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Separating Minimal, Intuitionist,

and Classical Logic

DAVID MEREDITH*

Classical, two-valued propositional logic contains intuitionist logic. Intui-
tionist logic in turn contains minimal logic. Standard formulations of the
classical system, however, tend to make it difficult to determine whether a
given classical thesis is purely classical, is classical and intuitionist, or belongs in
all three systems.

The present paper offers formulations of classical implication-negation
logic that make separation of its intuitionist and minimal components very
easy. Section 1 deals with some preliminaries. Section 2 gives a classical axiom
base with no dependent axioms, which has proper subaxiomatics giving intui-
tionist and minimal logic. The final section offers a natural deduction style
counterpart of the axiomatic system.

1 Preliminaries Our point of departure is the standard intuitionist axiomatic
used by Horn in [2]. Since Horn proves that this base has the separation
property, it is clear that the axioms in implication and negation are sufficient
for all intuitionist theses in these connectives. There are four such axioms:
CpCqp, CCpCqrCCpqCpr, CCpNqCqNp, and CNpCpq. The rules of inference
are modus ponens and substitution for variables. A minimal logic base is
obtained from this intuitionist one simply by omitting the axiom CNpCpq.

For present purposes, rather than take implication and negation as primi-
tive, it is better to take implication and a constant proposition 0, and define
negation. This can be done because the minimal C~N system given by
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Dl O=dfNCqq

and the axioms

Al CpCqp

A2 CCpCqrCCpqCpr
A3 CCpNqCqNp

is deductively equivalent to the OO system given by

D2 Noί =df CaO

with just Axioms Al and A2.

To prove this deductive equivalence we show first that Al and A2 give
Cpp and CCsrCCpqCCrpCsq; these two theses suffice to show replaceability of
equivalents (for proof see [1], Theorem 2.1). So in both the CWVand the C-0
systems the replaceability rule holds. Next we show that COCCqqO, CCCqqOO,
and CCpCqOCqCpO are theses of the C-0 system; by means of D2 these theses
give, respectively, CONCqq, CNCqqO, and CCpNqCqNp. Thus the whole C~N
system is contained in the C-0 one. Finally, we show that CNpCpNCqq and
CCpNCqqNp are C~N theses; by means of Dl these theses give, respectively,
CNpCpO and CCpQNp. Thus the whole C-0 system is contained in the C~N
system. The required derivations are as follows. (C. A. Meredith's condensed
detachment operator is used abbreviatively: 'Dm.n' denotes the most general
formula that can be obtained by applying modus ponens with m, or some
substitution in it, as major premiss, and n, or some substitution in it, as minor
premiss.)

1. CpCqp Axiom
2. CCpCqrCCpqCpr Axiom
3. CCpNqCqNp Axiom
4. Cpp DD2ΛΛ
5. CCqrCCpqCpr DD2.D1.2Λ
6. CCpCqrCqCpr DD2DD5.5.2.DIΛ
7. CCpqCCqrCpr D6.5
8. CCsrCCpqCCrpCsq DD5.DD5.DD6.5.5.5.Ί
9. COCCqqO 1 p/0 q/Cqq

10. CCCppqq DD6AA
11. CCCqqOO lOp/qq/O
12. CCpCqOCqCpO 6r/0
13. CNpCCqqNp 1 p/Np q/Cqq
14. CCCqqNpCpNCqq 3 p/Cqq q/p
15. CNpCpNCqq DDΊΛ3ΛΛ
16. CCpNCqq CCqqNp 3 q/Cqq
17. CCpNCqqNp DD6Λ6A.

2 Axiomatic system The nucleus of our axiomatic system is the minimal
C-0 system given by D2 together with Al and A2. (If the constant 0 and D2
are omitted, we have the Hubert positive implicational logic.) To this nucleus
we add first
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A4 COp

and second

A5 CCCpOpp.

The first addition gives the intuitionist C~0 system; this follows from the proof
given by Wajsberg that the resultant system is a deductive equivalent of the
intuitionist C~N fragment (see [3], Section 5). The second addition gives a
classical base that has no dependent axioms; this is proved below.

Since replaceability has already been proven for the minimal C~0 system,
and CONCqq and CNCqqO have been shown to be minimal C~0 theses, com-
pleteness of the four axiom base for classical logic can be established simply by
deriving from it the three Lukasiewicz C~N axioms. These are CCpqCCqrCpr,
CpCNpq, and CCNppp. The first axiom is Thesis 7 above; the third follows
from A5 by D2; the remaining axiom follows from CpCCpOq by D2. The
derivation of this latter thesis is

18. COp Axiom
19. CCqrCsCpqCsCpr DD5.5.5
20. CpCCpOq DD19 A8.D6Ά.

The only nonintuitionist thesis among the four axioms is A5 its indepen-
dence therefore is clear. To prove the independence of the remaining axioms
the three following matrices are used. With 1 as the only designated value and 3
as the value of the constant proposition, each of these matrices verifies modus
ponens and the definition.

C 1 1 2 3 I TV C | l 2 3 1 TV C | 1 2 3 | TV

* 1 1 3 3 3 *1 1 3 3 3 * 1 1 2 3 3
2 3 3 1 1 2 1 3 1 1 2 1 1 3 3
3 1 1 1 1 3 1 1 1 1 3 1 2 1 1

M l M 2 M 3

Ml verifies all the axioms except the first, which fails forp/1, q/2; M2 verifies
all the axioms except the second, which fails for p/2, q/3, r/2; and M3 verifies
all except the third, which fails ΐorp/2.

3 Natural deduction counterpart of the axiomatic system Basic to our
natural deduction style system is the concept of hypotheses leading to a con-
clusion. The hypotheses <xu . . ., an are said to yield the conclusion β (written
α l 5 . . ., θίn =» β) if and only if there is a finite sequence of formulas an+1, . . ., am

such that am = β, and for each a^n < / < m) one of the three following is true:
αz is identical with some αy (l < / < « ) ; « / follows from one or more formulas
Ufa αjO < k < i; 1 < 1 < /) by primitive inference; αz is a substitution instance
of a thesis. The definition of course is not complete until the primitive
inferences have been enumerated, and some means has been specified for
obtaining theses. In the minimal system the only primitive inferences will be,
modus ponens
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MP From Caβ and α, β may be inferred

and the inferences given by the definition of N

DEF Na =df CaO.

Theses result from the rule of conditional proof

CON If au . . ., an =» β, then Caλ . . . Canβ is a thesis (n > 0).

Treating already proven formulas as a distinguished subclass of formulas whose
substitution instances can be adjoined to any derivation has two advantages.
First, we can dispense with Fitch-style subproofs and the concomitant
apparatus for keeping track of the status of hypotheses; a single use of the rule
of conditional proof in our system dismisses all hypotheses. Second, there are
no complications with respect to substitution; the only time substitution can
occur is when a thesis is adjoined to a derivation, and the possibility of doing a
substitution in the variable of a hypothesis does not arise. To illustrate use of
the system we prove the thesis CCpqCNqNp which gives the derived minimal
inference modus tollens. In addition to the abbreviations noted above, we use
ΉYP' for assumption of a hypothesis and 'REP' for its repetition. A thesis is
marked with Ή on its first appearance; the notation 'hm' is used when the
already proven thesis m, or a substitution instance thereof, is adjoined to a
derivation. 'Λ' is the null hypothesis.

1. Cpq HYP
2. Cqr HYP
3. p HYP
4. q MP 1 3
5. A- MP2 4
6. \~CCpqCCqrCpr CON
7. A HYP
8. CCpqCCqOCpO \~6
9. CCpqCNqNp DEF 8

10. hCCpqCNqNp CON.

Another worthwhile derived minimal inference is given by the thesis CNCpqNq.

11. p HYP
12. q HYP
13. p REP
14. VCpCqp CON
15. NCpq HYP
16. CCpqO DEF 15
17. CCqCpqCCCpqOCqO \~6
18. CqCpq hl4
19. CCCpqOCqO MP 17 18
20. CqO MP 19 16
21. Nq DEF 20
22. \~CNCpqNq CON.

That our natural deduction system gives only minimal theses follows from
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the fact that the Deduction Theorem is known to hold for the system given by
Al and A2 with modus ponens and substitution for variables as the rules of
inference. That it gives all such theses follows from the fact that both the
axioms can easily be proven (Al appears as 14 above). To get from this system
to the intuitionist and classical systems, the stock of primitive inferences must
be increased. Following the augmentation pattern of the previous section, we
add the inference from the constant false proposition

FAL From 0, a may be inferred

and the consequentia mirabilis

MIR From CNaa, a may be inferred.

By conditional proof, the first of these easily gives COp, and the second
CCNppp, and thus we have the intuitionist and classical systems.

In the classical system the rule of indirect proof

IND If Na => β and Na =» Nβ then a is a thesis

can be proven as follows. First, we have

23. Np HYP

24. p HYP
25. CpO DEF 23
26. 0 MP 25 24
27. q FAL 26
28. \~CNpCpq CON.

Now assume the hypotheses of the rule, and assume further that β and Nβ are
reached in m steps. Then

k. Na HYP

ί. β

m. Nβ

i. CNβCβa [-28
ii. Cβoi MP i m
iii. a MP ii 1
iv. \-CNaa CON
v. A HYP
vi. CNaa H v
vii. a MIR vi
viii. \~a CON.

A very easily used classical system results from the fact that the minimal
inference given by CNCpqNq is complemented by the classical inference given
by CNCpqp.

29. NCpq HYP
30. CNCpqCCpqp h28
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31. CCpqp MP30 29
32. CCNpCpqCCCpqpCNpp \~β
33. CNpCpq h28
34. CCCpqpCNpp MP 32 33
35. CNpp MP34 31
36. p MIR 35
37. Y-CNCpqp CON.

Marking the inference given by this thesis 'Sa nΐ (for "selection of antece-
dent"), the inference given by its minimal companion 'Sc m' (for "selection of
consequent"), and modus tollens 'MT', proof of Peirce's law gives a good
illustration of the system.

39. NCCCpqpp HYP
40. CCpqp Sa 39
41. Np Sc39
42. NCpq MT40 41
43. p Sa42
44. VCCCpqpp IND.

While the technique shown is always appropriate for purely classical theses, it
does not always give the shortest proof. A better proof for CCCpqrCNrp, for
instance, than that starting from the hypothesis NCCCpqrCNrp, is the
following.

45. CCpqr HYP
46. Nr HYP
47. NCpq MT45 46
48. p Sa47
49. [-CCCpqrCNrp CON.
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