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Abstract

Recurrence of small clean image patches across differ-

ent scales of a natural image has been successfully used

for solving ill-posed problems in clean images (e.g., super-

resolution from a single image). In this paper we show how

this multi-scale property can be extended to solve ill-posed

problems under noisy conditions, such as image denoising.

While clean patches are obscured by severe noise in the

original scale of a noisy image, noise levels drop dramat-

ically at coarser image scales. This allows for the unknown

hidden clean patches to “naturally emerge” in some coarser

scale of the noisy image. We further show that patch recur-

rence across scales is strengthened when using directional

pyramids (that blur and subsample only in one direction).

Our statistical experiments show that for almost any noisy

image patch (more than 99%), there exists a “good” clean

version of itself at the same relative image coordinates in

some coarser scale of the image. This is a strong phe-

nomenon of noise-contaminated natural images, which can

serve as a strong prior for separating the signal from the

noise. Finally, incorporating this multi-scale prior into a

simple denoising algorithm yields state-of-the-art denois-

ing results.

1. Introduction

The goal of natural image denoising is to recover a clean

image I from its noise contaminated version IN . This prob-

lem has been studied intensively, with considerable progress

in recent years. A variety of methods have been proposed

to solve this ill-posed problem, including anisotropic de-

noising [1], various wavelet based techniques (e.g., [13]),

sparse dictionaries [5], and more. A leap improvement

in denoising has been obtained by [3], who introduced a

strong natural-image prior, which exploits the recurrence of

small image patches internally, within a natural image. This

has led to several advanced denoising algorithms, such as

BM3D [4] and LSSC [9]. External statistics of natural im-

age patches learned from large collections of clean images,

has also been used as priors for denoising. These include

methods like ‘Fields of Experts’ [14] and EPLL-GMM [17].

While the external methods benefit from a large space of

clean patches, the internal methods benefit from an image-

specific space of patches, which was shown by [16] to be

very powerful. As shown by [16] and further analyzed

by [12], external methods may suffer from noise-fitting

problems. In contrast a big challenge for internal meth-

ods is to aggregate enough noisy patches which share the

same underlying signal. This is particularly problematic

when large patches are used (often necessary in the pres-

ence of severe noise [4, 9, 17]). In this paper we propose

a new internal search space, which on one hand is image-

specific, yet, contains clean patches – the space of coarse

patches of the noisy image.

We present a strong multi-scale prior for solving ill-

posed problems under severe noise, which is based on the

recurrence of small patches across different scales of a natu-

ral image (where a coarser image scale is generated by blur-

ring & subsampling the image). Most patch-based denois-

ing methods perform deniosing by exploiting patch repe-

titions within the same scale, whereas our prior suggests

to use patch repetitions across different scales. While re-

currence of patches within the original scale of the noisy

images preserves their noise levels, recurrence of patches

across different image scales does not: Noise levels reduce

dramatically in coarser image scales, thus allowing for the

’clean’ signal patches to ‘naturally emerge’ at those scales.

It was previously shown [7, 16] that small patches in

clean natural images tend to recur across image scales.

By “patch recurrence” we mean that a small patch (e.g.,

5 × 5) re-appears “as is” (without any spatial transforma-

tion) in coarser versions of the image (see Fig. 1.a). This

observation was successfully used for single-image Super-

Resolution [7, 6]. It was further shown by [6] that due to

local scale invariance in natural images, patches tend to re-

cur at coarser image scales at similar relative image coordi-

nates as in the fine scale.

We show that these natural-image properties can be ex-

ploited for “pulling out” cleaner versions of the signal from

coarser scales of the noisy image (see Fig. 1.b), each patch

from a different appropriate scale. It is further noted that

for some patches (especially edge patches), the cross-scale

recurrence property is strengthened when using directional

pyramids (that blur and subsample only in one direction).

Surprisingly, our experiments indicate that with very
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The local scale-invariance property of Since the noise drops dramatically with scale, the clean patches

small patches in clean natural images naturally “emerge” at coarser pyramid levels of the noisy image

Figure 1. (a) A clean image and its coarser version at 1/3 the scale. (b) A noisy image (σ = 25) and its coarser version at 1/3 the

scale. We display the 5 × 5 patches at the same relative coordinates in all 4 images (i.e., the 5 × 5 patch centered at (x0, y0) in the fine

scales, and the 5× 5 patch centered at (x0/3, y0/3) in the coarse scales). There is strong similarity between corresponding 5× 5 patches

across-scale in the clean image. Note that the patch at the coarse scale of the noisy image is also very similar to the clean patch.

high probability, for every noisy patch, a very good repre-

sentative of its unknown clean patch resides within a small

set of 60 patches (all its 5×5 descendant patches at the same

relative image coordinates). This gives rise to a very strong

prior for solving ill-posed problems under severe noise.

Finally, incorporating this multi-scale prior into a simple

denoising algorithm, yields results better than state-of-the-

art methods, especially for high noise levels. This is despite

the fact that we use only small 5× 5 patches.

Note that the term “multi-scale denoising” of [10, 2]

refers to a different notion – using patches of different

sizes from various locations within the image. The multi-

scale property we exploit here is the “fractal-like” scale in-

variance property of natural images, namely, recurrence of

small patches of a fixed size (e.g., 5× 5) at the same image

location across pyramid scales.

We believe that this prior has applications beyond de-

noising. It can potentially serve as a strong prior for solv-

ing other ill-posed problems in the presence of severe noise

(e.g., edge-detection in noisy images, super-resolution un-

der noisy conditions, etc.)

The rest of the paper is organized as follows. In sec. 2

we analyze and quantify the local cross-scale emergence of

clean patches in noisy images, and show that this is a very

strong phenomenon. We further show that patch recurrence

across scales is strengthened when using directional pyra-

mids. Sec. 3 proposes an approach for finding the “best”

coarser patch for any noisy patch in a noisy image, and dis-

cusses its limitations. Sec. 4 proposes a very simple de-

noising algorithm which exploits this multi-scale prior, pro-

viding state-of-the-art denoising results (especially for high

noise levels). Examples and results are provided in Sec. 5.

2. Statistics of Clean Patches in Noisy Images

We demonstrate how the local scale-invariance property

of small patches in natural images (Fig. 1.a) can be used

for “pulling out” cleaner versions of the signal from coarser

scales of the noisy image (Fig. 1.b). We first extend the

notion of ‘pyramids’ from the standard isotropic pyramid to

directional pyramids. We then show that patch recurrence

across scale is further strengthened when using directional

pyramids. These ideas are illustrated in Fig. 2.

We generate a directional pyramid by blurring and sub-

sampling the image only in one direction. This is different

from the commonly used isotropic image pyramid, which

preserves the aspect ratio, as well as from the Steerable

Pyramid [15], which applies 1D directional filtering, but

subsamples the image in both directions. For some patches

(especially edge patches), the cross-scale recurrence prop-

erty is strengthened when using directional pyramids. In

particular, very thin edges which tend to disappear at low

scales of the isotropic (or steerable) pyramid, are preserved

well by our directional pyramids. Fig. 2 graphically illus-

trates the idea. The ‘hidden’ clean patches are obscured

by noise at the original input image scale. However, these

(unknown) clean patches recur at coarser image scales, at

the same relative image coordinates. Since the noise level

drops dramatically at coarser image scales (see Fig. 2.b), the

unknown clean patches naturally emerge at some coarser

pyramid levels. Note that although the directional pyramids

change the aspect ratio of the image, the patches compared

across scales remain of the same size and shape (square 5×5
patches) in all scales.

We next explore how strong this scale-invariance phe-
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(a)

(b) (c)

Figure 2. Scale invariance in “Directional Pyramids”. (a) The

3 pyramids. (b) The drop in noise variance σ2 as a function

of the pyramid scale (empirically evaluated from many random-

Gaussian-noise images). (c) Examples of noisy patches and their

corresponding clean patches ‘emerging’ at coarse pyramid scales.

Patches are marked in (a) and magnified in (c): The noisy hor-

izontal (red) and vertical (green) edge patches have correspond-

ing clean patches at coarse scales of the respective directional-

pyramid (at the same relative coordinates). The noisy uniform

patch (cyan) has a clean patch at coarse scales of the Iso-pyramid.

nomenon is in noisy images. Namely: (i) How many 5× 5
patches in a noisy image have a good clean representative

patch of the clean patch in a coarser scale of the noisy im-

age? and, (ii) How ‘good’ is this representative patch? (i.e.,

how similar to the ground-truth clean patch?)

We show that statistically this is indeed a very strong

phenomenon of noisy images. In fact, as will be shown, the

vast majority of image patches (more than 99%) will benefit

significantly from going down in scale, and will have a very

good representative patch directly below them, at the same

relative image coordinates (i.e., on the ‘needle’ of their de-

scendant patches – see Fig. 3).

The experiments described below were performed on

hundreds of noise-contaminated natural images. Clean im-

ages (size 320x480) were taken from the Berkeley Segmen-

tation Database, which contains a variety of scenes: natu-

ral, man-made, indoor, outdoor. Each clean image I (con-

verted to grayscale) was first contaminated by Gaussian

noise with zero mean and variance σ2, resulting in a noisy

image IN = I + N . We then generated from IN three

(a) (b)

Figure 3. The multi-scale ‘needle’ of patches. Each noisy patch

pN has a needle in all 3 pyramids (illustrated here only for the

Isotropic pyramid). (a) All the patches along the needle of the

noisy patch are at the same relative image coordinates. Initially

the patches get better (cleaner), but eventually new structures en-

ter the patch. The “best” representative patch on the needle is

marked in orange. (b) Zooming in on the descendant patches

{pNsc} along the needle (sc = 1, .., 0.1).

types of pyramids: (i) Isotropic pyramid (blur and subsam-

ple1 both in x and in y), (ii) X-pyramid (blur and subsample

only in the x direction), and (iii) Y-pyramid (blur and sub-

sample only in the y direction) – see Fig. 2. Each pyramid

is a cascade of images {INsc} of gradually decreasing scales,

generated by scaling down the noisy image IN using scale

factors of sc = 0.9s (s = 0, 1, .., 20). The smallest scale

was sc = 0.920 ≈ 0.1 of the original image IN .

Each clean 5 × 5 patch p from the clean image I was

compared against the noisy 5 × 5 patches pNsc in each of

the three noisy pyramids, but only along its ‘needle of de-

scendants’ – at the same relative image coordinates in the

coarser scales (see Fig 3). Namely, if (x, y) are the coor-

dinate of the clean 5 × 5 patch p (and the noisy patch pN ),

then for each scale sc = 0.9s we compare p only against the

5 × 5 patch pNsc whose coordinates are: (i) (0.9sx, 0.9sy)
in the Isotropic-pyramid, (ii) (0.9sx, y) in the X-pyramid,

(iii) (x, 0.9sy) in the Y-pyramid. Among these descendant

patches {pNsc} (sc = 1, .., 0.1), we chose the one which min-

imizes errsc = ||p−pNsc|| as the “best” representative of the

clean patch p.

Fig. 4 visually displays the resulting image when each

patch in the noisy image is replaced by its single “best”

descendant 5 × 5 patch pNsc along its needle. (Overlaps be-

tween neighboring patches were simply averaged.) It is evi-

dent that the resulting image is significantly cleaner than the

noisy input. In fact, it is significantly cleaner (has signifi-

cantly larger PSNR2) than what can be achieved by today’s

state-of-the art denoising algorithms (see PSNR compar-

isons in Fig. 8). Note that this is not a denoising algorithm,

since we used the original clean image to guide the selection

of patches. However, those patches were selected from the

pyramid of the noisy image; no additional processing was

1using Matlab “imresize” with a bicubic kernel
2PSNR= 20 log10(255/σ), stands for “Peak Signal to Noise Ratio”.
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(a) Noisy image IN ⇒ “Oracle Image” (b) Top: Noisy image IN

composed of coarse patches Bottom: “Oracle Image”

of the noisy image IN

Figure 4. The “Oracle image”. Noisy images (man-made & natural scenes), and their corresponding ‘Oracle’ images – generated by

replacing each noisy patch with its ‘best’ descendant patch along its limited ’multi-scale needle’ in the noisy image pyramid (see text).

done to improve the resulting image; only a single patch

was selected, and in a very limited search space – only along

the multi-scale ‘needle’ descending from the noisy patch.

We refer to this as the “Oracle image”. This clearly indi-

cates that the information is there. A cleaner patch exists

at a coarser pyramid level of the noisy image, somewhere

directly ‘underneath’ the noisy patch, at the same relative

image coordinates.

This is quite surprising. Note that the Oracle selection is

restricted to an extremely limited search range, namely: For

each noisy patch, select one of 60 ‘candidate’ patches (20
patches on its needle × 3 pyramids). This is a tiny search-

space relative to the huge theoretical space of all possible

5× 5 patches (25625, assuming 256 graylevels), or relative

to the huge space of all natural clean image patches, or even

relative to the space of all patches within the noisy image

(hundreds of thousand of patches, all of which are noisy).

We ran the above Oracle experiment on a hundred nat-

ural images, repeatedly for different noise levels (σ =
15, 25, 35, 45, 55, 75). The quantitative observations re-

ported below were averaged over all the images. Average

PSNR values of the Oracle images are shown in Fig. 8, and

are well beyond the bounds of today’s denoising algorithms.

Fig. 5.a shows the mean and variance of the “best scales”

(those corresponding to the “best patches”) as a function of

the noise level σ in IN . As can be seen, for most noisy

patches, the good representative patches tend to be in rela-

tively low scales. Moreover, these ‘optimal scales’ tend to

further decrease as the noise level goes up. This behavior

is quite intuitive, as there is a tradeoff between two fac-

tors: On one hand, we introduce more inaccuracies in the

clean signal as we go down the scale (increasing ‘bias’). On

the other hand, the noise levels drop dramatically as we go

down the scales (decreasing variance). The total patch er-

ror is the sum of these two factors: the signal error plus the

noise (bias/variance tradeoff). This is illustrated in Fig. 6.b.

Therefore, when there is no noise (σ = 0, IN = I), it is

best to stay at finest scale. However, as the noise gets larger,

there is growing benefit in going down the scales.

Fig. 5.b shows the distribution of “best patches” across

pyramids. Extremely few patches prefer to stay at the top

scale (e.g., 0.7% for σ = 25). The majority of patches

prefer the Isotropic pyramid (65% for σ = 25). These are

mostly smooth patches (which are a large majority of the

image). The remaining patches (mostly edges and smooth

patches near the edges) prefer the directional pyramids

(19% prefer the x-pyramid and 15% prefer the y-pyramid

for σ = 25).

Note that diagonal edges and textured areas tend to have

larger errors in the Oracle image than other parts (e.g., see

the pole in the water in the lower left part of Fig. 4). This

is due to using directional pyramids only in the X and Y di-

rections. Adding directional pyramids at various other an-

gles is bound to improve the resulting image, both visually
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(a) ‘Best scale’ vs. σ (b) Patch distribution

across pyramids

Figure 5. Quantitative observations. Statistics accumulated on

100 natural images, repeated with different added noise levels

(σ = 15, 25, 35, 45, 55, 75).

and numerically. In Sec. 4 we explain how the directional

pyramids can be extended to arbitrary angles, to provide

better representatives for arbitrary patch orientations. Nev-

ertheless, most oriented patches still manage to find reason-

able representatives in coarse levels of the isotropic pyramid

(e.g., see the diagonal patch in Fig. 1). Hence, the above 3

pyramids alone (with their very limited search space) al-

ready provide a good representation of the clean image,

with very low errors.

It is important to note that the “best” Oracle patch (the

“best” patch along the the multi-scale ‘needle’) is not neces-

sarily the best ‘Nearest Neighbor’ (NN) of the clean patch.

In fact, it is most likely that the best NN of the clean patch

resides elsewhere in the noisy pyramid. Moreover, a better

representative can surely be found in a huge collection of

clean natural patches. Nevertheless, what our experiments

indicate is that there exists a very good representative of the

clean patch in a tiny well-defined search space: one of 60
patches. This can give rise to a very strong prior for solving

ill-posed problems under severe noise. In Sec. 4 we propose

a somewhat naive algorithm which exploits such a prior in

the context of image denoising. Although simple, this al-

gorithm obtains state-of-the-art denoising results. Yet, it is

still very far from the Oracle performance. Incorporating

such a prior into more sophisticated denoising algorithms

(e.g., [4, 9, 17]) is likely to lead to further improvements.

3. Estimating the Multi-Scale Patch Errors

To mimic the oracle, we wish to estimate the mean

squared error (MSE) between the clean patch p and each

of the noisy patches along its corresponding ’multi-scale

needle’ in the noisy pyramid. The problem is that we do

not have the original clean patch p, only its noisy version

pN . We next show how the MSE errors with respect to the

unknown clean patch p can be estimated using pN .

Let pN = p+ n be the noisy patch, where n ∼ N(0, σ2)
is assumed to be Gaussian noise (i.i.d. with zero mean and

known variance σ2). Let pNsc = psc + nsc denote a coarse-

scale patch along the ‘multi-scale needle’ of pN , where psc

denotes the coarser version of the clean patch p, and nsc is

a coarser version of the original noise n (at scale “sc”). We

next show how to estimate ||p− pNsc|| using pN :

|| pN
︸︷︷︸

p + n

−pNsc||
2 = ||p− pNsc||

2 + ||n||2 + 2 < p− pNsc, n >

⇒ ||p−pNsc||
2 = ||pN−pNsc||

2−||n||2−2 < p−pNsc, n > (1)

The first term on the right-hand side, ||pN − pNsc||
2, can be

calculated from the noisy input image and its coarse-scale

version. The exact noise realization in each patch is not

known. Instead, we use the expected values of the second

and third terms: E[||n||2] + 2E[< p − pNsc, n >]. n ∼
N(0, σ2) , therefore E[||n||2] = M2σ2, for an M × M
patch. The expected value of the third term is

E[< p− pNsc
︸︷︷︸

psc + nsc

, n >] = E[< p−psc, n >]−E[< nsc, n >] (2)

The noise n is independent of the clean patch p and its

coarser patches psc, therefore E < p − psc, n >= 0.

On the other hand, E < nsc, n > �= 0, due to cor-

relations across scales introduced in the downscaling

process. These correlations can be either calculated

empirically (averaged over hundreds of pure random noise

realizations), or derived analytically (see derivation in the

www.wisdom.weizmann.ac.il/~vision/MultiScaleDenoising.html).

These noise correlations decrease as the scale gets coarser.

Therefore, the error of the noisy coarse-scale patch pNsc with

respect to the unknown clean patch p can be estimated by:

||p−pNsc||
2
Estimate � ||pN−pNsc||

2−M2σ2+2E[< nsc, n >]
(3)

We next show how the estimate in Eq. 3 can be exploited

for image denoising.

4. Using the Multi-Scale Prior for Denoising

If the error estimations in Eq. (3) were exact, then we

would practically be done. All we would need to do is

the following: For each noisy patch pN , estimate the er-

rors ||p− pNsc||
2 for all the patches pNsc along its ‘multi-scale

needle’ in the 3 pyramids (a total of 60 patches). Among

these, the patch most similar to the (unknown) clean patch

p is: p̃Nsc = argminsc ||p− pNsc||
2
Estimate

Such a procedure would yield exact ‘Oracle’ performance.

However, Eq. (3) is only an approximation of Eq. (1).

It assumes an average noise behavior for all patches in the

image. Thus, for example, if the empirical noise variance

within a specific patch deviates from the expected variance

σ2 (as is frequently the case – see Fig. 6.a), this will result

in inaccurate error estimation. E.g., if the actual (empir-

ical) noise variance is larger than σ2, the estimated ‘opti-

mal scale’ will be higher than the true ‘optimal scale’ (see

Fig. 6.b). To account for such deviations, we consider all

patches, whose estimated error lies within a small margin C
around Errmin, as good “Best-Patch” candidates for pN :
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(a) Varying patch noise levels for Gausian noise N(0, σ2)

(b) Optimizing the trade-off between 2 factors:

PRESERVING SIGNAL & REDUCING NOISE

Figure 6. Deviation in noise variance, and its effect on Optimal-

Scale estimation: (a) Noise variance in 5x5 patches often deviates

from the expected σ2. (b) Errors are introduced into the clean sig-

nal as the image scale decreases (increasing ‘bias’ - illustrated

schematically; the signal degradation is patch-specific). On the

other hand, noise levels drop dramatically with scale (decreas-

ing variance). The total patch error is the sum of these two fac-

tors (bias/variance tradeoff). Not knowing the true noise variance

within a patch may lead to inaccurate estimation of its Best-Scale.

G(pN ) � {pNsc | ||p− pNsc||Estimate < C · Errmin},

where Errmin = minsc ||p − pNsc||Estimate, and C = 1.1
(i.e., a margin of 10% on the estimated error). Our algo-

rithm boils down to simple averaging of all the ‘good’ rep-

resentatives of pN in the set G(pN ), to obtain an estimate

of its clean patch p.

Note that the ‘good’ representative set G(pN ) may con-

tain patches from all pyramids. However, for oriented

patches, this set will be dominated by patches from the

‘correct’ directional-pyramid. This is because an edge that

is blurred and subsampled in the ‘wrong’ direction, will

change its orientation with scale. This leads to very few

good matches across scales in a wrongly-oriented pyramid.

In contrast, the signal in an edge-patch within the correct

directional pyramid is better preserved. Hence, the number

of good representative patches (with small estimated error)

from this pyramid will be higher, leading to automatic em-

phasis of this direction in the patch averaging.

Figure 7 illustrates this idea. For each 5× 5 noisy patch

pN in an image with severe noise (σ = 35), we estimate

its set G(pN ) of ‘good’ representative patches. The cen-

ter pixel of pN is colored by the ‘preferred’ directional-

(a) Preference among 3 pyramids Colorbar

(Isotropic, X-pyr and Y-pyr)

(b) Preference among 17 pyramids

(Isotropic + 16 directional pyramids)

Figure 7. Preferred Directional-Pyramid: The preferred pyra-

mid estimated by the algorithm for each 5×5 noisy patch (shown

for a very noisy version of the image of Fig. 2 , with σnoise = 35).

pyramid for that patch (i.e., the pyramid that has the largest

number of patch representatives in G(pN )). Figure 7.a dis-

plays the result for 3 pyramids (Isotropic, X-pyr, and Y-pyr).

Note that the horizontal edges (e.g., the elongated edges on

the windows) prefer the X-directional pyramid, while verti-

cal edges prefer Y-directional pyramid. Large uniform re-

gions prefer the Isotropic pyramid. Uniform regions nearby

edges benefit more from the directional pyramids.

However, oriented edges in other directions are not rep-

resented well enough by the 3 pyramids. For example, the

shoulders of the man or the diagonal sides of the car, do not

benefit from either the X or Y directional pyramid. These

prefer the Isotropic pyramid (although not optimal, at least

it does not change their orientation). We next show how

directional pyramids can be extended to more directions,

allowing better representation of edges in various angles.

Extension to additional directional pyramids: An edge

of angle θ will obviously benefit most from blurring and

subsampling in the direction θ. For any arbitrary angle θ,

we can generate a θ-directional pyramid as follows: (i) Ro-

tate the image by −θ. (ii) Generate an X-pyramid from

the rotated image (by blurring and subsampling in the x-

direction). (iii) Rotate each pyramid level back by θ.

We extended the denoising algorithm to employ 17 pyra-

mids: 16 directional pyramids and an Isotropic pyramid.

The 16 directions were taken at equal angular gaps of

∆θ = 180◦/16 = 11.25◦. Although the use of 17 pyramids

increases the search space of possible solutions, this does
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σnoise Ours BM3D [4] LSSC [9] EPLL [17]

15 30.93 30.87 31.05 30.99

25 28.49 28.35 28.46 28.47

35 27.04 26.9 26.98 26.98

45 26.03 25.82 25.9 25.93

55 25.25 25.11 25.11 25.13

75 24.12 24.07 23.93 23.97

Table 1. Average PSNR values (dB) on 100 images with additive

Gaussian noise (σ = 15, 25, 35, 45, 55, 75).

not weaken our algorithm. On the contrary, it improves its

performance. Many more edge directions now have an op-

timal pyramid, which preserves the edge in the respective

direction. Such a pyramid also provides the largest num-

ber of ‘good’ candidate patches in G(pN ) for denoising.

Figure 7.b displays for each noisy patch its pyramid pref-

erence among 17 pyramids. The diagonal edges that ear-

lier preferred the Isotropic pyramid, now prefer new direc-

tional pyramids in their respective directions. On average,

denoising with 17 pyramids achieves an increase in PSNR

of 0.1− 0.2 dB relative to 3 pyramids.

Removing small residual noise: The main purpose of

averaging representative patches in G(pN ), is to form a ma-

jority vote to the correct directional pyramid. These repre-

sentative patches are already quite clean (as they come from

coarse scales), but may still have small residual noise. The

above averaging will not remove this noise, since patches

from nearby scales of the same pyramid tend to have corre-

lated noise.

However, patch similarity exists not only across scales,

but also within scales. Patches in the same scale have very

little noise correlation (observed and used by many denois-

ing methods). Thus, to further improve the quality of the

representative patches, we perform simple localized denois-

ing of the representative patches of G(pN ) within-their own

coarse scale. While the original image scale contains se-

vere noise, the noise level is dramatically reduced in the

coarse scale. Therefore, even a simple denoising method

like Non-Local Means (NLM) [3] is capable of removing

small residual noise at such scales. Each 5 × 5 representa-

tive patch in G(pN ) is thus cleaned using a very localized

NLM (restricted to a small neighborhood of radius 3 around

the patch) within its own coarse scale3

5. Experiments and Results

We evaluated our algorithm on 100 natural images

from the Berkeley Segmentation Test Database (BSD),

contaminated with additive Gaussian noise (with

σ = 15, 25, 35, 45, 55, 75). Figure 8 and Table 1 show

PSNR comparisons of several algorithms: (a) Our algo-

rithm (17 pyramids); (b) BM3D [4]; (c) EPLL-GMM [17];

3The same neighborhood size is used for all scales and all noise levels.

The σ (assumed noise level) drops as a function of the scale (Fig 2 b.).

Figure 8. Denoising results: Comparison of denoising algorithms

on 100 noisy images (for σ = 15, 25, 35, 45, 55, 75). The black

dashed line shows the ‘Oracle’ upper-bound. Our method exploits

the multi-scale prior, providing state-of-the-art results, especially

for larger noise levels. However, it is still far from the Oracle.

(d) LSSC [9]; (e) NLM (using the implementation of

www.ipol.im/pub/art/2011/bcm nlm). (b)-(d) are

the current state-of the art; we used the implemen-

tations provided by the authors. Some comparative

visual results can also be viewed in Fig. 9 and in the

www.wisdom.weizmann.ac.il/~vision/MultiScaleDenoising.html.

Although simple, our algorithm achieves comparable

and even slightly better results than state-of-the-art, espe-

cially at high noise levels (σ ≥ 35). E.g., it achieves

0.12 db improvement over state-of-the-art for σ = 55. This

is particularly surprising given that our algorithm uses only

small 5x5 patches for all noise levels, whereas other meth-

ods need larger patches for higher noise (e.g., [4, 9] use

12x12 patches for σ=40). Moreover, [8] shows that under

generic priors, “results of BM3D are already close to opti-

mality, and cannot be further improved beyond 0.1 dB val-

ues.” They predict poor denoising performance when using

small patches in presence of severe noise. Our algorithm

improves over BM3D by 0.19 dB for σ=45 (0.14 dB, σ=55),

despite using 5x5 patches. This indicates the power of our

local multi-scale prior (in contrast to more global priors).

Note that the initial image size limits the number of pos-

sible pyramid scales. Despite the fact that we ran our exper-

iments on relatively small images (320× 480), we obtained

state-of-the art results. Applying the algorithm to larger im-

ages may lead to further improvement. Similarly, combin-

ing our multi-scale prior with more sophisticated denoising

methods (e.g., [4, 9, 17]) may lead to further improvement.

Finally, although our algorithm assumes additive Gaus-

sian noise (as do [3, 4, 17, 9]), we checked its per-

formance on other types of noise, with encouraging re-

sults: Poisson (multiplicative noise) and Poisson-Gaussian

(a mixture of multiplicative and additive noise; consid-

ered more realistic but more difficult). We used the

procedure suggested by [11], which first transforms the

11991199119912011201



(a) Original (b) Noisy (c) LSSC [9] (d) BM3D [4] (e) EPLL [17] (f) Ours

Figure 9. Visual comparisons of denoising results. More examples - www.wisdom.weizmann.ac.il/~vision/MultiScaleDenoising.html

noisy image to an additive-like domain, and applies the

denoising algorithm in that domain. On the BSD im-

ages contaminated with Poisson-Gaussian noise, we ob-

tained the following average PSNR results: For peak=60,

σ=6: 27dB (Ours), 26.84dB [4], (26.86dB) [9] and

(26.92dB) [17]. For peak=20, σ=2: 25.76dB (Ours),

25.63dB [4], (25.32dB) [9] and (25.54dB) [17]. The same

procedure was used for all methods.

6. Summary

We present a strong multi-scale prior for solving ill-

posed problems under severe noise: We observe that almost

every noisy image patch has a clean version of itself hid-

ing in some coarser scale of the image, at the same relative

image coordinates. This restrictive search space forms a

strong prior for separating the signal from the noise. Incor-

porating this prior into a simple denoising algorithm (simple

averaging of a few coarse patches) yields state-of-the-art de-

noising results. This is especially true for high noise levels,

despite using small 5× 5 patches. This indicates the power

and potential of the multi-scale prior. Combining this prior

with more sophisticated denoising methods is likely to lead

to further improvement. Finally, beyond denoising, we be-

lieve this can serve as a strong prior for other ill-posed prob-

lems, like edge-detection in noisy images, super-resolution

in presence of noise, and more.
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