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Dividing wall column (DWC) is an advanced technology which could decrease energy consumption. As the vertical wall inserted
in DWC increases the degree of freedom of systems, the control becomes more di�cult than the conventional columns. In this
study, the mixture glycols (1, 2-propanediol+ 1, 3-butanediol+ 1, 4-butanediol) were taken as feed, an optimized DWC structure
was proposed, and three control structures for DWC were tested by± 10% feed disturbances. �e temperature control structure
(CS1) was hard to control the system while composition control structure (CS2) and �ow rate-composition cascade control
structure (CS3) had good performance on controlling the DWC. It showed that CS3 was superior to CS2, as CS3 could stabilize the
DWC within 4 hours, and the maximum deviations of the three products, namely 1, 2-propanediol, 1, 3-butanediol and 1, 4-
butanediol, were 0.07%, 1.44%, and 0.46% respectively, while CS2 could realize the stability within 7 hours, and the corresponding
numbers were 0.35%, 2.78%, and 0.41%, respectively.

1. Introduction

Distillation is the most widely used technology to separate
mixtures in chemical industry, and about 95% of liquid
mixtures are separated by distillation [1, 2]. However, it is an
energy-intensive process, which accounts for an estimated
3% of the energy consumption in the world [2–4]. In order
to decrease the energy requirements in distillation, several
technologies have been proposed, such as heat pump assisted
distillation column, internally heat integrated distillation
column, and fully thermally coupled column (Petlyuk
column).

DWC is thermodynamically equivalent to and further a
practical implementation of the Petlyuk column. A vertical
wall which splits the column into two sections is inserted in
DWC. �e feed enters into the prefractionator side, and the
side product leaves column from the opposite side of the
wall, which is called as the main fractionator. �e compo-
nent with low boiling point is removed from the top while
the one with high boling point is removed from the bottom.
DWC only needs a single tower with one reboiler and one
condenser for separation of multicomponent mixtures. In

the meanwhile, the thermal e�ciency improves because the
remixing e�ect could be highly decreased by the vertical wall
[5]. It is reported that DWC could reduce almost 30% of
energy consumption and also 30% capital costs in com-
parison to an ordinary distillation sequence [5–9]. DWCwas
¡rst applied in industry by BASF in 1985 [10]. In 2010, there
were over 100 DWCs reported in operation [7, 11], most of
which were run by BASF. However, DWCs still accounted
for a minor proportion compared to the over 40,000 con-
ventional distillation columns in chemical industry [12].

It is generally considered that intensi¡ed processes, like
DWC, are more di�cult to be controlled than conventional
processes due to the following: (a) the more degree of
freedom than a conventional distillation column, (b) the
highly nonlinear behavior caused by the complicated
structure, and (c) the strong interactions between manip-
ulated and controlled variables [5, 13–17]. Dynamic control
is one of the keys to the operation of DWC.

Several control structures have been tested in the open
literature, such as temperature control structure, composi-
tion control structure, temperature di�erence control (TDC)
structure, temperature-composition cascade control
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structure, model predictive control (MPC) structure, and so
on. Some have been applied into the separation of the
systems, like alcohols, alkanes, and aromatics. �e control
structures usually take re�ux ratio (RR), reboiler duty (QR),
and side product �ow rates (S) as manipulated variables.
Liquid split ratio is an optional manipulated variable for the
control of the heavy component at the top of the pre-
fractionator [18, 19].

Composition control structure takes composition, re�ux
drum level, and sump level of column as controlled vari-
ables. It can deal with feed disturbances and return to steady
state in 2∼10 hr [12, 18–36], while sometimes it takes a long
time to get steady [24, 33, 35].

Di�erent from composition control structure, temper-
ature control structure takes the temperatures at reference
stages as manipulated variables. It can deal with feed dis-
turbances and return to steady state in 2∼5 hr [37–48].
Temperature control structure responds fast to disturbances,
but sometimes the purity of products may have big devia-
tions [43, 45, 49].

Composition-temperature cascade control structure can
overcome long time delays caused by composition con-
trollers and deal with feed disturbances with small devia-
tions. �e system with the structure can recover to steady
state in 2∼6 hr [49, 50].�e cascade control structure still has
a high cost and it is di�cult to be tuned because of its
complexity.

TDC structure adds additional temperature measure-
ments into temperature control structure in order to get a
better performance on dealing with feed disturbance, es-
pecially for the feed composition disturbance. TDC structure
can deal with feed disturbances in 2∼5 hr [16, 51–56]. Al-
though TDC always has better performance than temper-
ature control structure, deviations for product purity still
exist.

MPC structure is an advanced control structure, and it is
an optimization based on multivariable constrained control
technology [57]. Adrian et al. [58] compared MPC with
conventional PI control in DWC. MPC structure shows a
tighter and faster control than PI control. It can deal with
feed disturbances in 2∼8 hr [17, 26, 57–62]. However, MPC
is hard to implement and needs more e�orts than PI control
[15, 57].

Glycols including 1, 2-propanediol, 1, 3-butanediol, and
1, 4-butanediol with a wide application could be used as
biofuels which are considered promising alternative energy
[63, 64]. �ey have some unusual properties, such as
availability, nonvolatility, nontoxicity, and biodegradability.
Such advantages make a promising application of 1, 2-
propanediol, 1, 3-butanediol, and 1, 4-butanediol into the
production of polyester ¡bers, antifreeze materials, pack-
aging materials, engineering plastics, and surfactants
[65–67]. However, the separation becomes one of the keys to
the industrial applications of the bio-glycols.

Several groups of vapor-liquid equilibria data of glycols
were studied in the literature [68–70]. In this paper, the
separation of mixture glycols (1, 2-propanediol+ 1, 3-
butanediol+ 1, 4-butanediol) by DWC and three control
structures have been studied by ±10% feed disturbances. All

of the three structures were based on simple single-loop PI
control. �is study could provide a potential solution to the
systems with similar molecular structures and properties by
DWC.

2. Steady-State Design

�e ternary system of 1, 2-propanediol (1, 2-PG) + 1, 3-
butanediol (1, 3-BD) + 1, 4-butanediol (1, 4-BD) was studied.
�e boiling points of the glycols are 460.45K, 481.38 K, and
501.15K, and the relative volatilities are 3.74, 2.19, and 1,
respectively. A mixture of 41.0 wt% 1, 2-PG, 28.0 wt% 1, 3-
BD, and 31.0 wt% 1, 4-BD was taken as feed and its �ow rate
was set as 100 kg/hr at boiling point.�e target purity of 1, 2-
PG, 1, 3-BD, and 1, 4-BD was 99.8 wt%, 97.2 wt%, and 98.0
wt%, respectively. Rigorous simulations were carried out by
RADFRAC modules in Aspen Plus with the UNIQ-HOC
thermodynamic model.

As shown in Figure 1, the simulation used two-shell
con¡guration including a prefractionator and a main
column, which was thermodynamically equivalent to the
DWC. �e number of trays including a condenser and a
reboiler was 50 for the main column in DWC. �e vertical
wall was placed from stage 6 to stage 38 in column. In
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Figure 1: Two-shell con¡guration of the DWC.

Table 1: Detailed design data of DWC.

Prefractionator Main column
Number of stages 33 50
Feed stage 15 6/38
Side product stage — 20
Mole re�ux ratio — 6.2
Vapor split ratio (βV) — 0.565
Liquid split ratio (βL) — 0.360
Reboiler duty (kW) — 57.75
Purity of products (mass%) — 99.9/97.2/98.0

Mass �ow of products (kg/h) — 40.55/28.14/
31.31
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order to obtain high-purity products, the pressure of the
condenser was set as 0.8 bar and tray pressure drop of
0.0068 atm was considered. Detailed design data for DWC
are listed in Table 1.

3. Control Structure Design

3.1. Temperature Control Structure (CS1). Temperature
control structure is widely used in industry because it is
simple and cheap. In this study, the temperature control
structure was ¡rst tested for the DWC. Re�ux rate (RR), side
stream �ow rate (S), and reboiler duty (QR) were taken as
manipulated variables and temperature at reference stages
was taken as control variable. In order to ¡nd the appreciate
reference stages, a small change (+1%) was implemented in

an independent variable (RR or QR) while keeping the other
variables constant. Figure 2 shows the sensitivity analysis for
the DWC. Apparently, stages 13 and 39 could be selected as
the reference stages for the side stream and stripping sec-
tions, respectively. �e rectifying section accounted for only
5 theoretical trays, so stage 5 was chosen as reference stage
for the rectifying section.
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Figure 2: Sensitivity analysis of the main column.
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Figure 3: Temperature control structure CS1 of DWC.

Table 2: Controller tuning parameters of CS1.

Control
loop

Controlled
variable

Manipulated
variable Kc τI/min

TC5 Tmai,5 RR 5.244 10.56
TC13 Tmai,13 S 55.518 29.04
TC39 Tmai,39 QR 2.783 6.60
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Figure 3 illustrates CS1 of DWC. *e controller labeled
TC5 turned the temperature at stage 5 by manipulating RR,
the temperature at stage 13 was controlled by S, and QR was
the manipulated variable for controlling the temperature at
reference stage 39 with TC39. *e three loops were tuned
sequentially, the gain (KC) and integral time (τI) of the

temperature controllers were obtained through the relay-
feedback test and Tyreus–Luyben tuning method, and the
dead time for temperature controllers was set as 1min.
Table 2 gives the detailed temperature controller parameters
in CS1. To complete CS1, Kc and τI were 0.5 and 0.3min for
the flow controllers, respectively, 20 and 12min for the
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Figure 4: Dynamic responses of CS1 to ±10% feed disturbances.
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Figure 5: Composition control structure CS2 of DWC.
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pressure controllers, respectively, and 2 and 9999min for
liquid level controllers, respectively.

Figure 4 shows the responses of CS1 under ±10% feed
disturbances. Apparently, the control structure showed a
poor control performance on dealing with the disturbances;
the purity of all the three products presented big deviations
after 10hr, especially for the side stream 1, 3-BD.

3.2. Composition Control Structure (CS2). CS2 adopted
composition controllers instead of temperature controllers.
As shown in Figure 5, the controller CC1 maintained the
purity of 1, 2-PG by manipulating RR, CC2 maintained the
purity of 1, 3-BD by manipulating S, and CC3 maintained
the purity of 1, 4-BD by manipulating QR. *e set dead time
for composition controllers was 3min in consideration of its
longer time delay than that in temperature controller. *e
detailed parameters for composition controllers obtained by

the relay-feedback test and Tyreus–Luyben tuning method
are listed in Table 3, and the other controllers used the same
parameters as CS1.

Figure 6 illustrates the dynamic responses of CS2 under
±10% feed disturbances, and the product purity could get
steady within 6 hr with almost same purity to the initial
states. *e maximum deviations due to feed flow rate dis-
turbances in the purity of 1, 2-PG, 1, 3-BD, 1, 4-BD were
0.35%, 2.78%, and 0.41%, respectively, and the maximum
deviations due to feed composition disturbances were 0.15%,
1.54%, and 0.41%, respectively.

3.3. Flow Rate-Composition Cascade Control Structure (CS3).
Although CS2 could deal with ±10% feed disturbances well,
the long recovery time, maximum deviations, and high
expense for composition controllers still needed to be im-
proved. In CS3, a temperature controller was used to

Table 3: Controller tuning parameters of CS2.

Control loop Controlled variable Manipulated variable Kc τI/min

CC1 x1,2−PG RR 1.766 91.08
CC2 x1,3−B D S 10.838 112.20
CC3 x1,4−B D QR 2.801 30.36
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Figure 6: Dynamic responses of CS2 to ±10% feed disturbances.
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Figure 7: Cascade control structure CS3 of DWC.

Table 4: Controller tuning parameters of CS3.

Control loop Controlled variable Manipulated variable Kc τI/min

TC1 Tmai,5 RR 6.906 10.56
CC2 x1,3−BD S 18.038 80.52
CC3 x1,4−BD QR 2.801 30.36
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Figure 8: Dynamic responses of CS3 to ±10% feed disturbances.
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manipulate RR and an additional flow rate controller was
added into side stream control loop. Similar to CS1, stage 5
was taken as reference stage for the rectifying section.

Figure 7 shows the cascade control structure CS3 of
DWC. *e controller TC1 controlled the temperature at
stage 5 by manipulating RR, the cascade loop manipulated S
in order to control the purity of 1, 3-BD, and CC3 ma-
nipulated QR to control the purity of 1, 4-BD. *e dead time
was 1min and 3min for temperature controller and com-
position controllers, respectively. Table 4 lists the detailed
parameters for temperature controller and composition
controllers obtained by the relay-feedback test and Tyr-
eus–Luyben tuning method. *e other controllers employed
same parameters as CS1.

Figure 8 describes the dynamic responses under ±10%
feed disturbances, and the product purity could be steady
within 4 hr with the same purity as the initial states. *e
maximum deviations resulted from feed flow rate distur-
bances in the purity of 1, 2-PG, 1, 3-BD, and 1, 4-BD were
0.07%, 1.44%, and 0.46%, respectively, and the maximum
deviations caused by feed composition disturbances were
0.06%, 0.72%, and 0.31%, respectively.

4. Conclusions

In this paper, three types of control structures for DWCwere
studied by adding ±10% feed disturbances for the ternary
glycols (1, 2-PG+ 1, 3-BD+ 1, 4-BD) in a DWC. It showed
that CS1 could not deal with the disturbances well while CS2
and CS3 showed a good performance in the face of dis-
turbances. For CS2, three composition controllers were
employed to control the purity of products. *e dynamic
responses showed that the system could get steady within
6 hr and the product purity had small deviations in the face
of feed disturbances. For CS3, a temperature controller, two
composition controllers, and a flow rate controller were used
to control the DWC, in which a composition-flow rate
cascade loop was used to control the purity of side stream
product. *e dynamic responses showed that the system
could be steady within 4 hr with small deviations. In
comparison with CS2, CS3 had better dynamic responses
and all of three products could get steady with smaller
deviations, shorter settling time, and smoother responses in
most cases.
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controllability of a fully thermally coupled four-product di-
viding wall column,” Chemical Engineering Research and
Design, vol. 147, pp. 367–377, 2019.

[56] X. Qian, K. Huang, S. Jia et al., “Temperature difference
control and pressure-compensated temperature difference
control for four-product extended Petlyuk dividing-wall
columns,” Chemical Engineering Research and Design,
vol. 146, pp. 263–276, 2019.

[57] R. R. Rewagad and A. A. Kiss, “Dynamic optimization of a
dividing-wall column using model predictive control,”
Chemical Engineering Science, vol. 68, no. 1, pp. 132–142, 2012.

[58] T. Adrian, H. Schoenmakers, and M. Boll, “Model predictive
control of integrated unit operations: control of a divided wall
column,” Chemical Engineering and Processing: Process In-
tensification, vol. 43, no. 3, pp. 347–355, 2004.

[59] C. Buck, C. Hiller, and G. Fieg, “Applying model predictive
control to dividing wall columns,” Chemical Engineering &
Technology, vol. 34, no. 5, pp. 663–672, 2011.
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