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Abstract

The high proportion of zeros in typical scRNA-seq datasets has led to widespread but
inconsistent use of terminology such as “dropout” and “missing data”. Here, we argue that
much of this terminology is unhelpful and confusing, and outline simple ideas to help reduce
confusion. These include: (1) observed scRNA-seq counts reflect both true gene expression
levels and measurement error, and carefully distinguishing these contributions helps clarify
thinking; and (2) method development should start with a Poisson measurement model,
rather than more complex models, because it is simple and generally consistent with existing
data. We outline how several existing methods can be viewed within this framework and
highlight how these methods differ in their assumptions about expression variation. We
also illustrate how our perspective helps address questions of biological interest, such as
whether mRNA expression levels are multimodal among cells.

Introduction

Single-cell RNA sequencing (scRNA-seq) has facilitated investigation of important bio-
logical questions that were previously difficult or impossible to study, such as the nature of
heterogeneity within classical cell types, the dynamics of cellular processes, and the biolog-
ical pathways underlying cellular differentiation. However, how to model scRNA-seq data
has been the subject of considerable confusion and debate. In particular, the high propor-
tion of zeros in typical data sets has garnered special attention, and has led to widespread
but inconsistent use of terminology such as “dropout” and “missing data.” In this paper, we
argue that much of this terminology is confusing and unnecessary, and we outline simple
ways of thinking and talking about scRNA-seq data that can help reduce confusion.

The first key idea is that observed scRNA-seq counts reflect two distinct factors: the
variation in actual expression levels among cells, and the imperfect measurement process.
Therefore, models for observed scRNA-seq counts, which we will call observation models,
are obtained by specifying: (1) an expression model that describes how the true expression
levels vary among cells/genes, and (2) a measurement model that describes how observed
counts deviate from the true expression levels. Distinguishing between observation, expres-
sion, and measurement models is important both for avoiding confusion and for performing
useful analyses. Indeed, the goal of most RNA-seq analyses is to draw inferences about true
expression levels from observed counts, and this is impossible without explicit considera-
tion of how the observed counts are related to the expression levels through a measurement
process. Moreover, making measurement and expression models explicit can help clarify
the underlying assumptions and aid interpretation of results such as parameter estimates.

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.04.07.030007doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030007
http://creativecommons.org/licenses/by/4.0/


2

The second key idea is that a Poisson model is a reasonable starting point for modeling
scRNA-seq measurement. We summarize theoretical arguments for this model, and explain
how it can capture the abundance of zeros in scRNA-seq data without special terminology
or special treatment. This measurement model is a simplification (Box 1), but we argue that
it is a useful simplification that will often suffice in practice.

Both ideas are simple, and neither is new. Modeling the measurement process has a
long history1, as does the use of Poisson measurement models for RNA-seq2,3. However,
many papers on scRNA-seq analysis do not incorporate these ideas, focusing exclusively
on observation models and leaving measurement and expression models implicit (ref.4 is
a notable exception). This ambiguity is especially problematic when the models include
components said to capture “zero-inflation” without clearly indicating whether these are
part of the measurement model, the expression model, or both. Here, we show how many
scRNA-seq observation models can be interpreted as combining a Poisson measurement
model with different expression models, clarifying their underlying assumptions about ex-
pression variation.

These simple ideas can also help address questions of biological interest. For example,
the question of whether gene expression patterns are multimodal among cells is about the
expression model, not the observation model. We investigate this question empirically in
diverse datasets, and find that data are often consistent with surprisingly simple expression
models. Specifically, a Gamma distribution often suffices to capture variation in expression
levels among cells.

A call to simplify terminology

One major source of confusion in scRNA-seq analysis is the widespread but inconsis-
tent use of terminology, especially “dropout,” “missing data,” “imputation,” and “zero-
inflation.” Choice of terminology has many important consequences: it affects the way that
researchers think, develop and apply methods, and interpret results. We therefore begin by
reviewing these terms, and explain why in many cases we view them as unhelpful.

The term “dropout” has become commonly used in connection with the zeros in scRNA-
seq data5–9. Historically, dropout referred to allelic dropout, a failure of PCR in which
specific primers would fail to amplify sequences containing a specific allele, leading to
genotyping errors for heterozygous individuals10,11. In scRNA-seq, the term “dropout”
was introduced to describe a supposed failure that might cause a gene to appear highly
expressed in one cell but not expressed in another5. Although the source was not specified,
this usage seems to refer to some aspect of the measurement process. The term has since
spread widely, but its meaning varies among papers and presentations (and sometimes even
within papers and presentations!). For example, it is used to refer sometimes to observed
zeros, sometimes to the unknown subset of zeros at genes that are expressed but undetected,
and sometimes to the fact that not all molecules present in the original sample are observed
(which affects all observations, not just the zeros). Such variation in usage naturally leads
to confusion and disagreement about how these phenomena should be modeled. For this
reason, we argue the term “dropout” should be avoided in the context of scRNA-seq data.
Instead, zero observations should simply be referred to as zeros, and measurement models
should focus on the fact that not all molecules in the original sample are observed, with
zeros being just one byproduct.

The term “missing data” is also commonly used in connection with zeros in scRNA-
seq8,12. This terminology is misleading because the zeros are not missing data as under-
stood in statistics. To illustrate, consider a survey where a researcher counts the number of
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cars arriving at an intersection each minute. If no cars arrive in a particular minute, then
the observation would be recorded as zero; however, this observation is not “missing.” In
contrast, if the researcher takes a lunch break and does not record arrivals for an hour, then
this would lead to sixty truly missing observations. The zeros in an scRNA-seq data ex-
periment are more like the former than the latter: there is no analogue of a lunch break in
the scRNA-seq measurement process. Of course, in RNA-seq data the observed zeros are
noisy, and do not necessarily imply that there were zero molecules present in the original
cell; however, the same is true of all observations.

Inappropriate use of the term “missing data” has led to inappropriate application of
methods for dealing with missing data to scRNA-seq data. For example, in other appli-
cations it is common to “impute” (fill in) missing values, and so many scRNA-seq papers
have described methods to “impute” zeros8,13–15. However, since zeros in scRNA-seq are
not actually missing data, the meaning of these imputed values is unclear. Thus, the term
“missing data”, and methods that “impute” (only) zeros, should be avoided. Instead, every
observation in scRNA-seq should be treated as a noisy observation of an underlying true ex-
pression level, and inference should focus on clearly-defined tasks such as estimating these
true expression levels.

Finally, the term “zero-inflated” is another common source of confusion and debate. In
statistics, “zero-inflated” describes a model for count data that is obtained from a simpler
model by increasing the proportion of zeros. For example, “zero-inflated Poisson” refers to
a distribution obtained by taking a Poisson distribution and then increasing the proportion
of zeros. In scRNA-seq applications, the use of zero-inflated models is an understandable
reaction to the high proportion of observed zeros. However, recent work suggests that zero-
inflated models may be unnecessary; indeed ref.16 entitles their piece “Droplet scRNA-seq
data is not zero-inflated.” Here, we take a slightly different perspective: we argue that there
is no convincing evidence supporting zero-inflated measurement models; however, zero-
inflated observation models could be appropriate, depending on actual expression variation.
This perspective makes clear that the need for zero-inflated models may vary among data
sets and among genes.

These issues all stem from one major misconception in scRNA-seq: the idea that the
measurement process involves some distinct zero-producing technical mechanism. Indeed,
some published observation models include a component that randomly creates zero ob-
servations irrespective of the true expression level, for example ref.14. Such a mechanism
would require a systematic effect that somehow misses all molecules from a particular gene
in a particular cell, and there are no convincing theoretical arguments or empirical evidence
supporting this idea. Thus, we argue that measurement models for scRNA-seq should begin
from a simple assumption, that the measurement process operates independently on each
molecule in the cell. This assumption is a simplification (Box 1), but is not strongly con-
tradicted by existing data, and leads to simple observation models and explanations for the
large proportion of zeros in scRNA-seq data.

Modeling scRNA-seq data

Observed scRNA-seq counts reflect both the true expression levels of each gene in each
cell, and the measurement process. We first describe measurement and expression mod-
els, and how they combine to yield observation models. We focus on data generated using
Unique Molecular Identifiers (UMIs), which substantially reduce unwanted variation, in-
cluding differences in gene lengths and PCR amplification efficiencies17. (It is possible that
zero-inflated observation models were initially motivated by a need to account for variation
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in read counts introduced by PCR.) We ignore these sources of variation, so our arguments
may not apply to data generated without UMIs.

We now introduce some notation. Consider using scRNA-seq to measure gene expres-
sion in 𝑛 single cells. Thinking of each cell as a pool of mRNA molecules, let 𝑚𝑖𝑗 denote
the true (but unknown and unobserved) number of molecules present in cell 𝑖 from gene 𝑗
(𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑝), and let 𝑚𝑖+ denote the total number of molecules in cell 𝑖. We
refer to 𝑚𝑖𝑗 as the absolute expression level of gene 𝑗 in cell 𝑖 and 𝜆𝑖𝑗 ≜ 𝑚𝑖𝑗/𝑚𝑖+ as the
relative expression level of gene 𝑗 in cell 𝑖. In words, the absolute expression level of a
gene is the number of RNA molecules present from that gene, whereas the relative expres-
sion level is the proportion of RNA molecules from that gene. Here, we focus on relative
expression levels since estimating absolute expression levels from scRNA-seq is difficult,
and use 𝚲 = [𝜆𝑖𝑗] to denote the matrix of relative expression levels. Let 𝐗 = [𝑥𝑖𝑗] denote
the observed count matrix, where 𝑥𝑖𝑗 denotes the number of distinct molecules from gene 𝑗
observed in cell 𝑖, and let 𝑥𝑖+ denote the total number of molecules observed in cell 𝑖.

In this notation, a measurement model is a model that connects the observed counts 𝐗 to
the expression levels 𝚲, by specifying the conditional distribution 𝑝(𝐗 ∣ 𝚲). An expression
model is a model for the expression levels 𝑝(𝚲). Together, these two models determine the
observation model, which is a model for the observed counts 𝑝(𝐗).
Modeling scRNA-seq measurement. We believe that methods should generally start with
simple models, adding additional complications only when warranted. In this spirit, we sug-
gest that methods for scRNA-seq should start with a simple Poisson measurement model:

(1) 𝑥𝑖𝑗 ∣ 𝑥𝑖+, 𝜆𝑖𝑗 ∼ Poisson(𝑥𝑖+𝜆𝑖𝑗).
Although simple, this measurement model is supported by theoretical arguments3,18 (Sup-
plementary Note 1), early empirical analyses of bulk RNA-seq data2, more recent analyses
of control scRNA-seq data4,16,18, and our own empirical analyses.

Although the Poisson measurement model is essentially the same as that used for bulk
RNA-seq data, it can nonetheless account for the fact that there are many more zeros in
scRNA-seq data than bulk RNA-seq data. First, the total number of molecules observed𝑥𝑖+ is typically much smaller for single cells than for bulk samples, because single cells
have less starting material and are typically sequenced to lower average depth. Second, it is
more common that 𝜆𝑖𝑗 will be small (or even zero) for a single cell than for a bulk sample.
This is because expression levels in bulk samples are averages of expression levels in many
single cells, and averaging reduces the frequency of both small and large values. These two
facts imply that the rate parameter 𝑥𝑖+𝜆𝑖𝑗 is often smaller in scRNA-seq data than in bulk
RNA-seq data, explaining the higher proportion of zero observations.

The Poisson measurement model also captures aspects of scRNA-seq data that have
previously been referred to using terms such as “dropout,” “missing data,” and “technical
zeros.” It captures the fact that not every molecule that was present in every cell was ob-
served; indeed, this fact is a fundamental assumption. It also captures the fact that 𝑥𝑖𝑗 may
be observed to be zero even when 𝑚𝑖𝑗 (hence 𝜆𝑖𝑗) is non-zero. However, it captures these
features without introducing a distinct zero-generating mechanism. The zeros, like other
observations, are simply imperfect measurements with no need for special terminology or
special treatment.

Under the Poisson measurement model, observing 𝑥𝑖𝑗 = 0 is different from 𝑥𝑖𝑗 being
missing. If 𝑥𝑖𝑗 were missing, then it would provide no information about the expression
level 𝜆𝑖𝑗 . But, observing 𝑥𝑖𝑗 = 0 does provide such information, namely that 𝜆𝑖𝑗 is unlikely
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to be large. In other words, it correctly reflects that counts 𝑥𝑖𝑗 are noisy observations of the
true expression levels; see also refs.19–21 for example.

Alternative measurement models. Previous papers have considered zero-inflated measure-
ment models for scRNA-seq data5,8. However, there are no convincing empirical analyses
supporting such models; neither are there any convincing arguments for why such zero-
inflation should be expected. Furthermore, two recent analyses of control data sets, in
which synthetic mRNA molecules are directly added (“spiked in”) to droplets at known
concentrations, captured, and then sequenced found no evidence supporting a zero-inflated
measurement model4,16. Our empirical analysis below further supports this position. In-
cluding an unnecessary zero-generating component in the measurement process has the cost
of increasing model complexity, and introduces the danger that true expression variation
may be wrongly attributed to the measurement process.

This said, the Poisson measurement model (1) is necessarily a simplification. In partic-
ular, it ignores biases that may cause some molecules to be more likely to be observed than
others (Box 1; Supplementary Note 1). When such biases are consistent across cells, infer-
ences that involve comparisons among cells will be robust to ignoring them; however, some
biases may vary from cell to cell, producing measurements that are overdispersed (more
variable) relative to a Poisson distribution. Given the difficulty of precisely modeling all
aspects of the measurement process, and given that available data do not strongly contradict
a Poisson measurement model, our perspective is that methods development should start
with the Poisson measurement model, and focus more attention on modeling expression
variation (as described below). The main downside of this approach is that it risks overstat-
ing expression variation if measurement overdispersion is high. However, we view this as
a risk worth paying for the benefits of simplicity.

Modeling gene expression. We emphasize that our suggestion to use a Poisson model
applies specifically to the measurement model, not the observation model. Indeed, many
papers have demonstrated that a Poisson observation model does not capture all variation
in observed RNA-seq data, and so it is common to use a more flexible observation model
that can capture additional variation, such as NB or zero-inflated negative binomial (ZINB)
observation models. These observation models are not inconsistent with a Poisson mea-
surement model; indeed, in this section we explain how NB and ZINB observation models,
as well as many other existing methods, naturally arise by combining the Poisson measure-
ment model with certain expression models.

To make this idea precise, first consider modeling expression at a single gene 𝑗. An
expression model for a single gene involves specifying a distribution 𝑔𝑗 for the expression
levels 𝜆1𝑗 , … , 𝜆𝑛𝑗 ,
(2) 𝜆𝑖𝑗 ∼ 𝑔𝑗(⋅).
One simple choice is to assume that 𝑔𝑗 is a Gamma distribution; combining this with
(1) yields the NB observation model22. Similarly, combining a point-Gamma expression
model, wherein some proportion of the expression levels are exactly zero, while the other
(non-zero) levels follow a Gamma distribution, with (1) yields the ZINB observation model.
It is also possible to use non-parametric expression models4,23. A list of single-gene ex-
pression models, and some published methods implementing statistical inference for the
corresponding observation models, are given in Table 1 (see Supplementary Note 2 for
details).
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Similar ideas apply to expression models for multiple genes, although things inevitably
become more complex. A multi-gene expression model simultaneously describes corre-
lations among expression levels at different genes across cells, and different cells across
genes. A common and powerful approach to describe these correlations is to use low rank
models, which intuitively assume that the correlations can be captured by a relatively small
number of patterns, much smaller than the number of cells or genes. More precisely, these
models can be written

(3)

𝜆𝑖𝑗 = 𝜇𝑖𝑗𝑢𝑖𝑗𝜇𝑖𝑗 = ℎ−1((𝐋𝐅′)𝑖𝑗)𝑢𝑖𝑗 ∼ 𝑝(𝑢𝑖𝑗),
where ℎ denotes a link function, or transformation, and the loadings matrix 𝐋 and the fac-
tors matrix 𝐅 are low rank. This form has an appealing biological interpretation: the matrix𝐋𝐅′ represents the structure of expression variation among cells/genes and 𝑢𝑖𝑗 represents
stochastic deviations from this structure. Thus, one might think of 𝐋𝐅′ as representing
different cell types/states and 𝑢𝑖𝑗 as stochastic expression noise24. A list of multi-gene ex-
pression models, and some published methods implementing statistical inference for the
corresponding observation models, are given in Table 2 (see Supplementary Note 3 for
details).

Interestingly, methods that combine expression models of the form (3) with the Pois-
son measurement model (1) may be robust to misspecification of the measurement model.
Specifically, if measurements are overdispersed relative to Poisson, then the model fit will
tend to include this additional variation in 𝑝(𝑢𝑖𝑗) (provided this distribution is sufficiently
flexible), while leaving estimates of the structured variation 𝐋𝐅′ unchanged. Intuitively,
overdispersered measurement error affects the variance of the observations, but not the
mean. Therefore, while estimates of the stochastic noise may be sensitive to assumptions
on the measurement process, estimates of the structured expression variation will be more
robust.

Summary. To summarize, many existing observation models for scRNA-seq data can be
derived by combining the Poisson measurement model (1) with expression models of the
form (2) or (3). This framework clarifies several sources of confusion in scRNA-seq analy-
sis. First, it emphasizes that which observation models are most appropriate for scRNA-seq
data may vary among data sets and among genes, because expression variation will vary
among data sets and genes. For example, if data are collected on a set of homogeneous
cells, then most genes might show relatively little expression variation may be adequately
described by simple expression models. In contrast, if the data contain many cell types,
then more complex expression models could be required. We study this question empiri-
cally below.

Second, this framework provides a different interpretation of a finding, for example, that
a ZINB observation model fit observations at some gene in some data set better than an NB
model: it would imply that the expression levels at the gene are better modeled by a point-
Gamma distribution than by a simple Gamma distribution. Importantly, this is a conclusion
about the true expression levels, not a conclusion about the measurement process. This
interpretation contrasts with the usual way that the ZINB observation model is interpreted,
in which zero-inflation captures some supposed technical mechanism (see Supplementary
Note 4 for details).

Finally, this framework provides a rigorous approach to infer, for example, the mean or
variance of true gene expression levels, as well as the true expression levels themselves,
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from the observed counts. However, these estimates are generally neither simple func-
tions of the observed counts, nor functions of simple transformations (e.g., log) of the
observed counts. We illustrate this procedure for a single-gene point-Gamma expression
model (ZINB observation model) in Box 2.

Empirical examples

Single gene models. There is considerable debate about whether scRNA-seq data are ade-
quately modeled by an NB observation model, or if it is necessary to use a ZINB observation
model. Some papers have concluded that observed scRNA-seq data exhibit multi-modal ex-
pression variation, suggesting that an even more complex observation model may be nec-
essary25–27. Under the framework outlined above, these questions translate into questions
about the expression model: is a Gamma expression model adequate, or is it necessary to
use a more complex, even multi-modal, expression model?

Since expression variation may vary among genes and data sets, we analyzed data sets
from a range of settings including homogeneous collections of sorted cells, a priori homo-
geneous cell lines, and heterogeneous tissues. We also created in silico mixtures of sorted
cells as positive controls for highly heterogeneous expression patterns (Table 3).

For each gene in each data set, we compared several expression models: a Gamma dis-
tribution, a point-Gamma distribution, a non-parametric unimodal distribution, and a fully
non-parametric distribution (Figure 1a; Supplementary Note 2). Because these compar-
isons involve non-parametric families, obtaining 𝑝-values is not straightforward and per-
haps inappropriate, since specifying any of these models as a “null” expression model is
also questionable. Therefore, we instead compared the support for each model by compar-
ing the likelihood of the data under each model. As a simple heuristic, we considered a
likelihood ratio of 100 or more as strong evidence for one model over another.

We first assessed whether genes show evidence against a Gamma expression model due
to excess zeros, by comparing a Gamma expression model with a point-Gamma model. In
all biological data sets we examined, only a fraction of genes (0.6–9%) showed strong evi-
dence in favor of the point-Gamma model (Figure 1b). The genes showing strong evidence
in favor of the point-Gamma expression model included known marker genes in synthetic
mixtures of sorted B cells and T cells (Figure 1c), providing a positive control that this
approach can find such patterns.

Next, we assessed whether genes show evidence for other types of departures from a
Gamma expression model, by comparing it to a non-parametric unimodal expression model.
In this comparison, many more genes (20–69%) showed strong evidence in favor of the non-
parametric unimodal expression model (Figure 1d). These results suggest that expression
variation at many genes might not be captured even by a ZINB observation model. As
an example, in PBMCs the gene PPBP exhibits not only many observed zeros, but also
many small non-zero observations (for example, ones and twos) and a long tail of large
observations (Figure 1e). Neither the Gamma nor point-Gamma distribution have sufficient
flexibility to simultaneously describe both of these features, explaining the better fit of the
non-parametric unimodal model.

Finally, we assessed whether the data show evidence of multimodal expression varia-
tion, by comparing a unimodal expression model against a fully non-parametric expres-
sion model. In this comparison, few genes (0.04–3%) showed strong evidence for the
fully non-parametric expression model (Figure 1f), suggesting that multimodal expression
variation may be rarer than previously suggested27. As a positive control, RPS4Y1 is a Y
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chromosome–linked gene showing overwhelming evidence for the non-parametric expres-
sion model over the unimodal model (likelihood ratio > 1065), due to distinct distributions
of gene expression in iPSCs derived from male and female donors (Figure 1g). One pos-
sible reason that cells from female donors are estimated to have non-zero expression of
RPS4Y1 is that the relevant part of the coding sequence is identical between RPS4Y1 and
its homolog RPS4X, and some reads erroneously mapped.

We emphasize that lack of multimodal expression variation does not imply lack of het-
erogeneity. To illustrate, SKP1 is a gene at which expression in iPSCs is linked to the
genotype of a nearby SNP, meaning both the mean and mode of expression levels vary
across donors depending on genotype (Supplementary Figure 1). However, when the data
are pooled across all samples, they show only modest evidence for multimodal expression
variation (likelihood ratio 3.1 for the fully non-parametric expression model over the uni-
modal model). This is partly due to the substantial heterogeneity within each genotype
class, which bridges the heterogeneity between genotype classes.

In summary, although some genes show departures from a simple Gamma model of
expression variation, in most cases the data are consistent with unimodal expression vari-
ation, and relatively few genes show strong evidence for zero-inflated (point-Gamma) or
multimodal expression variation.

Alternative measurement models. Our analysis above assumed a Poisson measurement model
because it is both simple and has strong theoretical foundations. Here, we discuss the em-
pirical support for the Poisson measurement model, as well as alternatives.

Our results on biological data sets above provide substantial evidence that the scRNA-
seq measurement process is not zero-inflated. If the measurement process involved a dis-
tinct zero-generating component, then the observed data should have shown many genes
supporting a point-Gamma expression model over a Gamma expression model; however,
we did not find this. Indeed, only a fraction of genes (2–16%) show even suggestive evi-
dence supporting a point-Gamma expression model (likelihood ratio > 10; Supplementary
Figure 2). Therefore, we conclude that current data do not support the use of zero-inflated
measurement models.

However, our results do not imply that the measurement model is necessarily Poisson.
There are plausible reasons the measurement process could be overdispersed relative to
Poisson; however, empirically assessing the extent of measurement overdispersion is diffi-
cult. In principle, one could analyze control data containing a known number of molecules
of various synthetic genes. However, detecting subtle overdispersion would require very
precise control of the number of molecules of each gene, which is difficult4. Without addi-
tional assumptions, it is not possible to say what extent overdispersion observed in control
data is due to uncontrolled expression variation in the control genes versus measurement
overdispersion.

To make progress on this question, we made an additional assumption that the measure-
ment overdispersion is equal across genes. Under this assumption, it is possible to estimate
the measurement dispersion by fitting an NB observation model with separate dispersion
parameters to reflect measurement dispersion and uncontrolled expression variation (Sup-
plementary Note 5).

We used this approach to bound the measurement dispersion in five control data sets
(Table 3) that have been previously pre-processed and analyzed4,16. In all five data sets we
found that the profile log likelihood for measurement dispersion dropped off quickly beyond
some point, bounding the level that is consistent with the data (Supplementary Figure 3).
Although the bounds vary among protocols, they suggest that measurement dispersion is
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no larger than 5 × 10−3 (likelihood ratio < 0.1 against the MLE). This level of measurement
dispersion is small: for example, for a gene with mean 10 observed molecules, it increases
the variance of the observations by 5% relative to a Poisson (and for genes with smaller
mean, the increase in variance is smaller). Although this analysis does not rule out that
measurement overdispersion could vary among genes, and could be large for some genes,
we did not find empirical evidence for this.

Multi-gene models. In multi-gene models, a common goal is to estimate the underlying
low rank structure 𝐋𝐅′, which could describe differences in the cell type/state of different
samples, for example. Assessing the effectiveness of different methods for providing such
biological insights is important, but also difficult to do objectively. For example, com-
paring clustering performance28–30 requires gold-standard labeled data which are arguably
unavailable. Therefore, as a proxy we instead attempted to assess multi-gene models in
their ability to accurately estimate the underlying expression matrix, 𝚲 = 𝐋𝐅′. Surpris-
ingly, we found that expression models making linear versus non-linear assumptions had
largely similar accuracy on this problem (Supplementary Figure 4, Supplementary Note 3).
The results suggest that practical issues (such as convergence behavior and computational
cost), or subjective measures (such as ease of interpretation), may determine which meth-
ods are most useful in practice. Assessing expression models on these other metrics will
be an important direction for future work.

Conclusion

Here, we described how models for observed scRNA-seq counts can be helpfully sepa-
rated into two parts: measurement models that describe variation introduced by the mea-
surement process, and expression models that describe variation in true expression levels.
We argued that a simple Poisson model is a reasonable starting point for the measurement
model, and that many existing methods can be interpreted as combining a Poisson measure-
ment model with different expression models. We explained how these simple ideas help
clarify confusion about the source and interpretation of zeros in scRNA-seq data, and give
rigorous procedures to interrogate variation in gene expression among cells.

How should one use these ideas in scRNA-seq analysis? We emphasize that clearly
distinguishing between measurement, expression, and observation models can help reduce
confusion and misinterpretation. In particular, both methods developers and data analysts
should make explicit the assumptions made about measurement error and about expression
variation when analyzing scRNA-seq data. One important area for future work will be
developing fast and accurate diagnostics to assess whether these assumptions are violated
by observed data, and whether analysis results are sensitive to these assumptions.

Interestingly, our empirical results suggest that simple expression models should suffice
for common analysis tasks such as differential expression, dimension reduction, and clus-
tering. Although we found that many genes showed support for a non-parametric unimodal
expression model over the Gamma model, the Gamma model is considerably easier to fit
and therefore may be preferred. Previous results have suggested that the impact of under-
estimating expression variation on estimates of mean gene expression could be minimal23.
Nonetheless, care may be necessary when dealing with long-tailed expression distributions,
such as those exhibited by PPBP (Figure 1e).

Our empirical analyses of measurement error have two notable limitations. First, sam-
ples in spike-in experiments do not undergo the entire experimental protocol that biological
samples do (dissociation, lysis, etc.), limiting their use to assess appropriate measurement
models. This limitation is also shared by much prior work in this area16,17,31–33. Second,
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our approach to bound measurement dispersion made the strong assumption that measure-
ment dispersion was equal across cells and genes. Therefore, the results may understate the
potential for higher overdispersion at some genes. Despite these limitations, our empirical
results clearly indicate that the use of zero-inflated measurement models is not supported.

There are commonly used methods that our framework does not encompass: for ex-
ample, methods that first transform the count data (e.g. 𝑦𝑖𝑗 = log(𝑥𝑖𝑗/𝑥𝑖+ + 𝜖)) and then
apply Gaussian methods such as principal components analysis34, factor analysis35, or la-
tent variable models36,37 to the transformed data 𝐘. However, even for these methods, the
key idea that observations reflect both expression variation and measurement error may still
be useful to keep in mind. One potential way to formalize this is via Taylor series approx-
imations38,39, for example E[𝑦𝑖𝑗] ≈ log(𝜆𝑖𝑗 + 𝜖), which suggest that Gaussian low rank
models of the form E[𝐘] = 𝐋𝐅′ can be interpreted as assuming that [log(𝜆𝑖𝑗 + 𝜖)] is low
rank. A key problem moving forward will be to make such connections rigorous and assess
their accuracy.
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Figure 1. Comparing single-gene expression models on scRNA-seq
data. (a) Example fits of different expression models, corresponding
to different observation models, to observed data at a single gene. (b)
Fraction of genes in biological data sets with strong evidence for a point-
Gamma expression model over a Gamma model, and (c) examples of four
genes showing strong evidence in an in silico mixture of T cells and B
cells. (d) Fraction of genes with strong evidence in favor of a unimodal
expression model over a Gamma model, and (e) an example of a gene
showing strong evidence (PPBP in PBMCs). (f) Fraction of genes with
strong evidence in favor of a fully non-parametric expression model over
a unimodal non-parametric model, and (g) an example of a gene showing
strong evidence (RPS4Y1 in iPSCs).
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Expression model Observation model Method
Point mass (no variation) Poisson Analytic
Gamma Negative Binomial MASS40, edgeR41, DESeq242,

BASICS43, SAVER19

Point-Gamma Zero-inflated Negative Binomial PSCL44

Unimodal (non-parametric) Unimodal ashr23,45

Point-exponential family Flexible DESCEND4

Fully non-parametric46 Flexible ashr
Table 1. Single gene models for scRNA-seq data. Different expression
models, when combined with the Poisson measurement model, yield dif-
ferent observation models. Method indicates previously published meth-
ods and software packages that use the corresponding observation model
to analyze data.

Link function Noise distribution Method
Identity None NMF47, scHPF48

Identity Gamma NBMF49

log None GLM-PCA18

log Gamma scNBMF50, GLM-PCA18

log Point-Gamma ZINB-WaVE51

Neural network Point-Gamma scVI28, DCA20

Table 2. Multi-gene models for scRNA-seq data. Multi-gene models
partition variation in true expression into structured and stochastic com-
ponents. The link function describes a transformation, and the noise dis-
tribution indicates an assumption about the stochastic component (𝑝(𝑢𝑖𝑗)
in (3)). Method indicates previously published methods and software
packages that use the corresponding observation model to analyze data.
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Dataset Protocol Number of samples Number of genes Source
(Sorted) T cells GemCode 10,209 6,530 52

(Sorted) B cells GemCode 10,085 6,417 52

iPSC Fluidigm C1 5,597 9,957 53

T cell/B cell mixa GemCode 20,294 6,647 52

Cytotoxic T/Naive T mixa GemCode 20,688 6,246 52

Brain DroNc-Seq 14,963 11,744 54

Kidney 10X Chromium v2 11,233 15,496 55

PBMC 10X Chromium v3 11,769 12,144 b

Retina 10X Chromium v2 21,285 10,047 56

Control 1 10X Chromium v2 2,000 88 57

Control 2 10X Chromium v2 2,000 88 57

Control Drop-Seq 84 81 58

Control GemCode 1,015 91 52

Control InDrops 953 103 59

Table 3. Data sets analyzed. Number of samples passing the previ-
ously reported QC filters and number of genes with non-zero observa-
tions in at least 1% of samples, or passing the previously reported QC
filters53. (a) Mixture data sets are generated in silico by concatenat-
ing the data and then applying QC filters. (b) Data downloaded from
https://10xgenomics.com/data.
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Box 1 Assumptions and limitations of the Poisson measurement model
The Poisson measurement model (1) is based on the following assumptions (Supple-

mentary Note 1): (i) in each cell, each molecule is equally likely to be observed, (ii) each
molecule is observed independent of whether or not each other molecule is observed, and
(iii) only a small proportion of all molecules present are observed. Assumptions (ii) and
(iii) are plausible because the measurement process operates at the molecular level, and
only 10–20% of molecules present are estimated to be observed in typical scRNA-seq ex-
periments7,60. However, assumption (i) may plausibly be violated. There are many reasons
a given mRNA molecule may fail to be observed: it can be lost to diffusion during sample
collection and preparation, damaged by cell dissociation or lysis, or fail to be amplified or
sequenced, for example. Different mRNA molecules will have different chances of surviv-
ing these processes, due to differences in RNA stability, location in the cell (e.g., nucleus
vs cytoplasm), or sequence content, for example. Such factors could make the observed
molecules a biased sample of all molecules.

Biased sampling of molecules can be incorporated into the Poisson measurement model
by including bias terms (Supplementary Note 1). If the biases are systematic and associ-
ated with specific technical covariates (for example, batch) then one could estimate their
effects within the Poisson model. However, some biases may vary from cell to cell in un-
known ways (e.g., due to differences in the conditions under which each cell is processed).
Such random biases effectively add additional noise to the measurement process, and could
be dealt with by replacing the Poisson measurement model (1) with a negative binomial
(NB) measurement model that allows overdispersion (additional variance) compared with
Poisson. However, the NB measurement model raises additional difficulties, not least the
question of how much overdispersion to allow for. Our perspective, for which we present
empirical evidence, is that for many datasets the measurement overdispersion compared
with Poisson will be small, especially compared with the variation in actual expression
levels among cells, and so the Poisson measurement model (1) will often suffice.

Interestingly, as technologies improve to measure more molecules per cell – potentially
violating assumption (iii) – the variance of the measurement process will be reduced rel-
ative to a Poisson (Supplementary Note 1). This could conceivably counteract, or even
overshadow, some of the overdispersion mentioned above.
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Box 2 Inference in the ZINB observation model
In our framework, the Zero-inflated Negative Binomial (ZINB) model for observations 𝑥1𝑗 , … , 𝑥𝑛𝑗 is
written 𝑥𝑖𝑗 ∣ 𝑥𝑖+, 𝜆𝑖𝑗 ∼ Poisson(𝑥𝑖+𝜆𝑖𝑗)𝜆𝑖𝑗 ∼ 𝑔𝑗(⋅) = 𝜋𝑗𝛿0(⋅) + (1 − 𝜋𝑗) Gamma(𝜙−1𝑗 , 𝜇−1𝑗 𝜙−1𝑗 ).
where 𝑔𝑗 is a point-Gamma distribution, which is a mixture of a point mass on zero (denoted 𝛿0) and
a Gamma distribution (parametrized by shape and rate). Here, we consider two analysis tasks: (1)
estimating 𝑔𝑗 (i.e., estimating 𝜋𝑗 , 𝜇𝑗 , 𝜙𝑗), and (2) estimating 𝜆𝑖𝑗 . Task (1) can be accomplished by
maximizing the marginal likelihood, which has an analytic form but requires numerical optimization.
From an estimate ̂𝑔𝑗 , one can already estimate many useful quantities such as the mean and variance
of gene expression53

E[𝜆𝑖𝑗 ∣ ̂𝑔𝑗] = (1 − �̂�𝑗)�̂�𝑗
V[𝜆𝑖𝑗 ∣ ̂𝑔𝑗] = (1 − �̂�𝑗)�̂�2𝑗 ̂𝜙𝑗 + �̂�𝑗(1 − �̂�𝑗)�̂�2𝑗 .

Task (2) can be accomplished by estimating the conditional distribution of 𝜆𝑖𝑗 given the observed data
and ̂𝑔𝑗 𝜆𝑖𝑗 ∣ 𝑥𝑖𝑗 , 𝑥𝑖+, ̂𝑔𝑗 ∼ �̂�𝑗𝛿0(⋅) + (1 − �̂�𝑗) Gamma(𝑥𝑖𝑗 + ̂𝜙−1𝑗 , 𝑥𝑖+ + ̂𝜙−1𝑗 �̂�−1𝑗 ).
If one interprets 𝑔𝑗 as a prior, then this procedure is empirical Bayes, and the mean of the conditional
distribution above is the posterior mean estimate of 𝜆𝑖𝑗 given the observed data

E[𝜆𝑖𝑗 ∣ 𝑥𝑖𝑗 , 𝑥𝑖+, ̂𝑔𝑗] = (1 − �̂�𝑗) 𝑥𝑖𝑗 + ̂𝜙−1𝑗𝑥𝑖+ + ̂𝜙−1𝑗 �̂�−1𝑗 .

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2021. ; https://doi.org/10.1101/2020.04.07.030007doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.07.030007
http://creativecommons.org/licenses/by/4.0/


REFERENCES 19

Data Availability. Sorted immune cell and PBMC data were downloaded from https://
10xgenomics.com/data. iPSC data were downloaded from Gene Expression Omnibus,
accession number GSE118723. Brain data were downloaded from the GTEx portal https:
//www.gtexportal.org/home/datasets. Kidney and retina data were downloaded
from the Human Cell Atlas Data Portal https://data.humancellatlas.org/. Control
data were downloaded from https://figshare.com/projects/Zero_inflation_in_
negative_control_data/61292. Analysis results generated in this study are available at
https://zenodo.org/record/4543923 and analysis notebooks are available at https:
//aksarkar.github.io/singlecell-modes/.

Code Availability. All code used to perform the analysis is available at https://zenodo.
org/record/4543921 and https://zenodo.org/record/4543923.
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