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We examine the problem of blind separation of nonstationary sources in the underdetermined case, where there are more sources
than sensors. Since time-frequency (TF) signal processing provides effective tools for dealing with nonstationary signals, we pro-
pose a new separation method that is based on time-frequency distributions (TFDs). The underlying assumption is that the
original sources are disjoint in the time-frequency (TF) domain. The successful method recovers the sources by performing the
following four main procedures. First, the spatial time-frequency distribution (STFD) matrices are computed from the observed
mixtures. Next, the auto-source TF points are separated from cross-source TF points thanks to the special structure of these
mixture STFD matrices. Then, the vectors that correspond to the selected auto-source points are clustered into different classes
according to the spatial directions which differ among different sources; each class, now containing the auto-source points of only
one source, gives an estimation of the TFD of this source. Finally, the source waveforms are recovered from their TFD estimates us-
ing TF synthesis. Simulated experiments indicate the success of the proposed algorithm in different scenarios. We also contribute
with two other modified versions of the algorithm to better deal with auto-source point selection.

Keywords and phrases: underdetermined blind source separation, spatial time-frequency distribution, time-frequency synthesis,
unsupervised vector clustering, nonstationary sources.

1. INTRODUCTION

Blind source separation (BSS) considers the estimation of
multiple sources from multiple observations (mixtures) re-
ceived by a set of sensors, where the observations have been
linearly mixed by the transfer medium. The transfer medium
between the sources and the mixtures forces each mixture to
contain a combination of the sources. The term “blind” in-
dicates that no a priori knowledge of both the sources and
the structure of the transfer medium is available. To com-
pensate for this lack of information, the sources are usually
assumed to be statistically independent [1]. BSS is important

when precise modeling of the medium transfer is difficult or
when no a priori information is available about the mixtures.

BSS is also known as blind array processing, signal copy,
independent component analysis, or waveform preserving
estimation. Useful theories and methods of BSS can be found
in, for example, [1, 2, 3, 4, 5]. BSS has many applications
in areas that involve the processing of signals from a sen-
sor array. Typical examples of BSS are seen in (i) radar and
sonar applications (source separation/recognition from an-
tenna arrays, robust source localization from ill-calibrated
arrays [6]), (ii) communications (multiuser detection [7]),
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(iii) speech processing (speaker separation, also called the
“cocktail party” problem, in presence of background noise
and/or competing speakers, automatic voice recognition in
noisy acoustic environments [8]), and (iv) biomedical signal
processing (separation of electroencephalogram (EEG) sig-
nals [9]).

When sources are nonstationary, a time-frequency (TF)
approach was introduced in [10] that combines spatial diver-
sity with TF diversity by using spatial time-frequency distri-
bution (STFD). The benefit of using STFD for nonstationary
sources is the direct exploitation of the information it offers
due to the signal nonstationarity. In contrast to other BSS
approaches using second- and higher-order statistics (see [4]
and references therein), this approach allows the separation
of Gaussian sources with identical spectral shape but with
different TF localization properties. Moreover, the effects of
spreading the noise power using time-frequency distribu-
tions (TFDs), while localizing the source energy in the TF do-
main, amount to increasing the signal-to-noise ration (SNR)
[11]. Further developments following this approach can be
seen in [12, 13].

Although many successful BSS algorithms, including
the above TF approach, have been proposed in the deter-
mined case, they cannot work in the underdetermined case,
where there are more sources than sensors. This problem,
now referred to as underdetermined blind source separation
(UBSS), is challenging by itself. The reason is that these algo-
rithms rely mathematically on the invertibility of the mixing
matrix, whereas this is no longer satisfied in the underdeter-
mined case.

Therefore, our motivation in this paper is twofold: we
examine the problem of blind separation of nonstationary
sources in the underdetermined separation configuration,
where there are more sources than sensors. By extending the
above-mentioned TF approach, we propose here a TF-based
UBSS (TF-UBSS) algorithm for nonstationary sources under
the main assumption that the sources are disjoint in the TF
domain. In particular, the TF disjoint assumption allows for
the identification, and in turn the selection and grouping, of
TF points that belong to individual sources.

UBSS has been studied in [8, 14, 15, 16, 17, 18, 19]. We
make some distinctions between these UBSS approaches and
our TF-UBSS method, which will be described later in Sec-
tion 4. The works in [14, 15] treat discrete sources, that is,
sources belonging to a known set, whereas our method has
no such restriction. We also do not rely on the a priori knowl-
edge of source probability density functions which are re-
quired in [16, 17, 18]. With respect to [8, 19], we follow a
similar approach in which sources are assumed to be disjoint
in the TF domain. A general UBSS framework in which the
mixed signal representation is transformed into another rep-
resentation in order to achieve the sparsity of original signals
is provided in [19]. However, it only gives an example using
the short-time Fourier transform (STFT) without providing
any specific separation algorithm. Note that, in contrast to
the quadratic TFDs used in our method, the STFT has a low
TF resolution that leads to difficult interpretation about TF
disjoint condition. Several different points compared with

[8] are in order. First, this method in [8], using STFT, also
faces the problem of low TF resolution. Second, only two
sensors are used in [8] and the extension to more sensors
is not obvious, whereas our method is general as it applies
to any number of sensors greater than two. Third, unlike our
nonparametric approach, [8] follows a semiparametric ap-
proach, in which the applied model for the mixing matrix
is specific to delay and amplitude, that may result in big er-
rors if the model in use does not match with the actual situ-
ation of the mixing. Finally, other problems can be foreseen
in [8], such as the inherent local minima convergence due
to the use of multidimensional nonlinear optimization, or
the “division-by-zero” problem, when performing normal-
ization in the case of unequal-energy sources, because the
first row of the mixing matrix has all ones.

The paper is organized as follows. Section 2 presents the
data model and assumptions, especially the notion of TF dis-
joint sources. Section 3 describes the STFD matrices. Sec-
tion 4 proposes the TF-UBSS algorithm, with detailed dis-
cussions in general and a simulated illustrative example in
particular. Section 5 presents an enhanced version of the al-
gorithm using a different TFD to achieve better selection of
TF points. Section 6 provides another method to enhance the
selection of TF points using image component extraction.
Several measurements for numerical performance evaluation
are given in Section 7. The last section is for concluding re-
marks and perspectives.

2. SIGNAL MODEL AND ASSUMPTIONS

Let si(t), where i = 1, . . . ,n, be n underlying source sig-
nals and denote s(t) = [s1(t), s2(t), . . . , sn(t)]T . At the out-
put of the sensor array are m observed mixture signals
x j(t), where j = 1, . . . ,m, that are represented by x(t) =
[x1(t), x2(t), . . . , xm(t)]T . Under the instantaneous linear mix-
ture model, the mixture signals can be modeled as

x(t) = As(t) + η(t), (1)

where the mixing matrix A, written out as A =

[a1, a2, . . . , an], represents the transfer between the source
and the mixture, and η(t) is additive noise vector. The instan-
taneity means that A does not depend on time. Given x(t),
the goal of BSS is to estimate s(t). Schematically, the prob-
lem is illustrated in Figure 1. When n > m, we are said to be
in the underdetermined case and now have the UBSS prob-
lem. In UBSS, the mixing matrix A is no longer invertible
[14]; thus any previous approaches in the determined BSS
problem (i.e., n ≤ m) are no longer applicable in general.
Note that, as m approaches infinity, the quantity (n − m)/n
approaches zero (since n > m); thus, UBSS becomes deter-
mined BSS. Therefore, one may approximately use the usual
methods in the determined BSS case to achieve the separa-
tion; in other words, this happens when n−m is small com-
pared to m.

We make the following two assumptions; the first is usu-
ally made in the context of BSS, and the second is the specific
to the proposal of our TF-UBSS algorithm.
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Figure 2: TF disjoint sources. The TF supports of two sources are
disjoint in the TF domain.

(As1) The column vectors of matrix A are assumed to be
pairwise linearly independent; that is, for all i �= j, ai and a j

are linearly independent. If otherwise, for example, a1 and
a2 are linearly dependent as such a2 = αa1, then we can also
express x in the following form:

x(t) = Ãs̃(t) + η(t), (2)

where Ã = [a1, a3, . . . , an] and s̃ = [s1 + αs2, s3, . . . , sn]T .
Hence, the separation of s1(t) and s2(t) is inherently impos-
sible if no a priori knowledge of these sources is available. It
is also known that BSS is only possible up to an unknown
scaling and an unknown permutation [20]. We take the ad-
vantage of this indeterminacy to assume, without loss of gen-
erality, that the column vectors of A have a unit norm; that
is, ‖ai‖ = 1, where the norm ‖·‖ is, hereafter, evaluated in
the Frobenius sense.

(As2) The sources are assumed to have different struc-
tures and localization properties in the TF domain. More
precisely, we assume the sources to be disjoint in the TF do-
main (Figure 2) as stated in the following definition.

Definition 1. Let S1(t, f ) and S2(t, f ) be TFDs of two source
signals s1(t) and s2(t), respectively. Let also Ω1 and Ω2 be the
corresponding TF supports1 of S1 and S2. The sources s1(t)

1Ωi is the TF support of Si(t, f ) if the following is true: Si(t, f ) �= 0 if and
only if (t, f ) ∈ Ωi.

and s2(t) are said to be disjoint in the TF domain if the fol-
lowing is satisfied:

Ω1 ∩Ω2 = ∅. (3)

The above definition can be applied to any TFD. It is
clear that the TF disjoint assumption is too restrictive and
will almost never be satisfied exactly in practice. Fortunately,
only approximate disjoint condition, called quasi-disjoint, is
needed to achieve the separation, as will be shown in a later
experiment (Section 4.3). Note that the source TF disjoint
condition can be considered as a particular type of source
sparse decomposition [16, 19, 21].

A physical example of TF (quasi)disjoint sources can be
observed in a musical performance, for example, the duo
performance of a base guitar and a lead guitar. As they are
being played simultaneously, we hear two different musi-
cal pieces representing two different instantaneous frequency
laws. The physical structures of the guitars are such that the
base guitar mainly produces notes in a low frequency range,
whereas the notes from the lead guitar are mainly in a high
frequency range. However, the frequency range of the former
has an overlap with that of the latter. At some instants dur-
ing the performance, the two guitars may produce the notes
belonging to this frequency overlap. Therefore, most of the
time we hear the different notes and occasionally we hear
the same notes. Consequently, the instantaneous frequency
laws produced by these guitars for the whole duration of the
performance have a few overlaps in the TF domain. In other
words, the different sound sources produced by the guitars
are quasi-disjoint in the TF domain.

Before describing the details about our algorithm, some
remarks are listed in order regarding the TF disjoint assump-
tion. First, one would think that if the sources are TF disjoint,
then the source TF signatures can be separated using a sim-
ple TF masking procedure, instead of using any other more
sophisticated methods. However, in the context of blind sep-
aration, such source TF signatures are unknown and are to be
estimated. Our algorithm can estimate the source signatures.
Second, one may extract all the existing TF components in
the mixture by some method, such as the method in [22].
However, this method still fails to the source TF signatures
because it is well possible that a source TF signature can
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have multiple TF components. Our algorithm can determine
which component belongs to which source, thus allowing the
separation of multicomponent sources.

3. SPATIAL TIME-FREQUENCY DISTRIBUTIONS

We provide here some definitions that will be used through-
out the paper.

Definition 2 (see [10]). Consider K signals z1(t), z2(t), . . . ,
zK (t), and denote z(t) = [z1(t), . . . , zK (t)]T . The (K × K)
STFD matrix is defined in the following expression:

Dzz(t, f )�
∞∑

l=−∞

∞∑

k=−∞

φ(k, l)z(t+k+l)zH(t + k − l)e− j4π f l,

(4)

where φ(k, l) is the TFD time-lag kernel and (H) denotes the
complex conjugate transpose operator.

Note that Dzz(t, f ) is a time-frequency varying matrix.
When evaluated at a TF point (to, fo), its (i, j) elements are
the values of Dziz j (to, fo) obtained from the cross-TFD be-
tween zi(t) and z j(t) that is defined below:

Dziz j (t, f )

�

∞∑

l=−∞

∞∑

k=−∞

φ(k, l)zi(t + k + l)z∗j (t + k − l)e− j4π f l,

(5)

where (∗) is the conjugate operator.
By applying (4) to both sides of the linear data model

in (1), and assuming a noise-free environment, we obtain
the following expression, which transforms the UBSS model
from the time-only domain to the dual TF domain:

Dxx(t, f ) = ADss(t, f )AH , (6)

where Dss(t, f ) and Dxx(t, f ) are the source and mixture
STFD matrices, respectively. Our concern is how to exploit
the TF sparsity, given by the TF disjoint assumption, from
the transformed model (6) in order to allow for the separa-
tion of the underlying sources. We defer this concern until
later and now define the notions of cross-source and auto-
source STFDs, which are slightly modified from those de-
fined in [12] for more clarity.

Definition 3. Consider two sources z1(t) and z2(t) and de-
note z(t) = [z1(t), z2(t)]T . Let ρ(t, f ) be the TFD used in the
computation of the STFD matrix Dzz(t, f ).

(i) (ta, fa) is called an auto-source TF point of a source
zi(t) if its auto-TFD at this point, ρzizi(ta, fa), exhibits an en-
ergy concentration. The matrix Dzz(ta, fa) is called an auto-
source STFD matrix.

(ii) (tc, fc) is called a cross-source TF point between
sources z1(t) and z2(t) if their cross-TFD, defined as

ρz1z2 (t, f ) �
∫∫∫∞

−∞ e j2πν(u−t)Γ(τ, ν) × z1(u + (τ/2))z∗2 (u−
(τ/2))e− j2π f τ dνdudτ with Γ(τ, υ) being the TFD lag-
Doppler kernel, at this point exhibits an energy concentra-
tion. The matrix Dzz(tc, fc) is called a cross-source STFD ma-
trix. When z1(t) = z2(t), the cross-TFD becomes the auto-
TFD.

Before making some remarks about the above defini-
tion, we recall the notions of “auto-term” and “cross-term”
in the literature of TF signal processing. Given a signal with
multiple instantaneous frequency (IF) components, an auto-
term TF in the TF representation of this signal represents
the “true” energy concentration of the signal in time and
frequency. On the other hand, a cross-term TF represents a
“ghost” energy concentration of the signal though the con-
centration may visually appear very high in the TF represen-
tation. This “ghost” effect comes from the TFD bilinear op-
eration applying to the IF components [11]. Here, the TFD
is applied to only one signal. In our context, we consider sev-
eral source signals, and each of which may have multiple IF
components. Several remarks are now in order.

(a) The energy concentration at an auto-source point
can be “true” if zi(t) is monocomponent and can be “ghost”
if multicomponent. The latter means that the auto-source
point coincides with the cross-term point if the source is
multicomponent. This will be illustrated in Experiment 1
(Figure 3l).

(b) At a cross-source point (tc, fc), the cross-source STFD
matrix Dzz(tc, fc) is off-diagonal (i.e., its diagonal entries are
zero) since the off-diagonal elements of the matrix Dzz(t, f )
are evaluated by the cross-TFD.

(c) At an auto-source point (ta, fa), the auto-source
STFD matrix Dzz(ta, fa) is diagonal (i.e., its diagonal en-
tries are nonzero) since the diagonal elements of Dzz(t, f ) are
evaluated by the auto-TFD.

We now come back to our previously mentioned con-
cern on the TF sparsity of the transformed model (6). Tak-
ing into account the above remarks and using the additional
assumption that sources are disjoint in the TF domain, we
have the following observations for the source STFD matrix
Dss(t, f ). First, the diagonal elements of Dss(t, f ) at a cross-
source point are all equal to zero. Second, Dss(t, f ) at an auto-
source point is diagonal and, more than that, its diagonal el-
ements are all equal to zero except for one value because there
is only once source present at this auto-source point. There-
fore, if Ωi is the TF support of the source signal si(t), then the
following is achieved:

Dxx(t, f ) = Dsisi(t, f )aia
H
i , ∀(t, f ) ∈ Ωi. (7)

It is the particular structure in (7) that will be used for our
TF-UBSS.

We note here that if the sources are nondisjoint in the
TF domain, then there exists at least an auto-source point at
which there are k sources present, where 1 < k. In this case,
if k ≤ m, then exactly k diagonal elements of Dss(t, f ) at this
point are nonzero. If, otherwise, k > m, all the m diagonal
elements of Dss(t, f ) are nonzero. This observation may be
used to provide a test on TF disjoint condition and further
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Figure 3: Experiment 1: TF-UBSS algorithm. (a) s1(t). (b) s2(t). (c) s3(t). (d) WVD of s1(t). (e) WVD of s2(t). (f) WVD of s3(t). (g) WVD of
x1(t). (h) Auto- and cross-source points. (i) Auto-source points. (j) TF signature of s1(t). (k) TF signature of s2(t). (l) TF signature of s3(t).
(m) ŝ1(t). (n) ŝ2(t). (o) ŝ3(t). (p) WVD of ŝ1(t). (q) WVD of ŝ2(t). (r) WVD of ŝ3(t).
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Proc. 1: STFD computation and noise thresholding
Proc. 2: auto-source TF point selection
Proc. 3: clustering and source TFD estimation
Proc. 4: source signal synthesis

Algorithm 1: TF-UBSS algorithm: procedures.

to study the UBSS for nondisjoint sources. The treatment of
TF nondisjoint sources is out of the scope of this paper and
is subject to subsequent research. This issue is of importance
when dealing with speech signals that are not well localized
in TF̧ domain.

4. TF-UBSS ALGORITHM

Thanks to the structure in (7), the following observation is
deduced for two auto-source points (t1, f1) and (t2, f2) cor-
responding to the same source si(t):

Dxx

(
t1, f1

)
= Dsisi

(
t1, f1

)
aia

H
i ,

Dxx

(
t2, f2

)
= Dsisi

(
t2, f2

)
aia

H
i .

(8)

This observation implies that both Dxx(t1, f1) and Dxx(t2, f2)
have the same principal eigenvector ai. Therefore, all the
auto-source points whose mixture STFD matrices have the
same principal eigenvector belong to the TF support of only
one particular source. Recall that ai and a j have been as-
sumed linearly independent for i �= j.

This leads to the main idea of our TF-UBSS algorithm
as follows. We first obtain only auto-source points from the
TF representation. Next, we cluster all the auto-source points
into different sets according to the difference in the principal
eigenvector of the mixture STFD matrices. Each set of auto-
source points now represents the TF support for a particular
source. Knowing the support of the source, we can then ob-
tain its TF signature which is, in other words, the TFD esti-
mate of this source. Given the source TFD estimate, we can
use TF synthesis to recover the source waveform.

4.1. Separation algorithm

The proposed TF-UBSS algorithm includes four main proce-
dures as shown in Algorithm 1 and its schematic diagram is
illustrated in Figure 4. Details of these procedures are given
next.

(1) STFD computation and noise thresholding. Given L ob-
servation vectors x(1), . . . , x(L), the STFD matrices Dxx(t, f )
defined according to (4) can be estimated using time-lag do-
main discrete implementation [11] as

D̂xx(l, k)=
M∑

p=−M

M∑

q=−M

g(q − l, p)x(q + p)xH(q − p)e− j4πpk/L,

(9)

where g(l, p) is a discrete time-lag kernel, M = (L − 1)/2,

and l = 1, . . . ,L. The elements of D̂xx(l, k) are obtained from

the TFD as

[
D̂xx(l, k)

]
i j

= Dxix j (l, k)

=

M∑

p=−M

M∑

q=−M

g(q − l, p)xi(q + p)x∗j (q − p)e− j4πpk/L,

(10)

where i, j = 1, . . . ,m. In the later simulations (Experiment
1), we will use the Wigner-Ville distribution (WVD) for
computing the STFD matrices. The WVD of an analytic sig-
nal z(t) is defined as [11]

ρwvd
z (t, f ) �

∫∞
−∞

z

(
t +

τ

2

)
z∗
(
t −

τ

2

)
e− j2π f τ dτ. (11)

Its discrete implementation is of the form in (10) without the
time-lag kernel g(l, p).

These STFD matrices are next processed to extract the
source signals. In order to reduce the computational com-
plexity, by processing only “significant” STFD matrices, a
noise thresholding step is then carried out to remove the
points with negligible energy. More precisely, a threshold ǫ1

(typically, ǫ1 = 0.05) is used to keep only the points
{

(ts, fs)
}

with sufficient energy:

if
∥∥Dxx(ts, fs)

∥∥ > ǫ1,

then keep (ts, fs).
(12)

(2) Auto-source TF point selection. The second procedure
of the algorithm consists of separating the auto-source points
from cross-source points using an appropriate testing crite-
rion.

In the determined case, where the number of sources is
smaller than or equal to the number of sensors, the mix-
ing matrix A is of full-column rank. A selection procedure,
which exploits the off-diagonal structure of the cross-source
STFD matrices, has been proposed in [12]. This selection
procedure proceeds through two steps as follows.

(i) Data whitening. Let W denote an m × n matrix such
that (WA)(WA)H = UUH = I, that is, WA is an n × n uni-
tary matrix. This matrix is referred to as the whitening matrix
since it whitens the signal part of the observations. Pre- and
post-multiplying the STFD matrices Dxx(t, f ) by W lead to
the whitened STFD matrices

Dxx(t, f ) = WDxx(t, f )WH = UDss(t, f )UH . (13)

In practice, W is often computed as an inverse squared root
of the sample estimate covariance matrix of the observation.

(ii) Testing. For a whitened cross-source STFD matrix
Dxx(tc, fc), we have the following:

trace
{

Dxx

(
tc, fc

)}
= trace

{
UDss

(
tc, fc

)
UH

}

= trace
{

Dss

(
tc, fc

)}
≈ 0.

(14)
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Figure 5: Comparison of auto-source selection methods: (a) approximation projection and (b) TF disjoint.

Hence, the cross-source points are to be removed using the
testing criterion below:

if
trace

{
D̂xx

(
tc, fc

)}
∥∥∥D̂xx

(
tc, fc

)∥∥∥
< ǫ2,

then
(
tc, fc

)
is a cross-source point,

(15)

where the threshold ǫ2 is a positive scalar not greater than 1
(typically ǫ2 = 0.8).

In the underdetermined case, the matrix U is nonsquare
with more columns than rows, and consequently UHU �= I
represents the projection matrix onto the row space of U.
Therefore, (14) becomes only an approximation, a good one
if (m−n) is “small” as observed in our simulation results (see
Figure 3).

Another method, alternative to the above approxima-
tion projection method, may be used. Under the source TF
disjoint assumption, each auto-source STFD matrix is of
rank one, or at least has one “large” eigenvalue compared
to its other eigenvalues. Therefore, one can use rank selec-
tion criteria, such as the minimum description length (MDL)
or Akaike information criterion (AIC) [23] to select auto-
source points as those corresponding to STFD matrices of se-
lected rank equal to one. For simplicity, we use the following

criterion (see Figure 5):

if

∣∣∣∣∣∣
λmax

{
D̂xx(t, f )

}
∥∥∥D̂xx(t, f )

∥∥∥
− 1

∣∣∣∣∣∣ > ǫ2,

then (t, f ) is a cross-source point,

(16)

where ǫ2 is a small positive scalar (typically, ǫ2 = 0.3) and
λmax {·} represents the largest eigenvalue of the matrix in the
bracket.

Comparison of the above two methods for auto-source
point selection based on approximation projection and TF
disjoint assumption for the underdetermined case shows a
similar performance (see Figure 5).

(3) Clustering and source TFD estimation. Once the
auto-source points have been selected, a clustering proce-
dure based on the sources spatial directions/signatures is
performed. This clustering is based on the observation that
two STFD matrices which correspond to the same source
have the same principal eigenvector. Moreover, the cor-
responding principal eigenvalues are given by the desired
source TFD. This implies that if we apply an appropriate
clustering procedure to the set of auto-source points, we will
be able to obtain the separate TF signatures of the sources.
Specifically, we consider the following steps.
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(i) For each auto-source point (ta, fa), we compute from
the auto-source STFD matrix Dxx(ta, fa) the main eigenvec-
tor a(ta, fa) and its corresponding eigenvalue λ(ta, fa). Since
a(ta, fa) is only estimated up to a random phase e jφ, φ ∈

[0, 2π), we force it to have, without loss of generality, its first
element real and positive.

(ii) The set of all auto-source points
{

(ta, fa)
}

is then
clustered into different classes {Ci}. Mathematically, we de-
cide a(ti, fi) and a(t j , f j) to belong to the same class if

d
(

a
(
ti, fi

)
, a
(
t j , f j

))
< ǫ3, (17)

where ǫ3 is a properly chosen positive scalar and d is a dis-
tance measure. Different strategies for choosing the threshold
ǫ3 and the distance d or even the clustering method can be
found in [24]. As an example, we use later in the experiments
a distance measure in accordance with the angle difference as
given by

d
(

a1, a2

)
= arccos

(
ãTi ã j

)
, i �= j, (18)

where ã = [Re(a)T ; Im(a)T]T and ‖ã‖ = 1. Algorithmically,
the clustering simply performs the following:

(a) initialization
set number of classes K = 1
assign a1 to class C1

(b)unsupervised clustering
while i = 2 → Nv (number of vectors)

for k = 1 → K
calculate distance d between ai and Ck

if d < ǫ3, then assign ai to Ck

else, set K = K + 1 (new class created), then
assign ai to CK and exit “for” loop.

(iii) We set the number of sources equal to the number
of classes then estimate the TFD of the source si(t) from the
class Ci by assigning

D̂sisi(t, f ) =



λ
(
ta, fa

)
, if (t, f ) =

(
ta, fa

)
∈ Ci,

0, otherwise.
(19)

(4) Source signal synthesis. The source si(t) is then recov-

ered from its TFD estimate D̂sisi using TF synthesis. The re-
construction of the waveform (in time) of a signal from its
TFD (in time frequency) is made possible thanks to the fol-
lowing inversion property of the WVD [11]:

x(t) =
1

x∗(0)

∫∞
−∞

ρwvd
x

(
t

2
, f

)
e j2π f tdf . (20)

The above expression implies that the signal can be recon-
structed to within a complex exponential constant e jα =

x∗(0)/|x(0)| given |x(0)| �= 0.
A well-known synthesis algorithm was proposed in [25]

to recover a signal from its estimated TFD where the TFD
in use is the WVD. Since we use WVD to compute our

STFD matrices, we opt to use this synthesis algorithm for
recovering our sources. Below, this algorithm is summarized
from [25] to assist the understanding of our UBSS algorithm.

Let D̂ss(t, f ) be the TFD estimate of a signal s(t). Our goal
is to find the ŝ(t) whose WVD, denoted by ρwvd

ŝ (t, f ), best

approximates D̂ss(t, f ) in the least square sense. That is, we
want to minimize J(s) given in the following:

J(s) =

∫∞
−∞

∣∣∣D̂ss(t, f )− ρwvd
ŝ (t, f )

∣∣∣2
df . (21)

Let L be the signal length, Le = ⌊(L + 1)/2⌋, Lo = ⌊L/2⌋, so =

[so(1)so(2) · · · se(Lo)]T , and so = [so(1)so(2) · · · se(Lo)]T .
The above minimization then leads to the estimation of the
odd and even samples of the signal as such so and se are equal
to the normalized principal eigenvectors of the matrices Ce

and Co whose elements are computed by

ce(q + 1, p + 1) = y(q + p, q − p) + y∗(q + p, p − q)

for q, p = 0, . . . ,Le − 1,
(22)

co(q, p) = y(q + p + 1, q − p) + y∗(q + p + 1, p − q)

for q, p = 1, . . . ,Lo,
(23)

where y(l, p) is the discrete inverse Fourier transform of

D̂ss(t, f ). If the phase of the recovered signal is important,
the phase can be corrected using the original signal s(t) by
first computing

αe = tan−1



ℜ
{∑Le−1

k=0 s(2k)s∗e (k)
}

ℑ
{∑Le−1

k=0 s(2k)s∗e (k)
}

 ,

αo = tan−1



ℜ
{∑Lo

k=1 s(2k − 1)s∗o (k)
}

ℑ
{∑Lo

k=1 s(2k − 1)s∗o (k)
}



(24)

then doing the following assignments: se(k) := se(k)e jαe and
se(k) := so(k)e jαo . Above, ℜ{·} and ℑ{·} denote the real
part and imaginary part, respectively.

4.2. Discussion

It is essential to address the following issues regarding the
above proposed TF-UBSS algorithm.

(1) Underdeterminacy. The algorithm is general in the
sense that it is not only specific to UBSS but can also be used
for BSS. However, in this work, we only provide results for
the challenging case of UBSS. In the simulated experiments
that will be shown later, we choose m = 2. Obviously, to ex-
ploit the spatial diversity offered by a sensor array, the mini-
mum value for m is two. This case, however, is the most dif-
ficult case given a fixed number of sources, in contrast to an
intuition that m = 2 might be the simplest. This is due to
the fact that more sensors will provide more spatial diver-
sity, hence more information. On the other hand, we only
use n = 3 sources which is the simplest case for UBSS given
that m = 2. This selection serves our purpose to illustrate the
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new approach, rather than to provide a very detailed perfor-
mance analysis on the approach.

(2) TF disjoint sources. It is important to have disjoint
sources in the TF domain in order to achieve the separation
using the above TF-UBSS algorithm. However, this assump-
tion is too restrictive and will almost never be satisfied exactly
in practice. Nonetheless, as shown in the simulation in Sec-
tion 4.3, it suffices that the source signals may need only to
satisfy a TF quasi-disjoint condition for the signal separation
to be achieved. The term “quasi” implies that “most” of the
energy of one source is localized in the TF region that is dis-
joint from the TF regions of all other sources, as illustrated in
Figure 6. Small overlaps of the two TF supports are allowable
(Ω1 ∩Ω2 ≈ ∅).

(3) Choice of the TFD. In general, the choice of a TFD
depends on the specific application that is under considera-
tion and the representation properties that are desirable for
this application [11]. In our simulations, we chose the WVD
in the computation of the STFD matrices for the following
two reasons. First, the WVD is invertible up to a constant
phase, as given in (20). Second, the WVD is the optimal TFD
for linear frequency-modulated (LFM) signals [11] and these
signals are used in our simulations. The proposed algorithm
is sensitive to the choice of the TFD selected and is particu-
lar to the cross-term effect, as will be shown in Section 4.3.
Hence, using a TFD that reduces this effect is important to
obtain a good separation quality.

(4) Noise thresholding. The threshold used for removing
the noisy points can be chosen based on the SNR and the
possible structure of the mixed signals. Noise thresholding,
however, is used mainly for the benefit of reducing the com-
putational complexity, and so is not a critical factor in the
proposed algorithm.

(5) Auto-source point selection. We have proposed three
selection criteria to separate the auto-source points from
the cross-source points in the TF plane. These criteria re-
quire a good choice of the thresholds and the TFD (a good
choice of the TFD is proposed in Section 5). It is clear that
if few auto-source points are missing, the signal reconstruc-
tion, via the implicit interpolation in the synthesis procedure,
works in general. Now, if too few auto-source points are se-
lected, the signal reconstruction then fails since too many
curves/solutions are possible to fill the gaps in between the
selected auto-source points. In that case, the only way to get
the correct solution is to have strong a priori knowledge of
the desired sources.

(6) Vector clustering. A simple algorithm for vector clus-
tering was used in the simulations in order to illustrate the
feasibility of UBSS. More sophisticated algorithms (see [24]
and references therein) should be applied to achieve more
robust separation.

(7) Number of sources. We have observed in the experi-
ments that the number of classes, obtained from the cluster-
ing procedure, was greater than the actual number of sources.
Simple thresholding scheme, based on energy leveling, was
used to eliminate the classes with insignificant energy com-
pared to others. These classes may or may not be considered
as noise, depending on the nature of the sources in the par-
ticular application of interest.

On the other hand, the clustering may result in a num-
ber of sources smaller than the original one. This would be
the case in two typical situations. The first one occurs when
“effective” high-energy sources are mixed with other low-
energy sources. The latter may be seen as “noise” in the sepa-
ration procedure and, thus, cannot be estimated, while the
effective sources are correctly estimated. If the low-energy
sources are of interest, one can extract them by applying our
algorithm in an iterative way in conjunction with a defla-
tion technique [26]. The other situation occurs when two or
more sources are “closely spaced,” that is, their correspond-
ing column vectors in the mixing matrix are “closely” linear-
dependent. In that case, the clustering technique easily fails
to separate the sources. Note that this situation is difficult to
solve even in the determined case when the mixing matrix is
of full-column rank.

(8) TF synthesis. We have applied in our simulations a
classical but seminal algorithm (without any TF masking)
proposed in [25]. Other synthesis algorithms can be found
in [11, 27, 28]. The successful reconstruction of source wave-
forms depends on the source signal type, the choice of TFD,
the robustness of vector clustering procedure, and the per-
formance of the TF synthesis algorithm itself.

On the other hand, instead of using TF synthesis, we may
apply the time-varying notched filter approach as sketched in
Figure 7 in which selection block is composed of all the steps
from Procedure 4.1(1) to Procedure 4.1(3). More informa-
tion on designing such a notched filter can be found in [29].
This approach is useful when the TF synthesis algorithm cor-
responding to the TFD used for STFD computation is not yet
available.

(9) Computational complexity. The total cost of compu-
tation is broken down into separate costs corresponding to
different procedures in the proposed algorithm. Major con-
tributions to the total cost Ctotal come from the computations
of (i) STFD matrices (C1), (ii) the singular value decomposi-
tion (SVD) of the STFD matrices for separating auto-source
points from cross-source points (C2), (iii) clustering (C3),
and source synthesis (C4). Note that, we use the values of
SVD already obtained for the estimation of source TFDs:

Ctotal ≈ C1 + C2 + C3 + C4. (25)

Let Na and Nc be the number of auto-source points and
cross-source points, respectively, and denote by CL the cost
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Figure 7: TF-UBSS algorithm using notch filters: schematic diagram.

for the TFD computation of a signal of length L. Then, the
associated costs are

C1 = CL ×
m(m + 1)

2
,

C2 =
(
Na + Nc

)
×O

(
m3
)
,

C3 ≈
Na

(
Na + 1

)

2
,

C4 ≈ n×O
(
L3
)
.

(26)

Note that the computation of CL depends on the TFD
method, signal length L, and the number of FFT points used.
If a sophisticated clustering method is used, then C3 is ex-
pected to increases. Overall, C2 and C3 are the most expen-
sive computations due to the high numbers of auto-source
points and cross-source points present in the TF represen-
tation; obviously, these numbers depend on the number of
sources.

4.3. Experiment 1: TF-UBSS algorithm

A uniform linear array of m = 2 sensors, having half wave-
length spacing, is used. It receives n = 3 independent sources,
as shown in Figures 3a, 3b, 3c, where the two sources s1(t)
and s2(t) are monocomponent LFM signals and the remain-
ing source s3(t) is a multicomponent signal. Each signal has
the length L = 128. The transfer medium is assumed to be af-
fected by the additive white Gaussian noise (AWGN), where
the SNR is equal to 20 dB. The source signals arrive at differ-
ent angles, 30◦, 45◦, and 60◦, respectively.

The WVD was used to compute the STFD matrices. The
“noisy” points appearing in the data mixture (Figure 3g)
were first removed using energy thresholding; see Figure 3h
(a significant number of points were indeed removed though

difficult to visualize). Next, the auto-source points were se-
lected as shown in Figure 3i. Then, the output of vector clus-
tering was the three separate classes that represent the three
TF signatures of the sources (Figures 3j, 3k, 3l). Finally, the
sources were reconstructed as shown in Figures 3m, 3n, 3o.
The estimated sources and their WVD representations (Fig-
ures 3p, 3q, 3r) resembled the original sources (Figures 3a,
3b, 3c) and their WVD representations (Figures 3d, 3e, 3f),
respectively.

By comparing the original with the estimates of source
waveforms, we can conclude that the proposed UBSS algo-
rithm was successful. Note that, however, an amplitude fad-
ing at the two ends of the recovered signals is due to the
poor TFD energy concentration in the vicinity of the TF sup-
port boundaries. In addition, though significant cross-source
points have been removed, there remain a small number of
cross-source points in the clustered TF signatures. This in-
dicates that the proposed method is sensitive to cross-term
effect, hence motivates the use of a TFD that can effectively
reduce the cross-terms (this will be shown in the next sec-
tion).

In this experiment, we deliberately set up the sources
such as they were quasi-disjoint in the TF domain (s1(t)
and s2(t) overlap each other). The sources s1(t) from s2(t)
were, however, still separated successfully by the proposed
algorithm. In addition, the purpose of setting the third
source to be multicomponent was to distinguish the pro-
posed algorithm from any time-varying filtering approach.
As confirmed by the simulation, the proposed algorithm did
not falsely separate s3(t) into two monocomponent LFM
sources, whereas a time-varying filtering approach would
normally interpret this source as two separate monocompo-
nent sources.
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5. TF-UBSS USING MWVD

The previous experiment showed that the proposed algo-
rithm was successful in separating nonstationary sources in
the UBSS case. However, as observed, there were undesirable
(cross-source) points, in the TF signatures (Figures 3k and
3l), present along with the desired (auto-source) points for
a particular source. Consequently, extra ridges appeared in
the TFD of the estimated sources (Figures 3q and 3r). The
presence of these extra ridges may lead to a wrong interpre-
tation of the original source as if it has another IF law. There-
fore, we need to seek a more robust solution. In this section,
we propose a modified version of the proposed TF-UBSS al-
gorithm that helps improve the auto-source point selection
procedure, hence the performance of the separation.

It is essential to note that, apart from the observed prob-
lem in auto-source selection, other problems remain: (i) the
thresholds used in the previous experiment were ad hoc and
(ii) there were no treatments at the overlapping due to the
quasi-disjoint scenario (i.e., a point at the intersection of two
sources was only clustered “by chance” to belong to one of
the sources). These issues need further development and is
out of the scope of this paper.

5.1. Remarks

In improving the proposed algorithm, we first notice the fol-
lowing.

(i) Although the WVD is optimal for LFM signals, it suf-
fers from the cross-term problem [11]. A subset of quadratic
TFDs specifically designed for cross-term suppression is
called the set of reduced interference distributions (RIDs)
[11]. We choose to use the modified Wigner-Ville distribu-
tion (MWVD) which is defined as

ρmwvd
x (t, f ) = ρwvd

x (t, f ) · ρ
spec
x (t, f ), (27)

where the spectrogram (SPEC) is given by

ρ
spec
z (t, f ) =

∣∣∣ρstft
z (t, f )

∣∣∣2

=

∣∣∣∣
∫∞
−∞

z(τ)h(τ − t)e− j2π f τdτ

∣∣∣∣
2

.
(28)

In (28), ρstft
z (t, f ) is the STFT and h(t) is some window func-

tion.

The choice of the MWVD serves two purposes: the WVD
keeps the high resolution and the optimality for LFM signals,
and the SPEC is free of cross-terms. In addition, the imple-
mentation of the TF synthesis algorithm used in this paper is
based on the WVD; thus we still need to perform the original
computation of STFD matrices using the WVD. One would
expect that if TF synthesis algorithms of RIDs are available
then direct use of such algorithms would help improve the
TF-UBSS algorithm quality as it leads to better selection of
the auto-source points and a better result for clustering.

(ii) Previously, the inputs to the clustering procedure
were the selected set of auto-source points and the WVD-
based STFD matrices. However, as observed in Experiment
1, there were points where each of them is a superimposition
of both an auto-source point and cross-source point. We pro-
pose a solution to this by applying the STFT in the clustering
procedure. This is due to the fact that the STFT is the square
root of the SPEC, hence is free of cross-source points.

5.2. Algorithm

Based on the above discussion, we are now able to set up the
procedures of TF-UBSS algorithm using the MWVD for a
refined auto-source point selection. The algorithm consists
of the same overall procedures as those in Algorithm 1. A
diagram of the algorithm is also shown in Figure 8.

(1) STFD computation and noise thresholding. We
compute the STFD matrices of the observation vectors
x(1), . . . , x(L) using both the WVD and the STFT, denoted
by Dwvd

xx (t, f ) and Dstft
xx (t, f ), respectively. Dwvd

xx (t, f ) is com-
puted in the same manner as that in Procedure 4.1(1). The
off-diagonal elements of Dstft

xx (t, f ) are zeros and its diagonal
elements are given by

[
Dstft

xx (l, k)
]
i j
=




M∑

p=−M

x(p)h(p − l) e− j2πpk/L, for i = j,

0, for i �= j,

(29)
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where M = (L− 1)/2 and h(l) is a window function. For ex-
ample, in the case of rectangular type, the window function
is defined as

h(l) =




1

Lw
, for |l| ≤

(
Lw − 1

)

2
,

0, otherwise,
(30)

where Lw is the window length.
Hence, the MWVD-based STFD matrices are obtained

using the following expression:

Dmwvd
xx (t, f ) = Dwvd

xx (t, f )⊙
∣∣∣Dstft

xx (t, f )
∣∣∣2

, (31)

where ⊙ denotes the Hadamard product.
To reduce the complexity, among all the TF points in

each time slice of the TFD, we keep only those with sufficient
energy, according to the point with maximum energy along
this time slice, by comparing against a threshold ǫ1 (typically,
ǫ1 = 0.05). More precisely, along a particular time slice i,

if

∥∥∥Dxx

(
t(i)
s , fs

)∥∥∥
max

f

{∥∥∥Dxx

(
t(i), f

)∥∥∥
} > ǫ1,

then keep point
(
t(i)
s , fs

)
.

(32)

Note that by removing the low-energy points in each time
slice, rather than in the entire TF domain as in Procedure
4.1(1), we are able to pick up the points in the starting and
ending time-slices.

(2) Auto-source TF point selection. This procedure is simi-
lar to that in Section 4.1(2) except that we use the MWVD in-
stead of the WVD. Using the MWVD results in a more robust
selection of the auto-source points (due to the reduced-
interference property of this distribution). Note that, for the
choice of the WVD, we have tested the use of both auto-
source selection methods, that is, approximation projection
and TF disjoint condition as explained in Section 4.1(2), and
the results were similar as shown in Figure 5. When choosing
the MWVD instead, both of these methods achieved a much
better performance as will be shown in Figure 9g.

(3) Clustering and source TFD estimation. For each se-
lected auto-source point (ta, fa), we estimate the correspond-
ing spatial direction by

a
(
ta, fa

)
=

diag
{

Dstft
xx

(
ta, fa

)}
∥∥∥diag

{
Dstft

xx

(
ta, fa

)}∥∥∥
. (33)

These vectors are then clustered into different classes using
the same clustering procedure in Section 4.1(3). The source
TFDs are estimated (up to a scalar constant) by assigning the
following:

D̂sisi(t, f )=




trace
{

Dwvd
xx

(
ta, fa

)}
, if (t, f )=

(
ta, fa

)
∈ Ci,

0, otherwise.

(34)

(4) Source signal synthesis. This procedure is the same as
Procedure 4.1(4).

5.3. Experiment 2: TF-UBSS using MWVD

In this second experiment, we validate the algorithm using,
again, 2 monocomponent LFM signals (Figures 9a, 9b) and
1 multicomponent signal (Figure 9c). Figures 9d, 9e, and 9f,
respectively, show the TFDs of the mixtures using the WVD,
the MWVD, and the STFT. Obviously, most cross-source
points were removed when using the MWVD. The auto-
source selection procedure was then applied to further sepa-
rate the cross-source points from auto-source points (Figures
9g, 9h, and 9i). Next, the direction vectors were found based
on the STFD of the STFT as shown in Figure 9i. Then, these
vectors were clustered into 3 different TF signatures repre-
senting the TFD estimates of the sources (Figures 9j, 9k, and
9l). Obviously, compared to the simulated results in Exper-
iment 1, a much cleaner TF representation of the TFD esti-
mates was obtained using this MWVD-based TF-UBSS algo-
rithm.

As already mentioned in Section 4.1(2), we provide here
a simulation test (Figure 5) showing the similar visual perfor-
mances using two methods, based on either the approxima-
tion projection or the TF disjoint assumption, for the auto-
source point selection procedure.

6. TF-UBSS WITH COMPONENT EXTRACTION

As an alternative to using the MWVD as proposed in
the previous section for enhancing the auto-source point
selection procedure, we propose in this section another
solution that is based on image processing, by using a
component-extraction procedure. The underlying idea of this
solution comes from the observation that a monocomponent
frequency-modulated (FM) signal is represented by a linear
feature that corresponds to the ‘energy concentration points’
in the TF image. If we can obtain all the IF components of the
sources from the mixture TF image, then for each source we
will be able to group its IF components appropriately into
its TF signature by using the clustering procedure in Sec-
tion 4.1(3). Note that, as we have mentioned in Section 2,
knowing only the IF components would not allow us to sep-
arate the sources since the sources can have several IF mono-
components.

For this component-extraction approach, we must make
another assumption, in addition to those in Section 2, as fol-
lows: the sources are well localized in the TF domain. Vi-
sually, this assumption means that the sources should only
show ridges on the TF domain.

6.1. Algorithm

The procedures of the TF-UBSS algorithm with image-
processing-based component extraction are shown in
Algorithm 2. Note that, Procedure 2 in Algorithm 1 is re-
placed by Procedure 2∗ in Algorithm 2.

(1) STFD computation and noise thresholding. This pro-
cedure is similar to that in Section 5.2(1).
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Figure 9: Experiment 2: TF-UBSS using MWVD. (a) WVD of s1(t). (b) WVD of s2(t). (c) WVD of s3(t). (d) WVD of mixture. (e) MWVD
of mixture. (f) STFT of mixture. (g) Auto-source points displayed by WVD. (h) Auto-source points displayed by MWVD. (i) Auto-source
points displayed by STFT. (j) TFD estimate of s1(t). (k) TFD estimate of s2(t). (l) TFD estimate of s3(t).

Proc. 1: STFD computation and noise thresholding
Proc. 2∗: image component extraction
Proc. 3: clustering and source TFD estimation
Proc. 4: source signal synthesis

Algorithm 2: Image-based TF-UBSS algorithm with component
extraction: procedures.

In addition, we apply spatial averaging that mitigates fur-
ther the cross-source points by a factor depending on their
spatial signatures angle [30]. More precisely, we compute the

spatially averaged TFD as in

Davg (t, f ) = trace
{

Dxx(t, f )
}
=

m∑

l=1

Dxlxl (t, f ). (35)

The image (i.e., TF support) of this spatially averaged
TFD will be used as the input to the image component ex-
traction procedure, which we explain next.

(2) Image component extraction. A practical application
of satellite image processing is to extract terrestrial roads
from satellite images [31]. We apply this so-called “road net-
work tracking” approach to extract the TF component from
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Figure 10: Experiment 3: TF-UBSS using component extraction for non-LFM signals. (a), (b), (c) WVD of s1(t), s2(t), s3(t); (d), (e) spatial-
averaged TFD of the mixture outputs using WVD and MWVD; (f) convert STFD mixture to image; (g), (h) extraction of source components
using image processing; (i) auto-source points of known components; (j), (k), (l) TFD estimates of the sources.

the TF image. This procedure includes three main steps, for
which the mathematical details can be found in [31]: (i) pre-
processing: because of the particularity of the TF image, a
preprocessing is needed before applying the component ex-
traction, (ii) line detection (or local optimization) giving lo-
cal binary detection of the potential linear structures (seg-
ments) in the image, and (iii) road detection (or global opti-
mization) giving a set of labeled segments.

(a) Preprocessing. First, the TF image is transformed into
a real positive-valued image by forcing to zero all negative
values2 of the TFD and by using a gray scale in the range

2Negative values correspond mainly to undesired cross-terms or noise.

[1, 256]. Also, line detectors are usually limited to a line width
of 5 pixels. If the components being searched do not respect
this limit (it is usually the case for a TF image), an image
subsampling by block averaging is applied to reduce the pixel
size. Despite the blurring effect, this filter presents the advan-
tage of reducing the noise in the TF image. Moreover, this
subsampling removes the unisotropic representation (con-
taining horizontal lines) of the TF image (see Figures 10e,
10f).

(b) Line detection (local optimization). A line detector is
applied at each pixel of the image. We use the detector pro-
posed in [31] for radar image processing. For a given direc-
tion, the detector response is based on the ratio of the means
computed on both sides of the suspected line and the mean
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of the line itself. Height directions are studied and the best
response is kept. The resulting image is then binarized using
a simple thresholding. If statistics of the image are available
(noise distribution, additive or multiplicative noise, etc.), a
statistical study of the line detector performance can be made
to choose a more adapted threshold (for instance, the thresh-
old may correspond to a fixed false alarm rate in homoge-
neous areas).

(c) Road detection (global optimization). This is a global
step where constraints on the shape of the linear features are
imposed to the global optimization in order to extract con-
nected components and to suppress the false alarms [31]. It
works on the already extracted segments by thinning and lin-
earization. The segments are connected depending on prox-
imity and alignment constraints (specially on the line cur-
vature) to form coherent components. Small isolated seg-
ments are suppressed. The algorithm depends on the follow-
ing thresholds: the maximum gap between two segments to
connect them, the allowable angular difference between the
two segments, and the minimum size of a component. The
output from this global optimization is a labeled image of
components.

(3) Clustering and source TFD estimation. This procedure
is similar to that in Section 5.2(3). However, instead of clus-
tering the set of spatial direction vectors corresponding to all
the auto-source points, we cluster only the vectors represent-
ing the spatial directions of the components, which have been
obtained in the previous procedure. The component spatial
direction is estimated by averaging over the principal eigen-
vectors of the STFD matrices of all the points belonging to
this component. More precisely, for each extracted compo-
nent C, one estimates the corresponding spatial direction by
the following:

aC =
1

#IC

∑

i∈IC

a
(
ti, fi

)
, (36)

where IC denotes the set of points of component C, #IC de-
notes the number of points in IC, and a(ti, fi) is the estimated
principal eigenvector of the STFD matrix Dxx(ti, fi).

(4) Source signal synthesis. This is carried out in the same
manner as that in Section 4.1(4).

6.2. Experiment 3: TF-UBSS with
component extraction

To illustrate the performance of the TF-UBSS algorithm us-
ing component extraction, we present here a simulation ex-
ample corresponding to the separation of n = 3 sources
using m = 2 sensors. The first source s1(t) is a multicom-
ponent LFM signal, the second is a monocomponent LFM
signal, and the third is a quadratic FM signal. The SNR
is equal to 10 dB. The simulated results are shown in Fig-
ure 10. Although no statistical analysis was provided here
due to limited space, we can observe from these results a
good performance of the algorithm. A conclusion can be
drawn as such: due to the linear features of the TF image,
the method using component extraction can give a better

performance regarding the extraction of the TF components
that are present in all the underlying sources under the as-
sumption that these components are FM-like signals.

7. NUMERICAL PERFORMANCE EVALUATION

In practice, several common performance criteria can be
used for the evaluation of BSS algorithms, such as crosstalk
(SNR, signal-to-interference-noise ratio (SINR)), distance
to diagonal matrix, rejection level, global index, and mean
squared error (MSE) (see [32] for a survey of these criteria).
In our work, we apply the MSE criterion that is defined as
follows:

εx =
1

Nr

Nr∑

k=1

∥∥x̂k − x
∥∥2

‖x‖2 , (37)

where Nr is the number of Monte Carlo simulation runs.
Nr = 100 was used in all the performance simulation. The
generic variable x in (37) represents the true value of the
measure, whether being mixing matrix A, IF fin(t), or signal
waveform si(t). The estimate of x is denoted by x̂.

The experiment was set up with m = 2 sensors, having
half wavelength spacing, and n = 3 sources generated by
three monocomponent LFM signals, under the presence of
AWGN. All signals have the same length of L = 128 sam-
ples. The corresponding IFs, in pair of starting and stop-
ping normalized frequencies, were [0.1, 0.05], [0.33, 0.3], and
[0.45, 0.35], respectively. The source signals arrived at the
sensor array at different angles, 30◦, 45◦, and 60◦.

All the performance evaluations were done using the ver-
sion of our TF-UBSS algorithm that uses the MWVD (see
Section 5) since this version was shown to give better results
than the one using the WVD (see Section 4.3). Note that we
have corrected the permutation problem, inherent to BSS, in
our simulation in order to run the numerical performance
analysis. The plots of the source signal waveforms and their
corresponding TFDs are shown in Figures 11a, 11b, 11c, 11d,
11e, and 11f. In addition, Figures 11g, 11h, 11i, 11j, 11k, and
11l represent the TFD estimates of the sources and their re-
covered waveforms.

7.1. On mixing matrix estimation

The first measure to be analyzed is the estimation of the mix-
ing matrix. With the given angles of arrival (i.e., θ1 = 30◦,
θ2 = 45◦, and θ3 = 60◦), the true mixing matrix is

A = [a1 a2 · · · an]

=




e jπ0 sin
(
θ1

)
· · · e jπ0 sin

(
θn
)

· · · · · · · · ·

e jπ(m−1) sin
(
θ1

)
· · · e jπ(m−1) sin

(
θn
)




=

[
1 1 1

0 + j −0.61 + 0.80 j −0.91 + 0.41 j

]
.

(38)
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Figure 11: Signals used for performance evaluations.

For a particular simulation run, the spatial direction ai of
the source si(t) was estimated as the average of all “closely
spaced” spatial directions at the auto-source points belong-
ing to the obtained TF signature of si(t). Mathematically, in
a similar manner of (36), this writes

âi =
1

#Ii

∑

p∈Ii

âp

(
tp, fp

)
, (39)

where Ii denotes the set of auto-source points belonging to
the TF signature of si(t), #Ii denotes the number of auto-
source points in Ii, and â(tp, fp) is the estimated princi-
pal eigenvector of the STFD matrix Dxx(tp, fp) at the point
(tp, fp).

The performance of mixing matrix estimation was eval-
uated against different values of SNR as shown in Figure 12,
showing a good obtained performance. In addition, the plot
indicates that the estimation error decreases linearly as SNR
increases.
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Figure 12: Error performance on mixing matrix estimation.

7.2. On auto-source selection

To address the performance on auto-source selection, we
may choose to evaluate the performance of mixing matrix
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Figure 13: Performance on auto-source selection. (a) Estimation error on A; (b) number of auto-source points selected (over the total:
128× 128 = 16 384 points).
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Figure 14: Error performance on IF estimation.

estimation as well as the number of selected points with re-
spect to the threshold ǫ2 (see (16)), while keeping the SNR
value at 20 dB. The performance results were plotted in Fig-
ure 13. It is observed that the estimation of A was not sensi-
tive to ǫ2 (Figure 13a). The number of selected auto-source
points (Figure 13b) increased with an increase of ǫ2, but ap-
proached a constant value of around 1500 (the total number
of points is 128×128 = 16 384). Therefore, we may conclude
that a typical value for ǫ2 is 0.3.

7.3. On IF estimation

The performance of IF estimation was, similarly, evaluated
against different values of SNR. As usual, one measures
the performance at a particular time instance [11]. We did
choose to do the same and evaluated the frequency estima-
tion at the middle time slide of the TF representation. Only
the performance for the second LFM signal, with starting
and stopping frequency pair of [0.33, 0.3], was shown here

for the purpose of demonstration. The result, illustrated in
Figure 14a, shows a good performance. Furthermore, it indi-
cates that the IF estimation was not affected by the AWGN (at
least for SNR greater than 10 dB). This comes from the fact
that TFD spreads AWGN over the TF domain, and we were
measuring over a high range of SNR (10–20 dB).

In addition, since the underlying signals are LFM, we can
also use polynomial fitting in our estimation then evaluate
the estimated polynomial coefficients. More precisely, using
the following form of IF of an LFM signal [11]:

fin(t) = fc + αt, (40)

we measure the estimation errors on the center frequency fc
and the sweeping rate (slope) α, accordingly. The result (Fig-
ure 14b) shows that the estimation of the center frequency
was very poor compared to that of the sweeping rate. The
poor estimation of center frequency was indeed expected;
since our underlying signal (second signal) is almost parallel



Separating More Sources Than Sensors Using TFDs 2845

10−1

10−2

10 11 12 13 14 15 16 17 18 19 20

SNR (dB)

M
ea

n
sq

u
ar

ed
er

ro
r

s1
s2
s3

Figure 15: Error performance on source waveform estimation.

with the time axis (see Figure 11e), a small error in the sweep-
ing rate caused a large error in the center frequency. An-
other observation is that the error in the sweeping rate was
higher than the error evaluated as in Figure 14a. This was
also expected since the points collected at the boundary of
the TF representation were normally deviated from the true
line of the IF (see Figure 11g, 11h, and 11i), causing some
bias through the use of polynomial fitting.

As a conclusion for the performance of IF estimation, the
method comparing the true IF and the estimated IF at a time
slide gave better indication of the IF estimation, and this es-
timation was well performed.

7.4. On source waveform estimation

The performance of waveform estimation is shown in Fig-
ure 15. It indicates that the estimation was poorer compared
to the estimation of mixing matrix and IF. This poorness was
due to the boundary effect on the TF representation which
has caused the loss in obtaining the TF points around the
two ends of the signal (see Figures 11g, 11h, 11i). Hence, the
signal waveforms were poorly estimated (see the two ends of
estimated signals in Figures 11g, 11h, 11i). The poor perfor-
mance of source waveform estimation suggests further inves-
tigation on the clustering procedure. This was due to the fact
that some “small” clusters, which were considered as noisy
clusters, were removed during the clustering procedure. A
better clustering procedure may be able to correctly assign
the points in these small clusters to the appropriate source
TF signatures.

8. CONCLUSIONS

In this paper we have presented a new approach for blind
separation of nonstationary sources using their TFDs. The
proposed TF-UBSS algorithm is based on a vector cluster-
ing procedure that estimates the source TFDs by grouping
together the TF points corresponding to “closely spaced”
spatial directions. Simulation examples were provided to il-
lustrate the approach performance. The work in this paper

represents a new research direction for solving the challeng-
ing UBSS problem. Many problems still remain under in-
vestigation, including the improvement on the vector clus-
tering procedure, and extension to the convolutive mixture
case. We note here that in the course of our study, two other
approaches, namely, using the neural network [33] and Gap
statistics [34], have been proposed to enhance the clustering
procedure from the first version of our TF-UBSS algorithm,
which had been first proposed in [35].
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