
Separating Plane Perspective Shadow Mapping

Morten Mikkelsen

mm@ioi.dk

March 29, 2007

Abstract.

This paper proposes a real-time hybrid solution between standard shadow mapping

and any of the current perspective shadow mapping based methods. Existing methods

are known to have undersampling problems. At little extra cost we combine two meth-

ods to minimize undersampling errors. This is done by computing a plane equation

which separates the two resulting shadow maps to get the best possible area-based

sampling density. An additional property of this separation plane is that objects en-

tirely on one side of the plane only need to be rendered into one map.

1 Introduction

Fast high quality shadows have been in demand for a long time and will most
likely continue to be so in the foreseeable future. The most popular gpu based
methods with real-time potential today are shadow volumes by Crow [Crow77]
and shadow mapping by Williams [Will78]. Shadow volumes have the advantage
over shadow mapping that they do not suffer from aliasing problems. In spite
of this many developers are discouraged from using shadow volumes because
they do not offer the same degree of flexibility as shadow maps: It is impracti-
cal to maintain a complete silhouette list in every frame and they are fill-rate
intense. This has led to much work over the years on reducing aliasing intro-
duced by shadow mapping. One of the most famous methods to improve on
the result is percentage closer filtering [Reev87] which blurs the result by sam-
pling many times in the shadow map within some region around the sampling
point. However, this does not diminish the actual undersampling, it only fil-
ters by interpolating the binary result of the depth comparison. In recent years
additional work on the undersampling problem has been made by [Donn06],
[Eric04], [ffbg01] and [aaron05]. This paper aims to reduce the same problem
by combining a different branch of methods which will be discussed in the next
section.

1



0

20

40

60

80

100

dp/ds

20 40 60 80 100
z

Figure 1: These graphs describe the undersampling from near to far [1; 100] of
the camera for four cases. The plots and the term dp

ds
are from the analysis of

[Wimm04]. The red curve is the result of the ideal logarithmic function. The
blue curve represents standard shadow mapping, i.e., pull-back to infinity of
the camera projection reference point. Finally the turquoise curve represents
applying the camera projection with no additional pull-back and the green curve
represents a pull-back of

√
near · far which results in leveling the extremas at

the near and the far plane as explained by [Wimm04].

2 Previous Work

Recently, three primary techniques have been introduced: psm [Stamm02], tsm
[Mart04] and lispsm [Wimm04] which all aim to reduce aliasing artifacts when
rendering shadows using shadow mapping. They do this by applying a double
projection, as opposed to the traditional single projection for the light’s view
used in standard shadow mapping (ssm) [Will78].

The psm method applies a projection for the camera first and then the light.
The methods tsm and lispsm on the other hand both apply a projection for
the light source first and then apply a projection along the camera’s line of
sight, projected into the view plane of the light. This way the second projection
direction is always perpendicular to the light’s view direction. For all three
methods the intention is to increase the quantity of pixels used in the shadow
map near the location of the camera eye point.

It is shown in [Wimm04] that the ideal mapping into shadow map space is in
fact logarithmic. Obviously we cannot achieve this using a linear mapping but
it can be approximated using a projection. Perspective shadow mapping based
methods (henceforth known as PSM based): psm, tsm and lispsm aim to do so,

2



but as shown by [Wimm04] once a certain depth is reached, the undersampling
will continue to rise while for standard shadow mapping it will continue to fall
(see figure 1). This paper presents a method that combines PSM based methods
with standard shadow mapping to minimize per pixel aliasing for the entire z-
range using a separating plane to mark the transition between the two maps.
By combining methods, we can keep the undersampling below the green and the
blue curves in figure 1. The graph is exact for points of no projection aliasing
on the Z-axis of the camera from near to far and for a fixed constellation of a
camera and light. In section 3 we compare undersampling for the general case.

The analysis of [Wimm04] has inspired [Lloyd05] to reduce perspective alias-
ing by subdividing the scene and applying a separate warping function to each
subdivision. First, the camera’s frustum is subdivided according to its visible
frustum faces to reduce errors particularly when approaching the dueling frusta
case. Second, these frustum faces are further subdivided and warping (as in
[Wimm04]) is applied to each subdivision to reduce perspective aliasing. While
the method does reduce aliasing it comes at a cost due to the separate render-
ing of each subdivision, and the use of a complex fragment program for lookup
into the subdivided shadow maps. Surprisingly, continous transitions between
subdivisions is not adressed by [Lloyd05].

The method presented in this paper divides the shadow mapped scene into
two parts and given a chosen metric maintains a continous transition everywhere
from one shadow map to the other. It can be used on its own as described here
or possibly replace the second subdivision step in [Lloyd].

3 Theory

In this section a few industry terms will be used such as post-projective space

which is the space in which the view frustum exists as a centered, axis-aligned
2 × 2 × 2 cube (2 × 2 × 1 for D3D). Additionally texture coordinates will be
referred to as either normalized or unnormalized which is not to be confused
with vector normalization. Texture coordinates are normalized when a single
square unit covers the entire texture and unnormalized when a single square unit
only covers a texel. This is similar to the relationship between post-projective
space and screen space though for a given depth the surface of the screen in
post-projective space is four square units and not one.

It will be implied throughout this section that all the applied matrices are
nonsingular. Let M1 and M2 be two such 4 × 4 transformations from world
space to separate texture spaces of unnormalized texture coordinates. In this
section a simple inequality will be derived for which of the two provide better
area sampling density at a given point.

3



Camera Space Object Space

C M1 Mobj

-1

Cproj

-1

M2

-1

First Texture Space

World Space

Second Texture Space

Screen Space

Figure 2: This shows the transformation hierarchy described in this section.

3.1 A general comparison test

Let C be the camera to world matrix, Cproj is the camera projection matrix
and (s, t, q) is a point in screen space given some arbitrary range for the depth
buffer [zmin; zmax] (see figure 2).

M ′

i = Mi · C · C−1

proj , i ∈ {1, 2}









xi(s, t, q)
yi(s, t, q)
zi(s, t, q)
wi(s, t, q)









= M ′

i ·









s
t
q
1









(1)

The final texture coordinates are computed using the following equations:

fi(s, t, q) = xi(s, t, q)/wi(s, t, q)

gi(s, t, q) = yi(s, t, q)/wi(s, t, q)

The signed area covered by a screen space pixel in the texture maps can be
evaluated by the determinant of the Jacobian matrix of (fi, gi) with respect to
s and t (see figure 3).

J(fi, gi) =

[

dfi

ds
dfi

dt
dgi

ds
dgi

dt

]

=





dxi
ds

·wi−xi·
wi
ds

w2

i

dxi
dt

·wi−xi·
wi
dt

w2

i
dyi
ds

·wi−yi·
wi
ds

w2

i

dyi
dt

·wi−yi·
wi
dt

w2

i





4



t

s

(a) screen space.

g

f

(b) texture space.

Figure 3: Subfigure 3(a) shows the area of a single pixel in screen space. Subfig-
ure 3(b) illustrates the pixel after a transformation and projection into texture
space, this transformation also depends on the depth of the pixel in screen space.

det[J(fi, gi)] =
dfi

ds
· dgi

dt
− dgi

ds
· dfi

dt

=

(

dyi

ds
dwi

dt
− dwi

ds
dyi

dt

)

· xi +
(

dwi

ds
dxi

dt
− dxi

ds
dwi

dt

)

· yi +
(

dxi

ds
dyi

dt
− dyi

ds
dxi

dt

)

· zi

w3
i

We can simplify this equation a little by introducing the vector

−→ni =





dxi

ds
dyi

ds
dwi

ds



 ×





dxi

dt
dyi

dt
dwi

dt



 (2)

Let the symbol • denote the dot product between two vectors. Now the
signed area can be expressed as

det[J(fi, gi)] =
−→ni • (xi, yi, wi)

w3
i

Note that from (1) it follows that d
ds

(xi, yi, zi, wi) and d
dt

(xi, yi, zi, wi) are
equal to the first and second column of M ′

i .
It now follows that the test for largest sampling density can be done as:

|det[J(f1, g1)]| > |det[J(f2, g2)]|
⇔

|−→n1 • (x1, y1, w1)| · |w3
2| > |−→n2 • (x2, y2, w2)| · |w3

1| (3)

An important subtlety to acknowledge is (3) takes points of the form (s, t, q, 1)T

as input. However the inequality will work for a point even when the last com-
ponent is unequal to 1 since the effect of using it on such a point (s′, t′, q′, r′)T

5



corresponds to applying the inequality for (s′/r′, t′/r′, q′/r′, 1)T and scaling by
r′4 on both sides which is redundant.
This means given a transformation Mobj from some arbitrary object space to
world space, we can transform and test points from this object space without
having to make a stop in screen space to perform the divide. We do this by
using the transformation sequence

M ′

i · Cproj · C−1 · Mobj = Mi · Mobj

The vector −→ni is still derived from M ′

i and is constant. Now let us re-examine
M ′ = M ′

1 (the i will be omitted for now). We have M ′ = M · C · C−1

proj and let

A = M · C =









a b c d
e f g h
i j k l
m n o p









C−1

proj =









s′x 0 0 c′x
0 s′y 0 c′y
0 0 0 −1
0 0 k′

1 k′

2









M ′ = A · C−1

proj =









s′xa s′yb k′

1d c′xa + c′yb − c + k′

2d
s′xe s′yf k′

1h c′xe + c′yf − g + k′

2h
s′xi s′yj k′

1l c′xi + c′yj − k + k′

2l
s′xm s′yn k′

1p c′xm + c′yn − o + k′

2p









Given (2) we now have

−→n = −→n1 = s′x · s′y ·





a
e
m



 ×





b
f
n





and after evaluation of the first term in (3) we get

|−→n • (x, y, w)| =

∣

∣

∣

∣

∣

∣

∣

∣

[ −→n x
−→n y 0 −→n z

]

· M ′ ·









s
t
q
1









∣

∣

∣

∣

∣

∣

∣

∣

= |s′xs′y · (det(A33) · (k′

1q + k′

2) − det(A34))| (4)

The syntax Aij represents the 3 × 3 submatrix we obtain by removing the
ith row and the j th column. Thus it is clear the term only depends on q.

In the following section 3.2 the analysis will be focused on shadow mapping.

6



3.2 Shadow Mapping

In this section shadow map space will be analogous to texture map space (or
texture space) from section 3.1.

For a given constellation of a camera and a light we can evaluate a pair of
projection matrices Mi and Mj from world space to the shadow map (i, j ∈
{1, 2, 3, 4, 5} and i 6= j).

1. ssm , standard full light frustum shadow mapping

2. fsm , also standard but focused on the intersection between bounds.

3. tsm , trapezoidal shadow mapping

4. lispsm , light space perspective shadow mapping

5. psm , perspective shadow mapping

Let I be the intersection volume between the world bound, camera frustum
and light frustum. Generally for methods 2-5, the side-planes and back-plane
of the light frustum are placed tightly around I. Subsequently the near plane is
pushed forward until it reaches the intersection volume between this new light
frustum and the world bound. This completes the new light frustum, let V de-
note its volume (see figure 4). This process is what distinguishes fsm from ssm.

Theorem

For any such pair Mi and Mj , (3) is reduced to the point set on one side of a
plane equation. Furthermore the resulting plane contains the eye point of the
light.

Proof

This will be shown through examination of det(A33) and det(A34) for each of
the 5 methods. The proof will be divided into two parts, the first part will prove
the theorem for the first four methods and the second part will cover the last
of the five methods (psm).

Part 1:
The first four methods have roughly the same transformation sequence.

A = Nt · Lproj · B

The matrix B is the camera to light matrix and note that our only assumption
about B is that it has an inverse and that the bottom row is

[

0 0 0 1
]

.

B =









−→c1x
−→c2x

−→c3x tx−→c1y
−→c2y

−→c3y ty−→c1z
−→c2z

−→c3z tz
0 0 0 1









7



  World Bound

I

V

Light

Camera

Figure 4: The process of focusing a light on the intersection volume I between
bounds. The new light volume V is shown here in purple.

The matrix Lproj is the projection matrix into the light’s post-projective space.

Lproj =









rx 0 lx 0
0 ry ly 0
0 0 o1 o2

0 0 −1 0









The matrix Nt is a sequence of transformations which are designed to transform
a trapezoidal bound around I (possibly a sheared one depending on the imple-
mentation) into a nice quadratic square as seen from the light. This principle
is shared between tsm and lispsm. For ssm and fsm we will simply consider
the matrix Nt the identity matrix.
The steps involved in creating the transformation Nt are outlined in [Mart04]
and will not be explained here in detail.

It will now be shown that the matrix Nt is of the form

Nt =









k11 k12 0 k14

k21 k22 0 k24

k31 k32 k33 k34

k41 k42 0 k44









Notice that the product of two such matrices results in a matrix of the same
form. It just so happens that every matrix in the sequence of Nt is of this form.

8



Nt = T ′ · S · Nproj · T · R

The matrices T ′ and T are translations and S is a nonuniform scale. The
matrices on the left side T ′ and S are not part of the original definition of Nt

but have been added here to complete the transformation into unnormalized
coordinates. The matrix R is a rotation (2D) around the Z-axis and Nproj is a
projection along the Y-axis.

Nproj =









q11 q12 0 0
0 q22 0 q24

0 q32 q33 0
0 1 0 0









So they all comply and thus Nt is compliant with the form. In the case of fsm

or ssm, Nt is the identity which is also compliant. We can now take advantage
of the three zeros in the third column of Nt, fourth column of Lproj and the
fourth row of B.

A33 = Nt33 · Lproj34 · B43 ⇒ det(A33) = det(Nt33) · det(Lproj34) · det(B43)

A34 = Nt33 · Lproj34 · B44 ⇒ det(A34) = det(Nt33) · det(Lproj34) · det(B44)

Note that since B is the camera to light matrix we can obtain the position of

the light in camera space using B−1
[

0 0 0 1
]T

which after division by

w = 1 results in ℓ = B−1

44

[

−tx −ty −tz
]T

. It now follows that:

ℓz =



B−1

44





−tx
−ty
−tz









z

=
−(−→c1 ×−→c2)T

det(B44)





tx
ty
tz



 =
−det (B43)

det (B44)

And now we have det(A33) = −ℓz · det(A34) which by substitution will simplify
(4) further.

−→n • (x, y, w) = −s′xs′ydet(A34) · (ℓz(k
′

1q + k′

2) + 1) (5)

Now let M1 and M2 be two projection matrices evaluated by any of the first
four methods and let

A = M1 · C
A′ = M2 · C

We can now substitute (5) for A and A′ into (3) and obtain the following

|det(A34)||w3
2| > |det(A′

34)||w3
1|

9



In addition to this we can take advantage of the fact that given any of the five
listed shadow mapping methods we have ∀p ∈ V : w(p) > 0. Finally inequality
(3) is reduced to

| 3

√

det(A34)|w2 − | 3

√

det(A′

34)|w1 > 0 (6)

which is the point set entirely on one side of a plane equation. The fact that
the plane contains the eye point of the light is a result of the following:

Lproj ·









0
0
0
1









=









0
0
o2

0









So w = 0 for ssm and fsm. Given the known form of Nt this property also
holds for tsm and lispsm.

Nt ·









0
0
o2

0









=









0
0

k33o2

0









Part 2:
In the second part it will be shown that the proof still holds for the last method.
The exact details of the psm transformation sequence will not be explained here
but the concept of the method is to setup the light projection in post-projective
space of the camera, thereby increasing the quantity of shadow map pixels avail-
able near the camera eye point.
To allow psm to support the pull-back [Kozl04], instead of using the actual
projection Cproj , an initial translation T ′, followed by a variant C ′

proj is used.
This allows the frustum to be enlarged which gives you the freedom to tweak
the xy-distribution as seen from the light.

For psm the transformation sequence M from world space to shadow map
space is

M = Lproj · Q · C ′

proj · T ′ · C−1

and once again we evaluate A, that is the transformation from camera space to
shadow map space.

A = M · C = Lproj · Q · C ′

proj · T ′

The matrix Lproj is simply a chosen projection matrix into shadow map space
and the remaining matrix Q has the following form:

Q =









−→r1x
−→r1y

−→r1z t′x−→r2x
−→r2y

−→r2z t′y−→r3x
−→r3y

−→r3z t′z
0 0 0 1









10



Compared to the first four methods the transformation sequence is quite differ-
ent however as it turns out the same strategy, as that of the first part, can be
used to complete the proof.

As previously mentioned ℓ, is the eye of the light in camera space. The

position
[

tx ty tz
]T

is the same point transformed into the modified post-

projective space of the camera, that is (C ′

proj ·T ′)
[

ℓx ℓy ℓz 1
]T

(after the

divide). And additionally,
[

t′x t′y t′z
]T

= Q44

[

−tx −ty −tz
]T

so we
can split up Q accordingly.

Q =









1 0 0 t′x
0 1 0 t′y
0 0 1 t′z
0 0 0 1

















−→r1x
−→r1y

−→r1z 0
−→r2x

−→r2y
−→r2z 0

−→r3x
−→r3y

−→r3z 0
0 0 0 1









=









−→r1x
−→r1y

−→r1z 0
−→r2x

−→r2y
−→r2z 0

−→r3x
−→r3y

−→r3z 0
0 0 0 1

















1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1









The rows of Q44 are typically a reconstructed version of the light’s orientation.
It is, however, not a necessary limitation for this to work. We only demand that

Q44 has an inverse (and that
[

tx ty tz
]T

is as previously described). The
matrix Lproj is as mentioned a chosen projection matrix for the light with three
appropriate zeros in the last column.

C ′

proj =









sx 0 cx 0
0 sy cy 0
0 0 k1 k2

0 0 −1 0









T ′ =









1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1









N =









1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1









·C ′

proj ·T ′ =









sx 0 cx + tx sxpx + pz(cx + tx)
0 sy cy + ty sypy + pz(cy + ty)
0 0 k1 + tz k2 + pz(k1 + tz)
0 0 −1 −pz









We can now rewrite transformation A as

A = Lproj ·









−→r1x
−→r1y

−→r1z 0
−→r2x

−→r2y
−→r2z 0

−→r3x
−→r3y

−→r3z 0
0 0 0 1









· N

And similar to part 1, the distribution of zeros leads to

A33 = Lproj34 · Q44 · N43 ⇒ det(A33) = det(Lproj34) · det(Q44) · det(N43)

A34 = Lproj34 · Q44 · N44 ⇒ det(A34) = det(Lproj34) · det(Q44) · det(N44)

Now when evaluating (C ′

proj ·T ′)
[

ℓx ℓy ℓz 1
]T

we get tz = (−k1)+
−k2

pz+ℓz
.

11



This is used for evaluation of det(N43) and det(N44).

det(N44) = sxsy (k1 + tz) = sxsy

( −k2

pz + ℓz

)

det(N43) = sxsy (k2 + pz(k1 + tz)) = sxsy

(

k2 + pz

( −k2

pz + ℓz

))

= sxsy

(

k2ℓz

pz + ℓz

)

= −ℓz · det(N44)

And again, it follows that det(A33) = −ℓz · det(A34) which once again leads to
(5) and subsequently (6).

That w = 0 for the eye point of the light is clear since
(

Lproj

[

0 0 0 1
]T

)

w
=

0 and subsequently the proof is complete.

In the following sections 4 and 5 the theory will be put to good use.

4 Comparing undersampling

This section will explain the principle of undersampling comparison for projec-
tive textures in general. Let A and B be two independent 3 × 4 matrices used
for projective texturing, both are maps from camera space and into a space of
unnormalized texture coordinates. Let Cproj be the 4× 4 projection into screen
space. The transformations from screen space and into texture space become:

M ′

1 = A · C−1

proj

M ′

2 = B · C−1

proj

Let (s, t, q) 7→ (xi, yi, wi), i ∈ {1, 2} represent for a given input point the
resulting homogeneous coordinates in texture space and let (fi, gi) = (xi/wi, yi/wi)
be the final texture coordinates. The best sampling density test can be per-
formed using inequality (3) from section 3.1.
The terms xi, yi and wi are all linear maps and since −→ni is a constant vector,
−→ni • (xi, yi, wi) is a linear map too. This allows us to optimize by evaluating
wi and −→ni • (xi, yi, wi) at vertex shader level and then do the remainder of the
calculation at fragment shader level. Only a single interpolator of 4 floats is
required for this.

In section 5 we will use the additional analysis from section 3 on shadow
mapping specifically which reduces the comparison test even more.

5 The Separating Plane

This section compares the undersampling between five variants of shadow map-
ping. Now given one constellation of a camera and a light, let A and B be a

12



pair of 4 × 4 matrices evaluated by two different methods chosen from any of
the five following methods listed here. As in the previous section A and B are
maps from camera space.

1. ssm , standard full light frustum shadow mapping

2. fsm , also standard but focused on an intersection between bounds.

3. tsm , trapezoidal shadow mapping

4. lispsm , light space perspective shadow mapping

5. psm , perspective shadow mapping

Again let I and V be given as described in section 3.2 (see figure 4). Now
given such A and B it was shown in section 3 that for all points inside V
inequality (3) is reduced to the point set on one side of a plane equation.

(| 3

√

det(A34)|B4 − | 3

√

det(B34)|A4) ·









X
Y
Z
W









> 0 (7)

Here the syntax Ai denotes the ith row of the matrix A and Aij is the
3x3 submatrix obtained by removing the ith row and the j th column. The
coefficients in the first term of inequality (7) are those of a plane equation in
camera space (since A and B are transformations from camera space). If so
desired the plane can be transformed into some other space of preference using
the inverse transposed of the matrix. The vertices of the mesh can be inserted
into the plane equation in the vertex shader (or fragment shader) but the actual
test of the sign must be done in the fragment shader.

For all vertices inside the intersection between V and the plane, |det[J(f1, g1)]| =
|det[J(f2, g2)]| which means the area sampling density is the same for both maps
given such a point. This means for our choice of metric we get a continuous but
not necessarily smooth transition from one map to the other.

6 Optimization

The separating plane has an additional property which can be used to advantage
for further optimization. According to section 3, the plane contains the eye point
of the light. The effect of this is that the plane becomes a separating line in
the shadow map, which again means that if two models are on separate sides
of the plane, they will have no pixel overlap in the shadow map. This leads to
an elegant optimization which allows us to render an object only once if it is
entirely on one side of the plane, which will generally be the case.

Assuming we are applying the separating plane technique for fsm and for a
PSM based method, the plane will separate in such a way that the part of the
camera frustum close to the eye point will belong to the PSM based method and

13



Figure 5: This shows the intersection volume I as seen from the light source.
The separation plane in this space appears as the line ℓ. The region of I filled
with the color purple is where the two reduced focus regions overlap. This region
will appear on both shadow maps.

the part on the other side will always belong to the fsm. With this in mind an
additional optimization becomes possible: Instead of letting both methods be
derived from a focused view on all of I, they can alternatively focus on the part of
I which belongs to their side of the plane. Of course each time the focus regions
are changed, the transformations have to be re-evaluated and subsequently so
does the separation plane. The implementation of this paper does iterations
to find a suitable location for the plane and the focus regions. Convergence
appears to occur rapidly, 10-20 iterations are used for this implementation. In
the last iteration the plane equation is not recalculated, (unless the number of
iterations is set to 1) this is to make sure that the intersection between I and
the separating plane is entirely contained inside the current overlap between the
final two focus regions (see figure 5). This way it is still only necessary to check
which side of the plane a pixel/point is on to choose the right map.

7 Results

The method described in this paper was implemented for a point light source
and tested on fsm and psm.

For the implementation of psm no read back from the depth buffer is per-
formed (as explained in the original paper [Stamm02]), however, a pull-back
value similar to the description in [Wimm04] is used.

Additionally, the problem of a light source behind the camera is solved by
using the method described in [Kozl04]. The results of this paper are rendered
on an NV7800 into a 1280× 720 draw buffer and a 1024× 1024 shadow map for
fsm and psm is used.

For the case shown in figure 6 the recorded timings listed in table 1 show that
compared to psm, the penalty for introducing the separating plane algorithm
was roughly a 9% increase in execution time.

14



Figure 6: This scene shows two teapots entirely on the fsm side of the separating
plane, three torus knots entirely on the psm side and one torus knot which
intersects the plane and thus needs to be rendered into both maps.

Method time

Single shadow map psm 2148
psm & fsm combined 2340

Table 1: This table shows the execution time in microseconds

The result from ssm (non-view-dependent) can be seen in figure 7. To get
an idea of the scene setup a mesh of the camera frustum was rendered into
picture 7(b) which was taken from the light source.

All pixels in the following figures have either a red or blue tint, red means
better sampling density is achieved by sampling from the shadow map generated
by psm and blue means fsm provides a better result.

Figure 8 shows fsm and psm used separately. Clearly the red area of the
picture psm provides better results. A zoomed-in version of a blue section of a
shadow in the background is provided to show how fsm does a better job here.

A combination of the two methods as suggested by this paper can be seen
in figure 9. Subfigure 9(a) and 9(c) show the result of both maps focused on
all of I, and 9(b) and 9(d) are the result of spending 20 iterations on focusing
the maps on I at separate sides of the final separation plane. The iterations are
spent on analysis of only three input bounds, so this process is not expensive.

Figure 10 shows the result of the maps as seen from the light source. Al-
though some increase in quality for figure 9 can be seen, it does not appear
significant. Because the separating plane is close to the eye point, only a little

15



is cut off the focus region, thus giving only a slight improvement in the fsm re-
gion. Moreover, since the PSM based method has used up most of its pixels by
the time it reaches the separation plane, only little is gained by cutting off from
the focus region the part of I on the fsm side. Whether or not this optimization
is actually negligible depends on the size of I and the pull-back.

8 Conclusions

Given a focused standard shadow map and a perspective shadow mapping based
map, this paper presents a simple way to compute an exact separation plane
which divides the volume of the light into two parts. One part achieves better
area sampling density everywhere using the focused standard shadow map. The
second part achieves better results using the perspective shadow map. Using this
combination of shadow maps we achieved a significant improvement in shadow
quality, at little extra cost in performance.

The method introduces no new singularities but does to some extent inherit
the limitations known from the chosen PSM based method. If poor area sam-
pling density is found in both maps then as a consequence the quality of the
shadow will be poor. The approach provides only a method to make the better
choice at relatively low cost.

All vertices inside the intersection between the plane and the volume of the
light will achieve the same area sampling density in either map. This results in
a continuous (but not necessarily smooth) transition from one map to the other.

Furthermore, we have shown that this technique can be optimized so only
meshes which intersect the separation plane need to be rendered into both maps.
This allows most meshes inside the light’s volume to be rendered into just one
of the two maps.

As an additional optimization one can focus the two maps on separate sides
of the separation plane which provides a slight but possibly negligible increase
in quality of results.

Acknowledgments.
This author would like to thank Michael Wimmer for helpful discussions, and

Kasper H. Nielsen and Trine Mikkelsen for constructive comments and proof reading.

References

[Mart04] Martin, T., Tan, Tiow-Seng: ”Anti-aliasing and Continuity with Trapezoidal
Shadow Maps”, Eurographics Symposium on Rendering, pp. 153–160, 2004.

[Wimm04] Michael Wimmer, Daniel Scherzer, Werner Purgathofer: ”Light Space Per-
spective Shadow Maps”, orignally published at Eurographics Symposium on Ren-
dering, revised version June 10, 2005.

[Stamm02] Marc Stamminger, George Drettakis: ”Perspective Shadow Maps”, Com-
puter Graphics, SIGGRAPH 2002 Proceedings, pp. 557–562, 2002.

16



(a) ssm

(b) seen from the light source with superimposed camera volume

Figure 7: This shows the result of a non-view-dependent standard shadow map-
ping.

17



(a) fsm

(b) psm

(c) zoom in on fsm (d) zoom in on psm

Figure 8: This shows the result of fsm and psm used separately. psm provides
better results for the pixels (tinted in red) and fsm works better for things
further away (tinted in blue). Tinting is done by using the separation plane
test.

18



(a) combined, 1 iteration.

(b) combined, 20 iterations.

(c) zoom in on combined, 1 iteration. (d) zoom in on combined, 20 iterations.

Figure 9: This shows fsm and psm used together. Subfigure 9(a) shows the
result of both shadow maps focused on all of the intersection volume I. Subfigure
9(b) shows the result of focusing the maps on I at separate sides of the separation
plane. Subfigures 9(c) and 9(d) are blow ups of 9(a) and 9(b) respectively.

19



(a) fsm, 1 iteration. (b) fsm, 20 iterations.

(c) psm, 1 iteration. (d) psm, 20 iterations.

Figure 10: Here we see the results of fsm and psm as seen from the light
source. As shown here 10(b) and 10(d) are a bit more focused due to the
additional iterations.

20



[Lloyd05] Brandon Lloyd, Sung-eui Yoon, David Tuft, Dinesh Manocha: ”Subdivided
Shadow Maps”, Technical Report TR05-024, University of North Carolina at
Chapel Hill, 2005.

[Will78] Lance Williams: ”Casting curved shadows on curved surfaces”, Proceedings
of the 5th annual conference on Computer graphics and interactive techniques, p.
270–274

[Reev87] William T. Reeves, David H. Salesin, Robert L. Cook: ”Rendering an-
tialiased shadows with depth maps”, Proceedings of the 14th annual conference
on Computer graphics and interactive techniques, p. 283–291

[Crow77] Franklin C. Crow: ”Shadow algorithms for computer graphics”, Proceedings
of the 4th annual conference on Computer graphics and interactive techniques, p.
242–248

[Kozl04] Simon Kozlov: ”Perspective Shadow Maps: Care and Feeding”, GPU Gems:
Programming Techniques, Tips, and Tricks for Real-Time Graphics, p. 217–244

[Donn06] William Donnelly, Andrew Lauritzen: ”Variance Shadow Maps”, Proceed-
ings of the 2006 symposium on Interactive 3D graphics and games, p. 161 - 165

[Eric04] Eric Chan, Fredo Durand: ”An Efficient Hybrid Shadow Rendering Algo-
rithm”, Eurographics Symposium on Rendering, 2004.

[ffbg01] Randima Fernando, Sebastian Fernandez, Kavita Bala, Donald P. Greenberg:
”Adaptive Shadow Maps”, Computer Graphics, SIGGRAPH 2001 Proceedings.

[aaron05] Aaron Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, John
D. Owens: ”Dynamic Adaptive Shadow Maps on Graphics Hardware”, Technical
report, 2005.

21


