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SEPARATING THE POWER OF MONOTONE SPAN PROGRAMS

OVER DIFFERENT FIELDS∗

AMOS BEIMEL† AND ENAV WEINREB‡

Abstract. Monotone span programs are a linear-algebraic model of computation. They are
equivalent to linear secret sharing schemes and have various applications in cryptography and com-
plexity. A fundamental question is how the choice of the field in which the algebraic operations
are performed effects the power of the span program. In this paper we prove that the power of
monotone span programs over finite fields of different characteristics is incomparable; we show a
super-polynomial separation between any two fields with different characteristics, answering an open
problem of Pudlák and Sgall 1998. Using this result we prove a super-polynomial lower bound for
monotone span programs for a function in uniform −NC2 (and therefore in P), answering an open
problem of Babai, Wigderson, and Gál 1999. (All previous super-polynomial lower bounds for mono-
tone span programs were for functions not known to be in P.) Finally, we show that quasi-linear
secret sharing schemes, a generalization of linear secret sharing schemes introduced in Beimel and
Ishai 2001, are stronger than linear secret sharing schemes. In particular, this proves, without any
assumptions, that non-linear secret sharing schemes are more efficient than linear secret sharing
schemes.

Key words. Monotone span programs, Algebraic models of computation, Lower bounds, Secret
sharing

AMS subject classifications. 68Q05, 68Q17, 68R05, 68Q70

1. Introduction. The relation between computational complexity and linear
algebra is an important research direction with two main avenues. On one hand,
algebraic techniques were used to prove lower bounds in combinatorics [1, 15, 17] and
complexity, e.g., [27, 20, 24]. On the other hand, algebraic computational models,
which capture the essence of linear algebra, were defined. Such models include, for
example, arithmetic circuits, Boolean circuits with MODp gates, and the Blum-Shub-
Smale model of computation [9].

In this paper we discuss the algebraic computational model of span programs,
introduced by Karchmer and Wigderson [18]. Intuitively, span programs capture
the power of basic linear algebraic operations—the rank and dependency of a set of
vectors. More specifically, a monotone span program is presented as a matrix over
some field, with rows labelled by variables. The span program accepts an input if the
rows whose variables are satisfied by the input span a fixed nonzero vector. The size
of a span program is its number of rows. A detailed definition is given in §2.

This paper deals with the role of the field in algebraic models of computation. Part
of the specification of algebraic models of computation, in particular span programs,
is the field in which the arithmetic operations are performed. A fundamental question
is how the choice of the field, and especially its characteristic, effects the power of
the model. As different fields may differ substantially in their structure, especially
when the characteristics of the fields are different, it would be natural to expect
computational models defined over different fields to differ significantly in their power.
A major result separating the power of algebraic models of computation over different
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2 A. BEIMEL AND E. WEINREB

fields was the seminal paper by Smolensky for bounded depth circuits with MODp

gates [27]. Lower bounds related to the characteristic of the field are also known for
polynomial calculus proofs [6]. However, the power of the field in algebraic models of
computation is yet to be fully understood.

Our Results. The main contribution of this paper is showing that the power of
monotone span programs over finite fields of different characteristic is incomparable.
Prior to this work, the best separation known for monotone span programs, was a
logarithmic separation for the threshold function [18].1 In this paper we show a super-
polynomial separation between any two fields with different characteristics, answering
an open problem of [23]. That is, for every fixed prime number p we describe a function
which has a small monotone span program over the field with p elements, but requires
a monotone span program of size nΩ(

√
log n) over any field whose characteristic is not

p (including fields with characteristic 0).

Our second contribution concerns the functions for which lower bounds for mono-
tone span programs have been proved. The best known lower bound for monotone
span programs, proved by Gál [13], is nΩ(log n) (improving previous results of [3, 2]).
However, all the known super-polynomial lower bounds [2, 13, 14] were for functions

in NP, not known to be in P. We show a lower bound of nΩ(
√

log n) for a function in
uniform −NC2 (and therefore in P), thus answering an open problem of [2].2

Our third contribution concerns secret sharing schemes, which are an important
tool in cryptography, introduced by Blakley [8], Shamir [25], and Ito, Saito, and
Nishizeki [16]. A secret sharing scheme enables a dealer to share a secret among
a set of parties, such that only some pre-defined authorized subsets will be able
to reconstruct the secret from their shares. The authorized sets correspond to a
monotone Boolean function f : {0, 1}n → {0, 1}, where n is the number of parties
and the authorized subsets are the subsets with their characteristic vectors in f−1(1).
The efficiency of a secret sharing scheme is the overall size of the shares given to
the parties. Monotone span programs are equivalent to a subclass of secret sharing
schemes called “linear secret sharing schemes.” Monotone span programs were also
used in other cryptographic applications, e.g., [22, 11]. Beimel and Ishai [4] showed
functions that, under plausible assumptions, have no efficient linear secret sharing
scheme but yet have an efficient non-linear secret sharing scheme. Furthermore, they
introduced the class of quasi-linear secret sharing schemes. In this paper we show that
quasi-linear secret sharing schemes are stronger than linear schemes. In particular,
this proves, without any assumptions, that non-linear schemes are more efficient than
linear schemes.

Highlights of the Techniques. Proving a separation between the power of two
models of computation requires a function with both a lower bound for one model, and
an upper bound for the other. To get the lower bound for monotone span program over
a certain field, we use the method of [13], which is based on [24]. In the center of Gál’s
method is a matrix whose rank over the field is much larger than its combinatorial
cover number. To get the upper bound for the same function for monotone span
programs over another field, we require that the cover has an additional property
which is related to the characteristic of the field. As an example, for GF(2) we

1It was known that span programs over finite fields with the same characteristic basically have
the same power.

2We note that every function which has a polynomial size monotone NC1 circuit has a polynomial
size monotone span program, and every function which has a polynomial size span program over a
small field has a polynomial size NC2 circuit.
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require that each entry of the matrix is covered by an odd number of rectangles.
Our use of combinatorial covers and their properties is borrowed from communication
complexity (see [19] for background on communication complexity). In particular, we
use ideas similar to [12], where they considered the model of counting communication
complexity.

The main technical contribution of this paper is constructing such a matrix and
proving that it satisfies the desired properties. In particular, the matrix we construct
checks whether two linear subspaces over GF(p) have non-trivial intersection. Not
surprisingly, the matrix reflects linear algebraic computations over GF(p), which are
difficult to simulate over fields with characteristics different than p.

Organization. In §2 we supply some preliminaries. In §3 we give a general method
for proving a separation between the power of monotone span programs over fields
with different characteristics. Next, in §4 we apply this general method to achieve a
separation of nΩ(

√
log n) for an explicit function. Finally, in §5, we use this separation to

exhibit a monotone function in uniform −NC2 that has no polynomial size monotone
span program, and to prove that there exist secret sharing schemes stronger than the
linear secret sharing schemes.

2. Preliminaries. We start with the definition of our main computational model
— span programs.

Definition 2.1 (Span Program [18]). A span program over a field F is a triplet

M̂ = 〈M, ρ,~v〉, where M is a matrix over F , ~v is a nonzero row vector called the
target vector (it has the same number of coordinates as the number of columns in M),
and ρ is a labelling of the rows of M by literals from {x1, . . . , xn, x1, . . . , xn} (every
row is labelled by one literal, and the same literal can label many rows).

A span program accepts or rejects an input by the following criterion. For every
input u ∈ {0, 1}n

define the sub-matrix Mu of M consisting of those rows whose

labels are satisfied by the assignment u. The span program M̂ accepts u if and only if
~v ∈ span(Mu), i.e., some linear combination of the rows of Mu gives the target vector
~v. A span program computes a Boolean function f if it accepts exactly those inputs
u where f(u) = 1. The size of M̂ is the number of rows in M .3

A span program is called monotone if the labels of the rows are only positive literals
{x1, . . . , xn}. Monotone span programs compute only monotone functions, and every
monotone Boolean function can be computed by a monotone span program. The size of
the smallest monotone span program over F that computes f is denoted by mSPF (f).

Example 2.2. Consider the following monotone span program over GF(2):

x2 1 1 0 0 0
x2 0 1 1 1 0
x1 0 1 1 1 0
x3 0 1 0 1 1
x4 0 0 1 0 1

In this example, the target vector is ~v = 〈1, 0, 0, 1, 1〉. There are 4 different variables
labelling the rows of the matrix and the inputs are of size 4. Consider the input

3The choice of the fixed nonzero vector ~v does not effect the size of the span program. It is
always possible to replace ~v by another nonzero vector ~v′ via a change of basis without changing the
function computed and the size of the span program. Most often ~v is chosen to be the ~1 vector (with
all entries equal 1).
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〈0, 1, 0, 1〉. Since x2 and x4 are satisfied by the input, we consider the submatrix
consisting of rows labelled by these variables:

x2 1 1 0 0 0
x2 0 1 1 1 0
x4 0 0 1 0 1

The question is whether the rows of this submatrix span the target vector 〈1, 0, 0, 1, 1〉.
Since 〈1, 0, 0, 1, 1〉 is the sum, over GF(2), of the rows of the submatrix, the input is
accepted by the program.

Now consider the input 〈1, 1, 0, 0〉. Again, we focus on the submatrix of rows
labelled by x1 and x2, the variables satisfied by the input assignment:

x2 1 1 0 0 0
x2 0 1 1 1 0
x1 0 1 1 1 0

Looking at the rightmost coordinate, we see the all the submatrix entries in this col-
umn are 0, while in the target vector 〈1, 0, 0, 1, 1〉 it is 1. Hence, no linear combination
of the rows of submatrix gives the target vector. Therefore, the input is rejected by
the program.

2.1. Combinatorial Rectangles and Covers. Combinatorial rectangles and
covers are a useful tool in communication complexity, and are used in this work in a
similar way. Let X and Y be arbitrary finite sets. A combinatorial rectangle is a set
X0 × Y0, where X0 ⊆ X and Y0 ⊆ Y . A cover of X × Y is a set R of rectangles such
that every pair 〈x, y〉 ∈ X × Y belongs to at least one rectangle in R.

Let M be a Boolean |X|× |Y | matrix such that the rows of M are indexed by the
elements of X, and the columns of M are indexed by the elements of Y . We say that
a rectangle R0 = X0 × Y0, where X0 ⊆ X and Y0 ⊆ Y , is a monochromatic rectangle
if there exists a b ∈ {0, 1} such that for every x ∈ X0 and y ∈ Y0 it holds that
M [x, y] = b. If b = 1 we call R0 a 1-rectangle, and if b = 0 we call R0 a 0-rectangle.
We say that a cover R is a monochromatic cover of M if every rectangle R ∈ R is a
monochromatic rectangle. If R is a set of 1-rectangles that cover all the 1-entries of
M , then R is called a 1-cover of M . If R is a set of 0-rectangles that cover all the
0-entries of M , we call R a 0-cover of M .

2.2. Linear Subspaces. We use basic linear algebra to find a function that is
easy for span programs over one field and hard for span programs over another field.
For a prime number p, we denote by GF(p) the unique finite field with p elements.

Let k be a positive integer, and let p be a prime. Denote by V 2k
k (p) the set of

all k-dimensional subspaces of GF(p)2k, and denote by v2k
k (p) the number of such

subspaces, that is, v2k
k (p) =

∣∣V 2k
k (p)

∣∣. To prove our result, we count the number of
subspaces satisfying a certain property. Towards this aim, we will use the following
easy algebraic claim. We say that two linear spaces U and W are different if there
exists a vector ~v such that ~v ∈ U and ~v /∈ W or vice versa.

Claim 2.3. Let k be a positive integer, F be a field, and M be a matrix with
k rows such that rankF (M) = k. Let T1, T2 be matrices with k rows each, where
T1 6= T2. Define M1 (respectively, M2) to be the matrix resulting from concatenating
the matrix T1 (respectively, T2) to M , that is Mi = (M |Ti) for i ∈ {1, 2}. Then, the
linear spaces spanned by the rows of M1 and M2 are different.
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Proof. Since T1 6= T2, there exists an index j ∈ {1, . . . , k}, such that the rows
T1[j] and T2[j] are different. Let ~r = M1[j], that is, ~r is the jth row of M1. We show
that ~r is not spanned by the rows of M2. Assume there exist a combination of the
rows of M2 that spans ~r. That is, ~r =

∑k
i=1 αiM2[i] for some α1, . . . , αk ∈ F . Let

m be the number of columns in M , and consider the restriction of the above sum to
the first m coordinates. It holds that M [j] =

∑k
i=1 αiM [i]. Since M has k rows and

rankF (M) = k, we get that αj = 1 and αi = 0 for every i 6= j. Thus, ~r = M2[j], that
is, M1[j] = M2[j], contradicting the fact that T1[j] 6= T2[j].

One application of Claim 2.3 is the following known corollary, which gives a lower
bound on v2k

k (p).4

Corollary 2.4. Let k be a positive integer, and let p be a prime. Then v2k
k (p) ≥

pk2

.
Proof. Let Ik be the k × k unit matrix, T be an arbitrary k × k matrix over

GF(p), and M1 be the k × 2k matrix that is a concatenation of Ik and T . There are

pk2

different choices of T , and therefore pk2

different ways to construct M1. By Claim
2.3, each such M1 represents a different element of V 2k

k (p), and thus v2k
k (p) ≥ pk2

.

It is easy to see that v2k
k (p) < p2k2

, since this is the number of ways to choose

any k vectors from GF(p)2k, and thus, we have pk2 ≤ v2k
k (p) < p2k2

.5

We denote by ~ej the jth unit vector, that is, the vector that is 1 in the jth
coordinate, and 0 in all the others. We say that a nonzero vector has a leading 1,
if the first non zero coordinate in the vector is 1. Let p be a prime, ℓ be a positive
integer, and U be a subspace of dimension ℓ over GF(p). Then, the number of vectors

with a leading 1 in U is pℓ−1
p−1 . We denote by char(F ) the characteristic of the field F .

Finally, we denote by [n] the set {1, . . . , n}.
3. The General Method for Separation. We want to construct a function

that is hard for monotone span programs over fields with characteristic different than
p, and easy for monotone span programs over GF(p), where p is a prime. We use the
method of [13] to get the lower bound for monotone span programs over fields with
characteristic different than p. In the center of this method is a matrix with a large
gap between its rank and the size of its monochromatic cover. To get a small upper
bound for monotone span programs over GF(p), we shall require the cover to have
an additional property which we call 1-mod-p, that is, for every entry of the matrix,
the number of rectangles covering it is equivalent to 1 modulo p. Generally speaking,
the number of variables in f , the function we prove the separation for, is equal to the
number of rectangles in a cover. A detailed description is given below.

3.1. The Lower Bound. Let M be a matrix and R be a monochromatic cover of
M . Recall that R is a set of rectangles. Denote n = |R|, and R = {R1, . . . , Rn}, where
Ri = Xi × Yi. A vector in {0, 1}n

can be viewed as a characteristic vector of a subset
of R. Throughout the paper, we identify each such vector with its corresponding
subset. We define two subsets of {0, 1}n

, Acc and Rej. These are exactly the same
sets defined by Razborov in [24], constructing a monotone function associated with
any cover. We will focus on functions that accept every x ∈ Acc and reject every
y ∈ Rej.

4Corollary 2.4 can be proved by directly counting the elements of V 2k

k
. However, since we need

Claim 2.3 for other purposes, we use it to prove Corollary 2.4 as well.
5Actually, v2k

k
(p) = O(pk

2
).
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We first define a set Acc. For every row x of M we define a vector ~zx ∈ {0, 1}n
.

The ith coordinate in ~zx indicates if the rectangle Ri covers the row x of M . That
is, ~zx[i] = 1 if x ∈ Xi, and ~zx[i] = 0 otherwise. The set Acc contains the vectors ~zx

for every row x of the matrix M . That is, Acc = {~zx : x ∈ X}. An example for Acc
is described in Fig. 3.1. For example, the set in Acc corresponding to x in the figure
is {R4, R5, R6}, the rectangles that cover the row x, and ~zx = 〈0, 0, 0, 1, 1, 1〉.

We now define a set Rej. For every column y of M we define a vector ~wy ∈ {0, 1}n
.

The ith coordinate of ~wy indicates if the rectangle Ri does not cover the column y
of the matrix M . That is, ~wy[i] = 1 if y /∈ Yi, and ~wy[i] = 0 otherwise. The set
Rej contains the vectors ~wy for every column y of the matrix M . That is, Rej =
{~wy : y ∈ Y }. For example, the set in Rej corresponding to y described in Fig. 3.1 is
{R1, R2, R4}, the rectangles that do not cover the column y, and ~wy = 〈1, 1, 0, 1, 0, 0〉.

x

R1

R3

R2

R4

R5

R6

y

Fig. 3.1. An illustration of elements in the sets Acc and Rej. Note that the rectangles
in the figure do not form a cover.

The lower bound on the size of monotone span programs is achieved using the
following theorem, which is a restatement of Theorem 4.1 of [13].

Theorem 3.1 ([13]). Let M be a Boolean matrix, R be a monochromatic cover of
M of size n, and Acc and Rej as defined above. If f : {0, 1}n → {0, 1} is a monotone
function such that f(x) = 1 for every x ∈ Acc and f(y) = 0 for every y ∈ Rej, then
mSPF (f) ≥ rankF (M), for every field F .

That is, we get the lower bound for every function f accepting Acc, and rejecting
Rej. Note that there are no requirements concerning inputs t /∈ (Acc ∪ Rej) (except
for monotonicity). One can observe that such a function exists.

3.2. The Upper Bound. To prove a gap between the power of monotone span
programs over the different fields, we need a function that has a small monotone span
program over GF(p). Towards this aim, we require the cover R to be a monochromatic
1-mod-p cover, according to the following definition:

Definition 3.2. Let M be a Boolean matrix. A set R of combinatorial rectangles
is called a monochromatic 1-mod-p cover of M , if R is a monochromatic cover of M ,
and, for each entry of M , the number of rectangles covering it is equivalent to 1
modulo p.
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Given a small monochromatic 1-mod-p cover of M , we construct a monotone
span program over GF(p) that accepts Acc and rejects Rej. The gap will hold for the
function computed by this span program.

Consider the following monotone span program P̂ over GF(p). The program P̂
associates a row with each rectangle of R, and a column with each column of the
matrix M . Therefore, the rectangle Rj ∈ R is represented by the variable xj . The
row associated with the rectangle Ri = Xi × Yi is 1 in the column labeled by y if
y ∈ Yi, that is, if the rectangle Ri covers the column y in M . Otherwise, this entry
in P̂ is 0. The target is ~1. Note that size(P̂ ) = n, that is, there is exactly one row
for each variable.

The following lemma is a simple special case of the upper bound part of Theorem
3.4 in [13]. In fact, the program P̂ considered here is exactly the program that one
obtains by applying the construction from the proof of the upper bound in [13] to this
simple special case.

Lemma 3.3. The program P̂ accepts every ~zx ∈ Acc and rejects every ~wy ∈ Rej.

Proof. We first prove that P̂ accepts every ~zx ∈ Acc. Specifically, we will show
that since R is a 1-mod-p cover, the sum of the rows labeled by the rectangles of
~zx is the vector ~1, and thus ~zx is accepted by P̂ . That is, we show that for every
column of P̂ , the rows labeled by variables satisfied by ~zx sum to 1 in this column.
Towards this goal, fix a column y. Since ~zx ∈ Acc, it is the characteristic vector of
the set of rectangles covering the row x of M . According to the definition of P̂ , for
every rectangle Rj such that ~zx[j] = 1 the entry 〈Rj , y〉 of P̂ is 1 if and only if Rj

covers the column y, that is y ∈ Yj . On the other hand, ~zx[j] = 1 if and only if Rj

covers the row x. Thus, the sum over the rows of P̂ associated with ~zx in the column
y is exactly the number of rectangles covering both y and x, that is, the number of
rectangles covering the entry 〈x, y〉 in M . Since R is a 1-mod-p cover, this number is
1 modulo p. To conclude, the sum of the rows labeled by variables that are satisfied
by ~zx is the vector ~1, and ~zx is accepted by P̂ .

Let ~wy ∈ Rej. We show that there is no linear combination of the rows labeled by

the rectangles of y that give the vector ~1. Since ~wy ∈ Rej, it is the characteristic vector
of the subset of rectangles from R that do not cover the column y of M . Hence, all the
rows of P̂ corresponding to variables satisfied by ~wy are 0 in the column associated
with y. Therefore, every combination of the rows labeled by variables satisfied by ~wy

is 0 in this column. Thus, the vector ~1 is not a linear combination of these rows, and
~wy is rejected by P̂ .

Combining Theorem 3.1 and Lemma 3.3, we get the separation theorem.
Theorem 3.4 (Separation Theorem). Let M be a Boolean matrix, and R be a

monochromatic 1-mod-p cover of M of size n. Then there exists a monotone function
f , with n variables, such that mSPGF(p)(f) = n and mSPF (f) ≥ rankF (M) for every
field F .

Proof. Denote by f bP the function computed by P̂ . By Lemma 3.3, f bP accepts
Acc and rejects Rej, and thus by Theorem 3.1 mSPF (f bP ) ≥ rankF (M). On the other

hand, size(P̂ ) = n and thus mSPGF(p)(f) = n. The function f bP is monotone as it is
computed by a monotone span program.

4. The Linear Subspaces Zero Intersection Function. In this section we
show an explicit matrix with a high rank over fields with characteristic different than
p, and a small monochromatic 1-mod-p cover. Thus, by Theorem 3.4 we get a function
f with a super-polynomial gap between mSPGF(p)(f) and mSPF (f) where F is any
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field such that char(F ) 6= p. We define the desired matrix in two steps: in the first
step we define the matrix MZI, and prove it has full rank over fields with char(F ) 6= p.
In the second step we use MZI to define another matrix, MLZI, which has both a high
rank over fields with char 6= p, and a small monochromatic 1-mod-p cover.

Let k be a positive integer and p be a prime.6 The Zero Intersection (ZI) function
determines whether the intersection of two k-dimensional linear subspaces of GF(p)2k

is the subspace {~0}. More formally, define ZIpk : V 2k
k (p) × V 2k

k (p) → {0, 1} as follows:
ZIpk(U,W ) = 1, where U and W are subspaces in V 2k

k (p), if and only if dim(U∩W ) = 0.
Recall that the intersection of any two linear subspaces is a linear subspace.

We represent ZIpk by a v2k
k (p) × v2k

k (p) matrix denoted MZIp

k
. Each row and each

column of MZIp

k
is labeled by a subspace U ∈ V 2k

k (p), and each entry MZIp

k
[U,W ]

is equal to ZIpk(U,W ). Denote by rU the row in MZIp

k
associated with the subspace

U ∈ V 2k
k (p). We will use ZI instead of ZIpk, and MZI instead of MZIp

k
, when k and p

are clear from the context.

4.1. Analyzing the Rank of MZI. The next theorem shows that MZI has full
rank over any field with char 6= p.

Theorem 4.1. Let k be a positive integer, p be a prime, and F be a field such
that char(F ) 6= p. Then, MZIp

k
has full rank over F .

Proof. To prove that the matrix has full rank, it is sufficient to show that any unit
vector is spanned by the rows of the matrix. Recall that the columns of the matrix are
labeled by subspaces from V 2k

k (p). For every U ∈ V 2k
k (p) we consider the unit vector

~eU ∈ GF(p)v2k
k (p) and show that it is spanned by the rows of MZI. Specifically, we

show a combination of the rows of the matrix spanning ~eU having a special structure:
The coefficient of ~rZ , the row labeled by Z ∈ V 2k

k (p), depends only on the dimension
of the subspace U ∩ Z. More precisely, we show there are constants α0, . . . , αk ∈ F ,
such that

~eU =

k∑

d=0

αd

∑

Z∈V 2k
k

(p)

dim(Z∩U)=d

~rZ .(4.1)

Fix W ∈ V 2k
k (p), and consider ~cW , the column of MZI associated with W . We have

to show that with the appropriate constants α0, . . . , αk ∈ F , the above expression is 0
in this column if W 6= U , and is 1 if W = U . When computing the sum in the column
~cW , we add αd for every subspace Z such that ZI(Z, W ) = 1 (i.e., dim(Z ∩ W ) = 0)
and dim(Z ∩ U) = d. This motivates the following definition:

Definition 4.2. Let U,W ∈ V 2k
k (p) be subspaces, and let ℓ be an integer such

that dim(U ∩W ) = ℓ. Define Hp
k (ℓ, d) to be the number of subspaces Z ∈ V 2k

k (p) such
that dim(U ∩Z) = d and dim(W ∩Z) = 0. From symmetry arguments, the number
Hp

k (ℓ, d) is independent of the choice of U and W . We will write Hk(ℓ, d) instead of
Hp

k (ℓ, d), when p is clear from the context.
To summarize, we need to show that there are constants α0, . . . , αk ∈ F such

that:
1. For each 0 ≤ ℓ ≤ k − 1, it holds that

∑k
d=0 αd · Hk(ℓ, d) = 0. That is, the

sum over any column labeled with W 6= U equals 0, where for a subspace W ∈ V 2k
k (p)

such that dim(U ∩ W ) = ℓ, the relevant equation is the ℓ-th equation.

6Through this section the reader should think of k as small. That is, we construct a function
with n variables and k ≈ √

log n.
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2.
∑k

d=0 αd ·Hk(k, d) = 1. That is, the sum over the column associated with U
is 1.

Putting things differently, we view the numbers Hk(ℓ, d) for ℓ, d ∈ {0, . . . , k} as a
(k + 1)× (k +1) matrix over F .7 According to the above conditions we have to prove
there are α0, . . . , αk ∈ F such that Hk〈α0, α1, . . . , αk〉T = 〈0, . . . , 0, 1〉T .

In the next two claims, we show that Hk is upper-left triangular, where the
numbers on the secondary diagonal are nonzero in F , thus Hk has full rank over F .
The structure of Hk is illustrated in Fig. 4.1. In Claim 4.3 we show that the numbers
below the secondary diagonal are all 0. In Claim 4.4 we show that the numbers on
the secondary diagonal are all powers of p which are nonzero since char(F ) 6= p. The
numbers above the secondary diagonal may take any value from F .

k + 1

k + 1

...
?

0
pℓ(k+d)

pℓ(k+d)

pℓ(k+d)

pℓ(k+d)

Fig. 4.1. The structure of the matrix Hk.

Claim 4.3. Let k be a positive integer, ℓ and d be non-negative integers, p be a
prime, and Hk be as above. If ℓ + d > k then Hp

k (ℓ, d) = 0.

Proof. Let U,W ∈ V 2k
k (p), where dim(U ∩ W ) = ℓ. We have to show that since

ℓ+d > k there is no subspace Z ∈ V 2k
k (p), such that dim(Z∩U) = d and dim(Z∩W ) =

0. Assume toward contradiction that there exists such Z. Let BU∩W = 〈~w1, . . . , ~wℓ〉
be a basis of the subspace U ∩ W . Let BU∩Z = 〈~z1, . . . , ~zd〉 be a basis for U ∩ Z.
Consider the set of vectors X = BU∩W ∪ BU∩Z . First note that X ⊆ U , that is, all
the vectors in X are in the subspace U . Since dim(U) = k and |X| = ℓ + d > k,
the set X must be linearly dependent. Thus, there must be a nontrivial combination
of the vectors of X, giving the vector ~0, that is,

∑ℓ
i=1 λi ~wi +

∑d
i=1 δi~zi = ~0. Since

both BU∩W and BU∩Z are linearly independent, the nonzero vector ~v =
∑ℓ

i=1 λi ~wi

is spanned by both BU∩W and BU∩Z . Since U ∩ W ⊆ W and U ∩ Z ⊆ Z, we
get that ~v ∈ W ∩ Z and thus, dim(W ∩ Z) > 0, contradicting the assumption that
dim(W ∩ Z) = 0. (Claim 4.3)

We shell need the following notation for the next claim: Let B = 〈~v1, . . . , ~v2k〉 be
a basis of GF(p)2k. Let Z ∈ V 2k

k (p) and BZ = 〈~z1, . . . , ~zk〉 be a basis for Z. Thus

there must be unique constants such that for every i ∈ [k] we have zi =
∑2k

j=1 βi,j~vj .
Then we call the k × 2k matrix (βi,j) the representation matrix of BZ according to
B. Notice that for every basis B of Z we get a different representation.

7Since Hk(ℓ, d) may be a number not in F , we will replace it by Hk(ℓ, d) mod c, where c is the
characteristic of F . If the characteristic of F is 0, then Hk(ℓ, d) will always be in F .
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Claim 4.4. Let k be a positive integer, ℓ and d be non-negative integers, and p
be a prime. If ℓ + d = k then Hp

k (ℓ, d) = pℓ(k+d).
Proof. Let U,W ∈ V 2k

k (p) be any subspaces such that dim(U ∩W ) = ℓ. We must
show that the number of subspaces Z such that dim(Z∩U) = d and dim(Z∩W ) = 0 is
pℓ(k+d). We will first define the term canonical representation of a subspace in V 2k

k (p).
Next, we will show that each subspace Z such that dim(Z ∩ U) = d and dim(Z ∩
W ) = 0 has a canonical representation. Then we will show that every canonical
representation is associated with a unique subspace Z such that dim(Z ∩ U) = d
and dim(Z ∩ W ) = 0. Thus, the number of such subspaces is equal to the number
of different canonical representations. To complete the proof, we will show that the
number of such canonical representations is pℓ(k+d). The canonical representation is
defined according to a specific basis of GF(p)2k. Consider a basis BU,W of GF(p)2k

defined as follows:

BU,W = 〈~v1, . . . , ~vℓ, ~u1, . . . , ~ud, ~w1, . . . , ~wd, ~x1, . . . , ~xℓ〉

where:
(i) 〈~v1, . . . , ~vℓ〉 is a basis of U ∩ W . Recall that dim(U ∩ W ) = ℓ.
(ii) 〈~u1, . . . , ~ud〉 is an expansion of 〈~v1, . . . , ~vℓ〉 to a basis of U . Recall that

dim(U) = k and d + ℓ = k.
(iii) 〈~w1, . . . , ~wd〉 is an expansion of 〈~v1, . . . , ~vℓ〉 to a basis of W . Recall that

dim(W ) = k as well.
(iv) 〈~x1, . . . , ~xℓ〉 is an expansion of 〈~v1, . . . , ~vℓ, ~u1, . . . , ~uk−ℓ, ~w1, . . . , ~wk−ℓ〉 to a

basis of GF(2)2k. Here there are ℓ vectors since 2k − (ℓ + d + d) = ℓ.
We say that a subspace Z ∈ V 2k

k (p) has a canonical representation according to
BU,W if it has a basis whose representation matrix according to BU,W is as described
in Fig. 4.2. The matrix in Fig. 4.2 is a k × 2k matrix. Each entry in zones (b), (g),
and (h) must be 0. The entries in zones (d) and (f) must form the unit matrices Iℓ

and Id respectively. Each entry in zones (a), (c), and (e) can take any value from
GF(p).

Y

Z\Yℓ

dd ℓ

(d)

(e)

ℓ

(b) (c)

d

(f) (h)

(a)

(g)

0

0

?

u1, . . . , ud w1, . . . , wd x1, . . . , xℓ

Iℓ

? Id

?

0

v1, . . . , vℓ

Fig. 4.2. A canonical representation of a subspace Z ∈ V 2k

k (p) with dim(U ∩Z) = d and
dim(W ∩ Z) = 0.

First we show that every subspace Z ∈ V 2k
k (p) such that dim(Z ∩ U) = d and

dim(Z ∩ W ) = 0 has a canonical representation according to BU,W . Let Y = Z ∩
U . Note that dim(Y ) = d. Let BY = 〈~y1, . . . , ~yd〉 be a basis of Y , and let BZ =
〈~y1, . . . , ~yd, ~z1, . . . , ~zℓ〉 be an expansion of BY to a basis of Z. Consider MZ , the
representation matrix of BZ according to BU,W . Since Y ⊆ U , all the entries in
the zones (g) and (h) are 0 as required. We claim that we can perform elementary
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operations on the lower part of MZ so that we get the matrix Id in zone (f). Otherwise,
we would get a row ~r that is ~0 in zone (f), but this would leave all the nonzero entries
of ~r in zone (e). Since zone (e) represents the basis vectors from U ∩ W , this would
mean dim(Z ∩ W ) > 0, contradicting the properties of Z. It is left to set zone (d)
to Iℓ and all the entries in zone (b) to 0. Setting all the entries in zone (b) to 0 can
be done by elementary operations on the upper part of MZ using the rows from the
lower part, which now form the unit matrix Id in zone (f). (This would change the
entries in zone (a), but we have no constraints on this zone.) We claim that we can
set zone (d) to be Iℓ by elementary operations on the upper part of MZ . Otherwise
we would get a row ~r that is all zero in zone (d). Thus ~r has nonzero entries only
in zones (a) and (c), but then it again implies that ~r represents a vector from W ,
contradicting the fact that dim(Z ∩ W ) = 0.

Next we prove that every subspace Z ∈ V 2k
k (p) which can be represented in

the above canonical form, satisfies dim(Z ∩ W ) = 0 and dim(Z ∩ U) = d. Let MZ

be a canonical representation of Z according to BU,W . Since MZ has Iℓ and Id

as sub-matrices, we have rankGF(p)(MZ) = k and thus Z ∈ V 2k
k (p). Now suppose

dim(Z ∩ W ) > 0. Then we can span a vector w ∈ W by the rows of MZ . This
vector has to be zero in the coordinates labeled by ~u1, . . . , ~ud, and by ~x1, . . . , ~xℓ,
but this cannot be done by a non-trivial combination of the rows of MZ . Thus,
dim(W ∩ Z) = 0. The lower part of MZ is nonzero only in coordinates labeled by
vectors from U , and since it has Id as a sub-matrix, we get that dim(Z∩U) ≥ d. Now
suppose that dim(Z ∩U) = d′ > d. Then we have dim(Z ∩U) = d′, dim(Z ∩W ) = 0,
and dim(U ∩ W ) = ℓ, where ℓ + d′ > ℓ + d = k, which is impossible by Claim 4.3.
Therefore, dim(U ∩ Z) = d.

To complete the proof, we show that any two subspace who have different canon-
ical representations over BU,W are different. To see that, note that the matrix

S =

(
0 Iℓ

Id 0

)

is a sub-matrix of any canonical representation. The matrix S is clearly of rank k,
and thus, by Claim 2.3 any two subspaces with different canonical representation are
different.

Therefore, when constructing a subspace Z, with dim(Z ∩ U) = d and dim(Z ∩
W ) = 0, the freedom in exactly in the entries marked with ’?’ in Fig. 4.2. Since there
are p possibilities for every such entry, and the number of such entries is (k ·ℓ)+(ℓ·d) =
ℓ(k + d), we conclude that Hk(ℓ, d) = pℓ(k+d). (Claim 4.4)

Since the characteristic of F is different than p, every power of p is non zero over
F . Therefore, as argued above, we proved that Hk has full rank over F , and the
theorem follows. (Theorem 4.1)

In Corollary 2.4 we proved that v2k
k (p) ≥ pk2

. Since MZIk
is a v2k

k (p) × v2k
k (p)

matrix, rankF (MZIk
) ≥ pk2

.

4.2. A Small 1-mod-p Cover for the Zeros of MZI. To apply Theorem 3.4
to an explicit matrix, we need this matrix to have a small monochromatic 1-mod-p
cover. We next show that there is a small 1-mod-p cover for the 0’s of MZI. We do
not know if there exists a small 1-mod-p cover for the 1’s of MZI. Thus, we are not
able to use MZI directly, and we use it in §4.3 to build the matrix MLZI, which has a
small 1-mod-p cover for both the 1’s and the 0’s.



12 A. BEIMEL AND E. WEINREB

To give some intuition on the cover of MLZI we show a 1-mod-p cover for the
0’s of MZI of size less than p2k. This should be compared to the number of rows in
MZI which is pΘ(k2). Define the cover R as follows: Let ~v ∈ GF (p)2k be a vector
with a leading 1, that is, the first nonzero coordinate of ~v is 1. We add the rectangle
R~v = X~v × Y~v to the cover R, where:

X~v =
{
U ∈ V 2k

k (p) : ~v ∈ U
}

and Y~v =
{
W ∈ V 2k

k (p) : ~v ∈ W
}

.

That is, R~v contains the rows and the columns of MZI labeled by subspaces that
contain the vector ~v. The rectangle R~v is a 0-rectangle, since for each U ∈ X~v and
W ∈ Y~v it holds that ~v ∈ U ∩W , hence dim(U ∩W ) 6= 0, and thus ZI(U,W ) = 0. We
claim R is a 1-mod-p cover of the 0’s of MZI. Let 〈U,W 〉 be an entry of MZI, such that
ZI(U,W ) = 0. Then dim(U ∩ W ) > 0. Therefore, the entry 〈U,W 〉 is covered by any
rectangle R~v such that ~v ∈ U ∩ W , and ~v has a leading one. Since U ∩ W is a linear

subspace of GF (p)2k, it has pℓ−1
p−1 vectors with a leading 1, where ℓ = dim(U ∩W ) ≥ 1.

Since pℓ−1
p−1 ≡ −1

−1 ≡ 1 (mod p), the number of rectangles covering the entry 〈U,W 〉
is equivalent to 1 modulo p. Since there are p2k−1

p−1 different vectors with a leading 1

in GF(p)2k, the size of the 0-cover is p2k−1
p−1 .

4.3. The List Version of the Zero Intersection Function. To get a matrix
with a high rank over fields with characteristic different than p, and a small monochro-
matic 1-mod-p cover, we define the function LZI, the list version of the Zero Intersec-
tion function. The idea of using the list version of functions has been used in commu-
nication complexity [20] (see, e.g., [19]). Define LZIpk : (V 2k

k (p))k×(V 2k
k (p))k → {0, 1}

as follows:

LZIpk(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 1 ⇐⇒ ∃i ∈ {1 . . . k} such that ZIpk(Ai, Bi) = 1.

That is, LZIpk gets k instances of ZIpk, and outputs the value 1 iff ZIpk outputs 1 on at
least one of the given instances. The matrix MLZI, representing LZI, is defined in a
similar way to MZI. The next two lemmas show that MLZI has a small 1-mod-p cover.

Lemma 4.5. There is a monochromatic 1-mod-p cover of the 0’s of MLZI of size
smaller than p2k2

.
Proof. We build the 0-cover R0 of the 0’s of MLZI in a similar way to the 0-cover

for MZI built in §4.2. Let 〈~v1, . . . , ~vk〉 ∈ (GF(p)2k)k be a tuple of k vectors from
GF(p)2k, each with a leading 1. The rectangle in R0 corresponding to 〈~v1, . . . , ~vk〉 is
R = X × Y where:

X = {〈A1, . . . , Ak〉 ∈ (V 2k
k (p))k : ~vi ∈ Ai for each i ∈ [k]}

and
Y = {〈B1, . . . , Bk〉 ∈ (V 2k

k (p))k : ~vi ∈ Bi for each i ∈ [k]}.
First we show R is a 0-rectangle. If 〈A1, . . . , Ak〉 ∈ X and 〈B1, . . . , Bk〉 ∈ Y , then

~vi ∈ Ai ∩ Bi for every i ∈ [k], and thus ZI(Ai, Bi) = 0 for every i ∈ [k]. Therefore,
LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 0.

Next we show that for every 0-entry of MLZI, the number of rectangles covering it
is equivalent to 1 modulo p. Let 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 ∈ (V 2k

k (p))k × (V 2k
k (p))k

such that LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 0. The entry 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉
is covered by any rectangle associated with a tuple of k nonzero vectors 〈~v1, . . . , ~vk〉,
such that ~vi ∈ Ai ∩Bi, for every i ∈ [k], and has a leading 1. Since Ai ∩Bi is a linear

subspace, the number of vectors with a leading 1 in Ai∩Bi is pℓi−1
p−1 where ℓi = dim(Ai∩

Bi) ≥ 1. Thus, the number of rectangles covering 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 is a
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product of numbers that are equivalent to 1 modulo p, and therefore is equivalent to
1 modulo p itself.

The number of 0-rectangles in R0 is the number of tuples of k vectors with a

leading 1 from GF(p)2k, that is, (p2k−1
p−1 )k < p2k2

. (This is much smaller than the

number of rows in MLZI, which is pΩ(k3).)

Now we show a cover R1 for the 1’s of MLZI. The natural way to do it would
be to associate a rectangle R = X × Y with each pair 〈i, U〉, such that i ∈ [k], and
U ∈ V 2k

k (p), where:
X =

{
〈A1, . . . , Ak〉 ∈ (V 2k

k (p))k : Ai = U
}

and
Y =

{
〈B1, . . . , Bk〉 ∈ (V 2k

k (p))k : dim(U ∩ Bi) = 0
}

.
That is, any input pair having ZI(Ai, Bi) = 1 in the ith instance, will be covered by
the rectangle associated with i and Ai.

The problem with this choice of R1 is that it is not a 1-mod-p cover. For ex-
ample, if 〈A1, . . . , Ak〉 and 〈B1, . . . , Bk〉 have exactly p instances 〈Ai, Bi〉 such that
ZI(Ai, Bi) = 1, then the number of rectangles covering the entry

〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉

will be equivalent to 0 modulo p. To solve this problem, we require that i is the index
of the first instance of ZI, such that ZI(Ai, Bi) = 1.

Lemma 4.6. There is a monochromatic 1-mod-p cover for the 1’s of MLZI of size
smaller than p4k2

.8

Proof. Associate a rectangle R = X × Y with any pair 〈〈~v1, . . . , ~vi−1〉, U〉, where
〈~v1, . . . , ~vi−1〉 is a tuple of i−1 vectors with a leading 1 from GF(p)2k where 1 ≤ i ≤ k,
and U ∈ V 2k

k (p) is a subspace. The sets X and Y are defined as follows:
X = {〈A1, . . . , Ak〉 ∈ (V 2k

k (p))k : ~vj ∈ Aj for each j ∈ [i − 1] and Ai = U}, and
Y = {〈B1, . . . , Bk〉 ∈ (V 2k

k (p))k : ~vj ∈ Bj for each j ∈ [i − 1] and dim(Bi ∩ U) = 0}.
To see that R is a 1-rectangle take 〈A1, . . . , Ak〉 ∈ X and 〈B1, . . . , Bk〉 ∈ Y .

Then, dim(Ai ∩ Bi) = dim(U ∩ Bi) = 0, and thus ZI(Ai, Bi) = 1. Therefore,
LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 1.

We next show that for every 1-entry of MLZI, the number of rectangles covering it
is equivalent to 1 modulo p. Let 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 ∈ (V 2k

k (p))k × (V 2k
k (p))k

such that LZI(〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉) = 1. Let i be the smallest index such
that dim(Ai ∩ Bi) = 0. Then the entry 〈〈A1, . . . , Ak〉, 〈B1, . . . , Bk〉〉 is covered by
a rectangle if and only if it is associated with a pair 〈〈~v1, . . . , ~vi−1〉, Ai〉, such that
~vj ∈ Aj ∩Bj for every j ∈ {1, . . . , i − 1}. Since the number of vectors with a leading 1
in Aj ∩Bj for every j ∈ [i] is equivalent to 1 modulo p, the number of such rectangles
is equivalent to 1 modulo p as well.

The size of R1 is smaller than the number of ways to choose k vectors with
a leading 1 from GF(p)2k, and a subspace from V 2k

k (p), and thus is smaller than

p2k2 · v2k
k (p) < p4k2

.

By taking the union of the 0-cover from Lemma 4.5 and the 1-cover from Lemma 4.6
we get the following corollary.

Corollary 4.7. MLZI has a monochromatic 1-mod-p cover of size smaller than
p5k2

.

8It may seem that this number is too big, but this should be compared to the dimensions of

MLZI which is pΩ(k3).
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We proved in Theorem 4.1 that rankF (MZIk
) ≥ pk2

. We use this fact to analyze
the rank of MLZIk

over F . Let A be an m × n matrix, and B be an r × s matrix.
Then the Kronecker product of A and B, denoted A ⊗ B, is an mr × ns matrix,
formed by multiplying each element of A by the entire matrix B and putting it in the
place of the element of A. For any field F , for every two matrices A and B, it holds
that rankF (A ⊗ B) = rankF (A) rankF (A). This property of the Kronecker product,
together with De Morgan laws, imply the following Lemma.

Lemma 4.8. Let k be a positive integer and let p be a prime. Then

rankF (MLZIp

k
) = pΩ(k3).

We are ready to prove our main result:
Theorem 4.9 (Main Result). Let p be a fixed prime. Then there exist a fam-

ily of functions {fn}n∈N , such that mSPGF(p)(fn) = n and for every field F with

characteristic different than p, it holds that mSPF (fn) = nΩ(
√

log n).
Proof. For a positive number k, denote by nk the size of the monochromatic

1-mod-p cover for MLZI given by Corollary 4.7. We first show fn for each n of the
form n = nk for some positive k. According to Corollary 4.7, the matrix MLZIk

has

a monochromatic 1-mod-p cover of size n, which is smaller than p5k2

. According to
Lemma 4.8, we have that rankF (MLZIk

) = pΩ(k3). In terms of n, we have

n
√

logp n ≤ (p5k2

)

q
logp(p5k2 )

= (p5k2

)
√

5k2
.

By Theorem 3.4, there is a function fn in n variables, such that mSPGF(p)(f) = n

and mSPF (f) ≥ pΩ(k3) = nΩ(
√

log n). The last equality holds since p is a constant. By
padding arguments, the result holds for every value of n.

5. A Super-polynomial Lower Bound for a Function in uniform −NC2.

In this section we show a monotone function that is computable by uniform-NC2

circuits, and does not have a polynomial size monotone span program over any field.9

For comparison, all the previous super-polynomial lower bounds are for function not
known to be in P.

Denote by f2 =
{
f2

n

}
n∈N and f3 =

{
f3

n

}
n∈N the families of functions given

by Theorem 4.9 for p = 2 and p = 3 respectively. Define the family of functions
f = {f2n}n∈N to be f2n(x1, . . . , xn, y1, . . . , yn) = f2

n(x1, . . . , xn) ∧ f3
n(y1, . . . , yn).

We show a uniform −NC2 family of circuits for f . Let P̂2 be the monotone span
program over GF(2) that computes f2. Recall that size(P̂2) = n. As mentioned in

§2, we can assume w.l.o.g. that the number of columns in P̂2 is not larger than the
number of rows, which is n. Therefore, since linear algebra over fixed finite fields is in
log-space uniform-NC2 [7, 21, 10, 18], there exists an NC2 family of circuits

{
C2

}
n∈N

that computes f2. Similarly, there exists an NC2 family of circuits
{
C3

n

}
n∈N that

computes f3. Thus, the NC2 family of circuits {C2n}n∈N , where C2n = C2
n ∧ C3

n,
computes f .

The problem with the family of circuits {C}n∈N , as described, is that it is not
uniform. The mere existence of a monotone span program with a small number of
columns does not yield a uniform-NC2 circuit. To get uniform circuits we have to

9In this paper uniform means log-space uniform.
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show an explicit monotone span program with a small number of columns that can
be generated in space O(log n). We do this in §5.1.

We next show that f has no small monotone span program over any field. Assume
there is a polynomial size monotone span program Q̂ that computes f over some field
F . Let c be the characteristic of F . If c 6= 2 then the restriction of Q̂ to inputs of
the form x1, . . . , xn · 1n, gives a new monotone span program Q̂2 of polynomial size
over F that computes f2 (as any restriction of a function with a small monotone span
program has a small monotone span program [18]), contradicting the fact that f2 has
no polynomial size monotone span program over fields with characteristic different
than 2. If c = 2 then c 6= 3 and we get the contradiction for f3 in a similar way.
Thus,

Theorem 5.1. There exist a family of monotone functions {fn}n∈N that is

computable by a uniform −NC2 family of circuits having mSPF (fn) = nΩ(
√

log n) for
every field F .

5.1. Reducing the Number of Columns. In Theorem 4.9 we introduced a
function f bP such that mSPGF(p)(fn) = n and mSPF (fn) = nΩ(

√
log n). In this section

we want to construct a family of uniform-NC2 circuits for a function that accepts Acc
and rejects Rej.

It is known that any function that has a polynomial size monotone span program
has a family of NC2 circuits. Since any monotone span program with m rows that
computes a function f has an equivalent monotone span program with no more than
m columns, we can deduce the existence of a family of NC2 circuits that computes
f . However, we want a uniform family of circuits. Since any transformation from
a monotone span program with an arbitrary number of columns to an equivalent
program with a smaller number of columns has to go over all the columns of the big
original program, we cannot use the generic span program for f bP , as presented in §3.4.
In this section we show a monotone span program, with a linear number of both rows
and columns, that accepts Acc and rejects Rej. We show that the span program can
be generated in space O(log n), and we ensure the uniformity of the NC2 circuits.

Let RLZI be the monochromatic 1-mod-p cover of MLZI described in Corollary 4.7,
and consider the following monotone span program Ŝ:10 The program Ŝ has a column
for each k-tuple 〈~v1, . . . , ~vk〉 ∈ (GF(p)2k)k where each ~vi is a vector with a leading

1 from GF(p)2k. Thus, the number of columns in Ŝ is smaller than the number of
rectangles in RLZI, and hence is linear in the number of variables. Intuitively, the
columns of Ŝ are a basis to the columns of the program P̂ from §4.

Recall that in RLZI there are two types of rectangles:
0-rectangles. We associated a 0-rectangle for every k-tuple of vectors 〈~v1, . . . , ~vk〉 ∈

(GF(p)2k)k, each with a leading 1.
1-rectangles. We associated a 1-rectangle R = X × Y with any pair

〈〈~v1, . . . , ~vi−1〉, U〉

such that 〈~v1, . . . , ~vi−1〉 is a tuple of i − 1 vectors with a leading 1 from
GF(p)2k, where 1 ≤ i ≤ k, and U ∈ V 2k

k (p) is a subspace.

Every rectangle is assigned a row in Ŝ. Let R be a rectangle in RLZI, and let c be
a column in Ŝ labeled with the tuple 〈~v1, . . . , ~vk〉. Then the value of the entry Ŝ[R, c]
is defined as follows:

10We do not know if the function computed by the monotone span program bS is the same as the
function from Theorem 4.9.
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For a 0-rectangle R, let 〈~u1, . . . , ~uk〉 be the k tuple of vectors associated with R.

We set Ŝ[R, c] = 1 if ~uj = ~vj for every j ∈ [k]. Otherwise, Ŝ[R, c] = 0.

For a 1-rectangle R, let 〈〈~u1, . . . , ~ui−1〉, Ui〉 be the (i− 1)-tuple of vectors and the

subspace associated with R. In this case set Ŝ[R, c] = 1 if ~uj = ~vj for every j ∈ [i− 1]

and vi /∈ Ui. Otherwise Ŝ[R, c] = 0.

By putting the rows corresponding to 0-rectangles in the upper part of Ŝ, the
upper block of Ŝ is in fact the unit matrix I. To compute an entry in the lower
part of Ŝ, we only have to check if a vector in GF(p)2k belongs to a subspace, where

k = O(
√

log n). This can be easily done in space O(log n). Thus, Ŝ can be generated
in log-space. To construct a circuit that simulates the span program, we need a
circuit that tests the rank of a matrix over GF(p). This can also be done in space

O(log n) [7, 21, 10, 18]. We next prove that the function computed by Ŝ can be used

for obtaining our lower bounds. That is, the program Ŝ accepts every ~zx ∈ Acc and
rejects every ~wy ∈ Rej. This fact is proved in the following two claims:

Claim 5.2. The program Ŝ accepts every ~zx ∈ Acc.

Proof. Let ~zx ∈ Acc. Throughout the proof we view the characteristic vector ~zx

as the set of rectangles it represents. We show that the vector ~1 is the sum of the
rows labeled by rectangles R ∈ ~zx, where the computations are done over GF(p).

Since ~zx ∈ Acc, it is the characteristic vector of the set of all the rectangles in
RLZI covering the row x of MLZI. Let 〈X1, . . . , Xk〉 be the k-tuple of subspaces from
V 2k

k labeling the row x in MLZI. Then the rectangles in ~zx are of two types:

(i) 0-rectangles, labeled by 〈~x1, . . . , ~xk〉 where ~xj ∈ Xj for every j ∈ [k].
(ii) 1-rectangles, labeled by 〈〈~x1, . . . , ~xi−1〉, Xi〉 where ~xj ∈ Xj for every j ∈

[i − 1].

Let c be a column in Ŝ. Assume that c is labeled by 〈~v1, . . . , ~vk〉. We show that the
sum of the rows labeled by rectangles from ~zx, in the column c is 1. More specifically,
we show that there is exactly one row labeled by ~zx that is 1 in the column c. We
consider two different cases:

(i) ~vj ∈ Xj for every j ∈ [k]. We divide the rectangles in ~zx into three:
1. The unique 0-rectangle R ∈ ~zx labeled by 〈~v1, . . . , ~vk〉. According to the

definition of Ŝ, we have Ŝ[R, c] = 1.

2. Other 0-rectangles. Since the upper block of Ŝ is the unit matrix I, we have
Ŝ[R, c] = 0 for any such rectangle.

3. 1-rectangles. If R is a 1-rectangle labeled by 〈〈~x1, . . . , ~xi−1〉, Xi〉 then we

have that Ŝ[R, c] = 0 since ~vi ∈ Xi.

Thus, there is exactly one rectangle R ∈ ~zx such that Ŝ[R, c] = 1, and hence the sum
of the rows labeled by rectangles from ~zx, in the column c is 1.

(ii) Otherwise, there exists an index ℓ ∈ [k] such that ~vj ∈ Xj for every j ∈ [ℓ−1]

and ~vℓ /∈ Xℓ. In this case, for every 0-rectangle R ∈ ~zx, it holds that Ŝ[R, c] = 0,
since for every such rectangle ~xℓ ∈ Xℓ, while ~vℓ /∈ Xℓ, and thus ~xℓ 6= ~vℓ. Let R ∈ ~zx

be a 1-rectangle labeled by 〈〈~x1, . . . , ~xi−1〉, Xi〉, for some i ∈ [k], where ~xj ∈ Xj for
every j ∈ [i − 1]. We have to check 3 cases:

Case I: i < ℓ. In this case ~vi ∈ Xi, because i ∈ [ℓ − 1], and thus Ŝ[R, c] = 0.
Case II: i > ℓ. In this case ~xℓ ∈ Xℓ, since ℓ ∈ [i − 1]. On the other hand, ~vℓ /∈ Xℓ,

and thus ~vℓ 6= ~xℓ, with ℓ ∈ [i − 1], and so Ŝ[R, c] = 0.

Case III: i = ℓ. In this case the only rectangle R ∈ ~zx satisfying Ŝ[R, c] = 1 is the
rectangle labeled by 〈〈~v1, . . . , ~vi−1〉, Xi〉.
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Therefore, again there is exactly one rectangle R ∈ ~zx such that Ŝ[R, c] = 1, and the
sum of the rows labeled by rectangles from ~zx, in the column c is 1.
Therefore, Ŝ accepts Acc.

It is left to prove that Ŝ rejects Rej. This part is a little more complicated than
in the generic case discussed in Lemma 3.3.

Claim 5.3. The program Ŝ rejects every ~wy ∈ Rej.
Proof. Let ~wy ∈ Rej. Throughout the proof we view the characteristic vector

~wy as the set of rectangles it represents. Then there exists a column labeled by
〈Y1, . . . , Yk〉 in MLZI, such that ~wy is the set of all the rectangles in RLZI that do
not cover this column. The rectangles in ~wy, i.e. rectangles not covering the column
labeled by 〈Y1, . . . , Yk〉, are of the following types:
0-rectangles. If R is a 0-rectangle labeled by 〈~x1, . . . , ~xk〉 not covering the column

〈Y1, . . . , Yk〉, then there exist an index i ∈ [k] such that ~xi /∈ Yi.
1-rectangles. If R is a 1-rectangle labeled by 〈〈~x1, . . . , ~xi−1〉, Xi〉 and not covering

〈Y1, . . . , Yk〉, then either there exists an index j ∈ [i− 1] such that ~xj /∈ Yj or
dim(Xi ∩ Yi) > 0.

Assume toward contradiction that the vector ~1 is a linear combination of the rows
labeled by rectangles from ~wy. Denote by Cy the set of columns of Ŝ, labeled by a
k-tuple of vectors 〈~y1, . . . , ~yk〉 such that ~yi ∈ Yi, and ~yi has a leading 1 for every

i ∈ [k]. We will use the sub-matrix of Ŝ defined by the rows of ~wy and the columns
Cy, to contradict the existence of the above linear combination. We claim that for
every R ∈ ~wy, the sum of the entries in the row labeled by R, over the columns in
Cy, is 0. That is,

Claim 5.4. For every R ∈ ~wy

∑

c∈Cy

Ŝ[R, c] = 0.

Proof. If R ∈ ~wy is a 0-rectangle labeled by 〈~x1, . . . , ~xk〉, and c is a column in
Cy, labeled by 〈~y1, . . . , ~yk〉, then there is an index i ∈ [k] such that ~xi /∈ Yi, and

since ~yj ∈ Yj for every j ∈ [k], we get that ~xi 6= ~yi and thus Ŝ[R, c] = 0. Therefore,∑
c∈Cy

Ŝ[R, c] = 0.

If R ∈ ~wy is a 1-rectangle labeled by 〈〈~x1, . . . , ~xi−1〉, Xi〉, then either there exists
an index j ∈ [i− 1] such that ~xj /∈ Yj or dim(Xi ∩ Yi) > 0. If the former is true, then
for every column c ∈ Cy, labeled by 〈~y1, . . . , ~yk〉 we have ~xj /∈ Yj and ~yj ∈ Yj , and

thus ~xj 6= ~yj . Since j ∈ [i − 1], this leads to Ŝ[R, c] = 0.
The only case left to discuss is when R ∈ ~wy is a 1-rectangle that is labeled by

〈〈~x1, . . . , ~xi−1〉, Xi〉, such that ~xj ∈ Yj for every j ∈ [i− 1], and dim(Xi ∩Yi) 6= 0. We

get that Ŝ[R, c] = 1 for every column c ∈ Cy labeled by

〈~x1, . . . , ~xi−1, ~yi, . . . , ~yk〉,

where ~yi /∈ Xi. The number of choices for a vector ~yi with a leading 1 such that ~yi ∈ Yi

and ~yi /∈ Xi is the number of vectors with a leading 1 in the set Yi\Xi = Yi\(Yi ∩Xi).
Since both Yi and Yi ∩ Xi are linear subspaces, the number of vectors with a leading
1 is equivalent to 1 modulo p in both of them. Thus the number choices for such ~yi is
equivalent to 0 modulo p. To get the number of columns c ∈ Cy such that Ŝ[R, c] = 1,
we have to multiply the number of ways to choose ~yi by the number of ways to choose
~yi+1, . . . , ~yk, but the result is still equivalent to 0 modulo p. (Claim 5.4)



18 A. BEIMEL AND E. WEINREB

The number of columns in Cy is the product of the number of vectors with a
leading 1 in Yi for i ∈ [k]. Since each such number is 1 modulo p, the number of
columns in Cy is equivalent to 1 modulo p.

Recall that we assumed that ~1 is a linear combination of the rows corresponding
to the rectangles in ~wy. Therefore, we can write

∑

R∈~wy

αR · ŜR = ~1,

where for each R ∈ ~wy, the constant αR is in GF(p), and ŜR is the row in Ŝ corre-
sponding to R. We compute the sum

∑

R∈~wy

αR

∑

c∈Cy

Ŝ[R, c]

in two different ways. Since for every column c it holds that

∑

R∈~wy

αRŜ[R, c] = 1,

we get

∑

R∈~wy

αR

∑

c∈Cy

Ŝ[R, c] =
∑

c∈Cy

∑

R∈~wy

αRŜ[R, c] =
∑

c∈Cy

1 = |Cy| = 1 mod p.

On the other hand, according to Claim 5.4, the sum over any row R ∈ ~wy of the
entries in the columns of Cy is equivalent to 0 modulo p, and we get that

∑

R∈~wy

αR

∑

c∈Cy

Ŝ[R, c] =
∑

R∈~wy

αR · 0 = 0 mod p.

A contradiction. Thus ~1 is not a linear combination of the rows of Ŝ labeled by ~wy,

and hence Ŝ rejects ~wy. (Claim 5.3)

5.2. Span Programs and Secret Sharing Schemes. Secret sharing schemes,
introduced by Blakley [8], Shamir [25], and Ito, Saito, and Nishizeki [16], are a cryp-
tographic tool allowing a dealer to share a secret between a set of parties such that
only some pre-defined authorized subsets of parties can reconstruct the secret from
their shares. The reader is referred to [26] and [28] for a more formal and detailed
discussion on secret sharing schemes.

The authorized sets in a secret sharing scheme are described by a monotone
Boolean function f : {0, 1}n → {0, 1}, where n is the number of parties and the
authorized subsets are the subsets with their characteristic vectors in f−1(1). Most
of the known secret sharing schemes are linear schemes, that is, schemes in which the
shares are a linear combination of the secret and some random field elements. Linear
schemes are equivalent to monotone span programs where the total size of the shares
is the size of the corresponding monotone span program. Beimel and Ishai [4] showed
functions that, under plausible assumptions, have no efficient linear secret sharing
scheme but yet have an efficient non-linear secret sharing scheme. However, prior to
this work, no secret sharing schemes were proved more powerful than linear schemes,
without any assumptions.
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A quasi-linear secret sharing scheme [4] is obtained by composing linear secret
sharing schemes, possibly over different fields. Beimel and Ishai [4] have shown that
under the assumption that the power of monotone span programs over different fields
is incomparable, quasi-linear schemes are super-polynomially stronger than linear
schemes. Their proof is very similar to the proof of Theorem 5.1. That is, the
functions described in Theorem 5.1 have, by definition, a small quasi-linear secret
sharing scheme but cannot have a small linear scheme.

Theorem 5.5. There is an explicit family of functions {fn}n∈N such that the

complexity of every linear secret sharing scheme for the family is nΩ(
√

log n), and yet
the family has a polynomial quasi-linear secret sharing scheme.
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