very far below the

original line component, since these are all assumed to be

either noise or ascenders/descenders from other text lines.

We take notice of the fact that in many cases, an ascender

or descender of a word touches part of another line, causing

the entire word to be considered ambiguous because of the

fact that the whole word is a single component. Therefore,

in our output mask image, we mark all ambiguous pixels

as part of the line except for those portions of the ambigu-

ous component that can directly be marked by sweeping up-

ward or downward from the edges of the region, within a

bounded angle. That is, as we sweep down from the region

edge, any pixel that has a pixel marked as ambiguous di-

rectly above it or on either diagonal above it will continue

to be marked ambiguous. To account for the forward slant

of most writers, we also check the pixel to the right of the

top-right diagonal. The process is similar sweeping up from

the bottom. Figure 11 shows an example of text line output

images created using our approach. In this example, it is

also easy to see that the original component assignment had

many entire word components marked ambiguous, but only

the areas immediately connected to the edges of the region

of interest remain ambiguous in the final mask.

Line images are discarded if the ratio f/c (where f is
the number of pixel columns containing unambiguous fore-

ground pixels, and c is the total number of pixel columns
containing the text line component pixels) is less than a cer-

tain threshold (currently 0.25). This helps reduce the num-

ber of spurious line images that are generated due to small

line components that fail to merge properly during the line

merging process described in Section 3.4.

The final output images of our line separation approach
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could be used either directly as input to other systems (if the

system requires a line of text), or after further processing to

separate words within the lines. Word separation could be

performed using existing methods, such as the scale-space

approach [9] or gap metrics [8, 13], applied to the output

line images from our system. Systems that cannot handle

grayscale could be given a binary version of our mask im-

age, easily created by setting all non-white pixels to black.

The purpose of providing a separate mask image is to al-

low flexibility for future recognition systems. A recognizer

that is unable to recognize a word with very high confidence

could look at the mask, and attempt to recognize the word

again while ignoring ambiguous regions that may be caused

by stray marks such as descenders from other lines. When

erroneous marks are ignored, the word may be recognized

with more accuracy and higher confidence.

4. Results

We compare the results of our method to the results us-

ing profile-based line separation on a small number of im-

ages (more extensive comparison is yet to be completed).

The profile method is run after performing the exact same

preprocessing as used in our method to make the compar-

ison fair. For each image, a grayscale projection profile is

computed, then convolved with a Gaussian derivative ker-

nel. Positive to negative zero crossings of the derivative are

used to detect the intensity peaks, which correspond to the

horizontal areas of the image with the most white, repre-

senting the space between text lines. The sigma value and

kernel size used to create the Gaussian derivative kernel are

computed automatically as a function of image height.

Our test images for this comparison includes 20 images

from the George Washington manuscripts used in [7], and

6 images downloaded from the “Trails of Hope: Overland

Diaries and Letters, 1846-1869” (Trails of Hope) on-line

collection of pioneer letters and diaries, made available at

URL http://overlandtrails.lib.byu.edu by the Harold B. Lee

Library at Brigham Young University. Several more images

from this second collection are used for visual inspection,

but are not yet included in our numerical reporting. Images

in the Trails of Hope collection provide samples of differ-

ent writing styles, penmanship, and document quality, with

special effort to select some images that have characteristics

making segmentation difficult.

Table 1 lists how many errors occur in the results of our

line separation method and the profile-based method, as de-

termined by manual inspection. Split errors represent lines

of text in which part of the line was split off that should not

have been. This measure is slightly subjective (and approx-

imate) because there are many times in which minor errors

occur, such as the top of a letter being cut off. In some

cases, this is counted as an error (such as when the top of

Our Method Washington Trails of Hope

(Good Lines) (662) (146)

Split Errors 1 9

Unsplit Errors 1 4

Extra Lines 8 0

Missing Lines 5 0

Profile Method Washington Trails of Hope

Split Errors 18 18

Unsplit Errors 6 5

Extra Lines 46 23

Missing Lines n/a n/a

Table 1. Line Separation Error counts.

an “R” gets cut off, leaving it looking like a “K” instead),

while it is not counted as an error if it appears there is no

real impact (the last little bit of an already obvious extender,

for example). Unsplit errors are lines of text that should be

split, but aren’t. Extra Lines are lines that are considered

distinct, but should not exist – typically caused by noise in

the image, especially in the top or bottom margin. Missing

Line errors result from handwritten text that gets discarded,

but that should be part of a text line.

As can be seen in Table 1, both our method and the pro-

file method perform very well on the first set of test images

(the George Washington letters). The lines of text in these

letters are written neatly and are well-spaced.

Our method separates 662 lines properly, including 4

that are aligned horizontally, but spaced significantly apart.

Such splits are not considered errors since they would not

impede later recognition tasks.

Only one split error is seen, which is a tall letter “S”

in which the upper half is split off. The only unsplit error

is a small, two-word phrase inserted in the space between

two real lines of text, which did not get split out. This also

causes an error with the profile-based method. All but one

of the extra lines are caused by noise at the bottom of pages.

The remaining extra line results from a round stamp or seal

(non-text) on the document. All of the missing lines are

extremely short– dates at the top, or short words / abbrevia-

tions that end up on their own line.

The profile method has slightly more errors. Many of the

split errors are very minor (the tops of letters or the raised

“th” in numbers like “10th” being split off from the line they

should be in, for example). Unsplit errors seem more fre-

quent (especially for short lines) using the profile method.

In addition to the 6 we report, there are also a couple that

probably should be split, but are not counted as errors be-

cause they do not overlap (one above the other), and there-

fore would not hinder later recognition tasks. Extra lines are

all caused by noise at the top and bottom of images. We do

not remove empty lines, so all portions of the image belong

to exactly one line and there are no “missing line” errors.
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(a) (b) (c)

Figure 12. Results of our text line separation. a) Preprocessed image. b) Grayscale Output Line

Images (concatenated) from the highlighted region. c) Corresponding Output Line Mask Images.

For the few documents that we compare so far in Ta-

ble 1, we see that similar results hold for the six Trails of

Hope images– our method performs slightly better on aver-

age than the profile method.

It is noted that the George Washington manuscripts are

well-spaced, and have a fairly consistent slope. This is the

case also for many of the Trails of Hope images. We are

currently in the process of collecting more images repre-

sentative of the problems we set out to solve, especially im-

ages that do not have consistent slope. We anticipate that

our method will perform much better than profile methods

on such images. Two such images that are already included

in our tests (and Table 1) are shown in Figures 12 and 13,

along with the output line images from our method.

Applying our method to several other documents from

the Trails of Hope collection that are not yet quantified in

Table 1, we find that our method often performs quite well.

In addition to successfully locating lines of text, our system

is typically accurate in marking ambiguous areas of the line

that may not actually belong to the line. This information

could be useful to recognition systems.

As we experiment with particularly difficult documents

in our data set, we see that our method does struggle in some

cases, such as when there is excessive bleed-through, as can

be expected from most methods. It also tends to have prob-

lems (such as the “extra line” errors reported in the com-

parison above) when the preprocessing (line removal, etc.)

fails to clean up documents properly. Improvements to our

preprocessing will help make the performance of the com-

plete system more robust. Also, because of the fact that a

horizontal window is used to either count transitions or gen-

erate an ALCM, our method will not work properly if text

lines remain skewed too far away from horizontal even after

the global deskewing step.

Some other cases in which our method sometimes falls

short are when there is large variation in the size of writ-

ing (for example, a word or line that is much taller than is

typical for the page), when lines are very close together,

when many ascenders/descenders are near each other, or

when lines of text are extremely short in length.

While our method does not always handle these situa-

tions perfectly, we believe that it does, on average, repre-

sent an improvement over the traditional methods we have

discussed, especially for documents in which the line skew

is not consistent. In addition, our method cleans up some of

the stray marks in the output line images and provides in-

formation about ambiguous pixels in the line image, which

traditional methods do not.

As mentioned in Section 3.2, both the black/white tran-

sition count map and the Adaptive Local Connectivity Map

(ALCM) can be used to locate the likely regions of text

lines. Our experiments indicate that the two methods usu-
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Figure 13. Results of our text line separation. a) Preprocessed image. b) Grayscale Output Line

Images (concatenated) from the highlighted region. c) Corresponding Output Line Mask Images.

ally give similar results, but each has strengths and weak-

nesses. While the transition count method does a better job

of ignoring solid non-text areas, it is more susceptible to

falsely detecting faint, noisy regions that are not solid. The

ALCM method tends to have fewer “ambiguous” compo-

nents due to the text line components being thinner verti-

cally. On the other hand, the transition count method tends

to do better at including disjoint portions of ascenders as

part of the line instead of leaving them as unassigned com-

ponents. The transition count method also tends to locate

lines of text that are short in length better than the ALCM

method.

Whichever method is used, our subsequent use of the

graph cutting algorithm is usually very effective in split-

ting the text line components in reasonable locations so that

each line component only includes one line of handwritten

text.

5. Conclusion

In this paper, we describe a method for separating lines

of handwritten text in historical documents. We use pre-

processing steps that remove uneven backgrounds, choose

a reasonable threshold value, and remove solid lines (such

as rule lines) from the image. We then create a binarized

black/white transition count map (or alternatively, a bina-

rized ALCM) to find probable locations of text lines. Text

line components that appear to encompass more than one

line of text are split using a min-cut/max-flow graph cut al-

gorithm. Components that should probably be part of an-

other nearby line are merged. Finally, a grayscale output

image of each line is created, along with an associated fore-

ground mask. Foreground components that belong to other

lines of text are removed from both the grayscale image and

the foreground mask. The foreground mask includes infor-

mation about pixels that are ambiguous, and therefore may

need to be ignored by subsequent processes (such as recog-

nizers) when handling the line image.

Results of preliminary testing with our system are en-

couraging, as it performs well on a variety of historical doc-

uments from several different authors. Our method works

well even on some very difficult documents.

Still, there are cases that our system does not always han-

dle well. In this paper, we also identify some of these short-

comings, that we hope to address in future work as our sys-

tem matures.

6. Future Work

As mentioned, we continue to acquire representative test

images and will continue our tests and comparisons with

other methods. While we so far only compare with a tra-

ditional profile method, we desire also to perform com-

parisons with other methods, such as the complete ALCM

method described in [16].

From early analysis, we find that many of our errors are

caused by shortcomings in our preprocessing. Improving

our line removal method (or choosing a better method from
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the literature) will help improve our results. Also of partic-

ular interest is preprocessing that will reduce the amount

of bleed-through remaining on the page. Methods such

as [15, 17] may prove to provide cleaner images than our

current methods.

Our method will also be made more reliable by improv-

ing the criteria used in deciding when to merge line compo-

nents, and to which other line components they should be

merged.

Using a combination of methods may also provide better

robustness. For example, using both an ALCM and the tran-

sition count map to take advantage of the strengths of each

may prove worthwhile. And in cases where it can be deter-

mined that the handwritten lines are relatively straight and

well-separated, reverting to the simple, fast profile-based

methods may be in order.
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