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Abstract

Given a family of disjoint polygons P1, P2, : : :, Pk in the plane, and an integer
parameter m, it is NP-complete to decide if the Pi's can be pairwise separated by a
polygonal family with at most m edges, that is, if there exist polygons R1; R2; : : : ; Rk

with pairwise-disjoint boundaries such that Pi�Ri and
P jRij � m. In three dimen-

sions, the problem is NP-complete even for two nested convex polyhedra. Many other
extensions and generalizations of the polyhedral separation problem, either to families
of polyhedra or to higher dimensions, are also intractable.

In this paper, we present e�cient approximation algorithms for constructing sepa-
rating families of near-optimal size. Our main results are as follows. In two dimensions,
we give an O(n logn) time algorithm for constructing a separating family whose size is
within a constant factor of an optimal separating family; n is the number of edges in the
input family of polygons. In three dimensions, we show how to separate a convex poly-
hedron from a nonconvex polyhedron with a polyhedral surface whose facet-complexity
is O(logn) times the optimal, where n = jP j+ jQj is the complexity of the input polyhe-
dra. Our algorithm runs in O(n4) time, but improves to O(n3) time if the two polyhedra
are nested and convex.

Our algorithm for separating a convex polyhedron from a nonconvex polyhedron
extends to higher dimensions. In d dimensions, for d � 4, the facet-complexity of the
approximation polyhedron is O(d logn) times the optimal, and the algorithm runs in
O(nd+1) time. Finally, we also obtain results on separating sets of points, a family of
convex polyhedra, and separation by non-polyhedral surfaces, such as spherical patches.

1 Introduction

1.1 Motivation and background

A polyhedron is one of the most widely used geometric solids in computer-modeling ap-
plications. In robotic systems, for instance, polyhedra are used to model obstacles that
must be circum-navigated; in computer-aided design and machining, they might represent
automobile parts or tools; and in computer graphics or geographical databases, they might
model real-world objects, such as mountains or buildings. The combinatorial complexitya
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of the model polyhedra is a major factor in the e�ciency of algorithms that manipulate
these polyhedral solids. Thus, ad hoc schemes of diverse nature are employed to reduce
this complexity, either by storing the \scenes" hierarchically, or by replacing the models by
simpler polyhedral objects that preserve the critical geometric and topological features of
the original set. The problem of separating and approximating a family of polyhedral solids
arises frequently in these schemes.

A large body of literature exists dealing with variants of the problem of separating
a collection of geometric objects [1, 5, 6, 7, 9, 11, 17, 18, 25]. Much of the research
interest has focused on linear separability. The problem of determining whether two sets of
points in d-space are separable by a hyperplane can be formulated as a linear programming
problem and, therefore, solved in polynomial time. In fact, using the linear programming
algorithms of Megiddo [17] or Dyer [9], this problem can be solved in linear time, for any
�xed dimension d.

If, however, the two point sets are not linearly separable, then a natural question is
to �nd the minimum number of hyperplanes that together separate the two sets. It was
shown by Megiddo [18] that this problem is hard unless both the dimension and the number
of separating hyperplanes are �xed. In an arbitrary dimension, the problem of deciding if
two point sets can be separated by two hyperplanes is NP-complete. In a �xed dimension,
separability of two point sets by k hyperplanes is intractably hard, if k is not �xed. In
particular, it is NP-complete to decide if two planar sets of points can be separated by k
lines [18]. Of course, separability of two point sets in a �xed dimension by a �xed number
of hyperplanes can always be decided in polynomial time by a brute-force search.

Results of a positive nature exist for special classes of separators. Edelsbrunner and
Preparata [11] give an O(n logn) time algorithm for �nding a minimum-vertex convex poly-
gon that separates two sets of n points in the plane. Whether similar results are possible
for separation by convex polyhedra in higher dimensions is an open problem. The separa-
tion complexity also has relevance to the problem of intersection detection between pairs
of preprocessed simple polygons|Mount [19] presents an algorithm whose time complexity
depends on the number of vertices in a minimum-complexity separator.

Separability of polyhedral solids also has received considerable attention. Two disjoint
convex polyhedra can always be separated by a single hyperplane; again, the problem can be
formulated as a linear programming problem. Paralleling the separability of point sets, the
only positive results known on the polyhedral separation are for special classes of separators,
and only for two dimensions. Aggarwal et al. [1] give an O(n logn) algorithm for �nding a
minimum-vertex polygon separating two nested convex polygons. An algorithm of similar
complexity is given by Wang and Chan [25] for minimum separation of two nested nonconvex
polygons.

Not surprisingly, most variants of the general polyhedral separability problem are also
intractable. Let P = fP1; P2; : : : ; Pkg be a family of pairwise-disjoint polyhedra in d dimen-
sions. We say a familyR = fR1; R2; : : : ; Rkg is a separating family for P if the boundaries of
R are pairwise-disjoint and Pi�Ri, for i = 1; 2; : : : ; k. A minimum separating family is one
that has the minimum possible number of facets of any separating family. The problem of
�nding a minimum separating family is NP-complete even for a family of convex polygons in
two dimensions [5]. If a family consists of only two polyhedral solids, we call its separating
family a separator. In three dimensions, the problem of �nding a minimum-facet separator
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for two polyhedral solids is NP-complete. The problem remains NP-complete even if only
one of the solids is nonconvex, or if the two polyhedra are convex nested polytopes [6, 7].

The problem of �nding a minimum separator has natural applications in surface approx-
imation. By \fattening" a surface � by an amount ", one obtains a pair of new surfaces
P and Q that \sandwich" � between them. A minimum polyhedral separator of P and
Q is a surface of least combinatorial complexity that approximates � within a tolerance of
". By computing a family of approximate surfaces, corresponding to various values of ",
one can construct a hierarchical representation of �, allowing the user the option to use a
sparse representation when the exact shape of � is irrelevant (e.g., when 
ying an airplane
at 36,000 feet over a terrain), or a more detailed representation when the application calls
for it (e.g., when 
ying at 1000 feet over the terrain). In two dimensions, if the fattened
region is an annulus, the methods of Aggarwal et al. [1] or Wang and Chan [25] solve this
problem in O(n logn) time. For large values of ", the fattening may create holes, in which
case, one wants a minimum-vertex simple polygon surrounding all the holes of the fattened
region. Guibas et al. [14] give an approximation algorithm for this problem. The results
presented in this paper can be used to approximate convex polyhedral surfaces in three and
higher dimensions.

1.2 Summary of results

We present polynomial-time approximation schemes for several NP-complete polyhedral
separability problems. We call a separating family R an f(n)-approximation if the ratio
between the number of facets inR and the number of facets in a minimum separating family
is bounded by f(n). Our main results are the following. In two dimensions, we give an
O(n logn) time algorithm for constructing a 7-approximation of the minimum separating
family for a set of disjoint polygons, where n is the number of edges in the input family
of polygons. In three dimensions, we show how to separate a convex polyhedron from a
nonconvex polyhedron using a polyhedral surface whose facet-complexity is O(logn) times
the optimal. Our algorithm runs in O(n4) time, but improves to O(n3) time if the two
polyhedra are nested and convex.

Our algorithm for separating a convex polyhedron from a nonconvex polyhedron ex-
tends easily to higher dimensions. In d dimensions, for d � 4, our algorithm produces an
O(d logn)-approximation of a minimum convex separator in O(nd+1) time. Finally, we also
obtain results on separating point sets, families of convex polyhedra and on separation by
non-polyhedral surfaces, such as spherical patches.

This paper is organized as follows. In Section 2, we consider the separation problem
for a family of simple convex polygons in the plane. Section 3 describes our approximation
scheme for separating two three-dimensional polyhedra. In Section 4, we consider the
problem of separating a family of three-dimensional convex polyhedra. Extensions and
generalizations to separation of two higher-dimensional polyhedra are discussed in Section 5.
In Section 6, we brie
y consider the polyhedral separation problem using non-polyhedral
surfaces. Finally, some concluding remarks and open problems are discussed in Section 7.

3



2 Polygon Separation in <2

In this section, we propose an approximation algorithm for separating a family of k pairwise-
disjoint simple polygons. This problem is NP-complete, even if all the polygons are convex,
or rectilinearly convex [5]. An approximation algorithm for a family of convex polygons
is given by Edelsbrunner, Robison and Shen [12]. They obtain a separating family of size
at most 6k � 9. No such result seems to be known for nonconvex polygons. In the case
of orthogonal nonconvex polygons, Das obtained a polynomial-time approximation method
that constructs a separating family of size at most (n + OPT )=2, where OPT is the size
of an optimal separating family for P [5]. The approximation method of Das [5] does not
guarantee a bounded ratio between the sizes of the heuristic and the optimal family.

We present a polynomial-time algorithm for constructing a separating family for a set of
k arbitrary simple polygons. The algorithm runs in O(n logn) time and produces an O(1)-
approximation of a minimum separating family; n denotes the total number of edges in the
input family. The quality of our approximation family can be stated in two ways: �rst, the
approximation family has at most 7 times the optimal number of edges, and second, the
family has no more than the optimal plus 9k edges. In other words, the additional number
of edges used by our family depends only on k, and not n.

There are several closely-related de�nitions of a separating family, depending upon such
considerations as whether the separating family has the same topology as P , or whether the
polygons in the separating family are edge disjoint. (For example, a separating family may
use nested polygons even if all the polygons in P have disjoint interiors.) Our approximation
holds for all of these de�nitions; however, we limit our discussion to what we consider to
be the most natural de�nition of a separating family, and only brie
y mention extensions
to other de�nitions of separators.

The de�nition we adopt is that of a separating subdivision. A separating subdivision R
of P is a polygonal subdivision of the plane such that any two polygons of P lie in di�erent
cells of R. The size of R, denoted jRj, is the total number of edges in R. In the following,
we show how to compute a 7-approximation of an optimal separating subdivision.

Without loss of generality, we assume that all the polygons in the family P lie inside
a large rectangular box B. We call the set of points B n P the free space; this is the set
of points in B that lies in the exterior of all the polygons of P . The main idea behind our
method is to partition the free space into a set of O(k) \moats." Our separating subdivision
is derived by computing a minimum-link path for each moat.

We start by triangulating the free space. Let T be a triangulation of free space, and
let GT be the graph-theoretic dual of T . Observe that GT has O(n) nodes and arcs, and
the maximum degree of a node is three. Further, GT has k + 1 faces, one for each of the k
polygons of P and one for the rectangular box B.

We contract GT by repeatedly removing degree-1 nodes. More precisely, if GT contains
a node of degree 1, we delete it along with its incident edge, and repeat, until there are no
nodes of degree 1. Observe that at the end of this procedure, the graph still has k+1 faces,
but now all nodes have degrees either 2 or 3. Next, we contract all degree-2 nodes: if v is
a node of degree 2, we delete v and replace its two incident edges by a single edge. (Notice
that this process might introduce loops, which are arcs with both endpoints incident to the
same node. In this case, we adopt the convention that a loop contributes 2 to the degree of
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its incident vertex.)
We denote by G the graph that is obtained at the end of this contraction process.

Figure 1 shows an example of three polygons, along with their triangulation and graph G.
We observe that G is a 3-regular planar multi-graph, with k + 1 faces. (In order to avoid
trivialities, we assume that k � 2; this guarantees that at least one node of GT , and thus one
node also of G, has degree 3.) The following lemma is an easy consequence of the formula
of Euler for planar graphs.

Lemma 2.1 G has k + 1 faces, 2k � 2 nodes, and 3k � 3 arcs.

X

Y

Z

Figure 1: Triangulation T and graph G for a family of polygons fX;Y;Zg. Triangulation
edges are drawn dotted, and arcs of G are drawn in heavy lines. The arc surrounding X is
a loop.

We now explain how to form \moats" using the graph G. Consider a node v and let
t = (x; y; z) be the triangle in T that is the dual of v. We introduce a (Steiner) point a
inside the triangle t, and connect it by straight line segments to the three corners of t; to
be consistent, we can always choose this point to be the centroid of t (although any point
interior to t su�ces). The point a is called a hub of t and the line segments (a; x); (a; y); (a; z)
are called spokes of t.1 We do this for all the nodes of G. The set of all spokes induces a
partition of the free space into polygonal regions, one per arc of G. We call these regions
moats , and de�ne them more formally in the following.

Consider an arc (u; v) of the graph G. Let a and d, respectively, denote the hubs
corresponding to u and v. Recall that the arc (u; v) is a contraction of a path in thea

1We associate hubs and spokes with both a triangle and its dual node.
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original graph GT , which in the primal corresponds to a sequence of triangles. (These
triangles together with the triangles corresponding to u and v form a corridor.) Let (b; c)
be the triangulation edges among these triangles that is closest to a, and let (e; f) be the
triangulation edge closest to d. Assume that the triangles (a; b; c) and (d; e; f) are oriented
clockwise. We note that the points c and e are vertices of a common polygon Pi; similarly,
b and f are vertices of a polygon Pj . The moat corresponding to the arc (u; v) consists
of the path (c; a; b), followed by the (counterclockwise) boundary chain of Pj from b to f ,
followed by the path (f; d; e) and then the (counterclockwise) boundary chain of Pi from e

to c. Figure 2 illustrates this construction.
We remark that degeneracies might arise in the above construction if the arc (u; v) is a

loop. In that case, the two hub points a and d, as well as two spokes might coincide. Thus,
the resulting polygon is \pinched" along the common spoke. A conceptual perturbation of
d still allows us to treat the moat as a simple polygon.

ac

b

d
e

f

X

Y

Z

Figure 2: A moat between the hubs a and d.

In the moat M constructed above, we call a and d the hubs of M , and the polygonal
chains between b and f , and between e and c, the banks of M . Either of the banks may
consist of a single vertex. Let M denote the family of all the moats; there is one moat per
arc of G.

We �nd our approximate separating subdivision by computing a minimum-link path in
each moat between its two hubs. If M is a moat, and a and d are its two hubs, then we
compute a minimum-link path from a to d inside M ; observe that in a moat corresponding
to a loop, this minimum-link path resembles a minimum nested polygon.

Let S denote the union of the minimum-link paths for all the moats. It is easy to see that
S is a subdivision. The following lemma shows that in fact it is a separating subdivision of
P .

Lemma 2.2 S is a separating subdivision of P.
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Proof. The graph GT can be embedded in the plane (in the obvious way) to yield a sepa-
rating subdivision, ST , of P . Since G is obtained from GT by removing degree-1 nodes and
doing edge contractions, G has an embedding in the plane that is homotopically equivalent
to the separating subdivision ST . By its de�nition, S is homotopically equivalent to such
an embedding of G, and hence to the separating subdivision ST . a

It remains to show that jSj is within a constant factor of the size of an optimal sepa-
rating subdivision. We start by de�ning a canonical separating subdivision. A polygonal
subdivision is called a canonical separating subdivision if (1) its edges are partitioned among
the moats of M, and (2) for each moat, there is a path between its two hubs, using only
the edges of the subdivision, and the vertices of the subdivision include all the hubs.

Clearly, our subdivision S is a canonical separating subdivision. We prove that an
optimal separating subdivision can be transformed into a canonical separating subdivision
by the addition of O(k) edges.

Consider a moatM 2 M with hubs a and d. We say that a polygonal chain C separates
M if a subchain of C lies within M and joins a point on the spokes incident to a to a point
on the spokes incident to d. The following lemma shows that a separating subdivision must
separate all the moats of M.

Lemma 2.3 If R is a separating subdivision for P, then for every moat M 2 M, there is
a chain of edges in R that separates M .

Proof. Suppose that R does not have a chain that separates M . Then the two (di�erent)
polygons, Pi and Pj , of P that form the banks of M can be connected by a path without
crossing an edge of R. But this contradicts the fact that Pi and Pj must lie in di�erent
cells of R, by the de�nition of separating subdivision. a

The following lemma shows how to transform a separating subdivision into a canonical
separating subdivision, by adding O(k) new edges.

Lemma 2.4 Let R be a separating subdivision of P. For each moat M 2 M, there exists
a polygonal chain that joins the two hubs of M within the moat and all but four edges of
the chain are in R.

Proof. By Lemma 2.3, there exists a chain C that joins a spoke incident to one hub of M
to a spoke incident to its other hub. Furthermore, all edges of C, except perhaps the two
extreme ones, lie completely in M . We can modify C by adding four edges, two on each
end, so that the new chain joins the two hubs. Figure 3 shows an example. In the �gure,
the chain C is shown by solid lines, and the modi�ed chain is shown by dotted lines. a

It follows from Lemma 2.4 that, by adding at most four vertices per moat (two at hubs
and two at spokes), we can transform R into a canonical separating subdivision. Among
the newly added vertices, 2k � 2 are hub vertices, each of which has degree 3 in the �nal
subdivision, and 2(3k�3) are spoke vertices, each of which has degree 2. The total increase
in vertex-edge incidences in the subdivision is

3� (2k � 2) + 2� (6k � 6) = 18k � 18:
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Chain  C

Moat  M

a b

Figure 3: Transforming a separating subdivision into a canonical separating subdivision.

Thus, the total number of newly added edges is (18k � 18)=2 = 9k � 9. Thus, an optimal
separating subdivision R can be converted into a canonical separating subdivision by the
addition of 9(k � 1) edges.

Finally, observe that S, by construction, is an optimal canonical separating subdivi-
sion; we used a minimum-link path in each moat. Thus, by comparing S with an optimal
subdivision R, we obtain

jSj � jRj+ 9(k � 1) = OPT + 9(k � 1):

In order to obtain a ratio-bound, we note that any subdivision of the plane with k faces
has at least 3k=2 edges. Thus, OPT � 3k=2, and our approximation bound is

f(n) =
jSja

OPT
� 1 +

9k � 9a
3k=2

� 7:

Finally, let us analyze the time complexity of our algorithm. A triangulation T can be
computed in time O(n logn) [21], or in time O(n+ k log1+� k), for an arbitrary � > 0, using
a recent result of Bar-Yehuda, Chazelle, and Grinwald [2]. We can compute and contract
the dual graph in linear additional time. Finally, �nding minimum-link paths in moats also
takes linear time; this can be done using an algorithm of Suri [24]. (Notice that the moats
are disjoint, and hence their combined complexity is linear.) We summarize our result in
the following theorem.

Theorem 2.5 Given a family P of k pairwise-disjoint simple polygons, with a total of n
edges, one can compute in time O(n logn) a separating subdivision of P with at most 9(k�1)
plus the optimal number of edges. The ratio between the sizes of the computed separating
subdivision and an optimal subdivision is bounded by 7.

Remark. If instead of a separating subdivision, we consider a separating family of polygons,
then a straightforward modi�cation of our analysis shows that a canonical family obtained
from minimum-link paths through moats gets within an additive term 18(k � 1), or a
multiplicative factor 7, of optimal. These bounds apply regardless whether or not we allow
nested polygons in the separating family. If a separating family has nested polygons, then
its homotopy class will be di�erent from that of P , but it is a separating family nonetheless.
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3 Polyhedral Separation in <3

3.1 Preliminaries

A polyhedron P in three dimensions is a set of points whose boundary consists of a union of
a �nite number of (closed) planar pieces, called facets. The facets of P meet along straight
line segments, called edges, and its edges meet at points, called vertices. We assume that
our polyhedra have genus zero, meaning that they are simply connected. The number of
vertices V (P ), edges E(P ) and facets F (P ) of P are related by the well-known formula of
Euler:

V (P )�E(P ) + F (P ) = 2 (1)

We will be concerned mainly with the number of facets of a polyhedron. We use the
shorter notation jP j to denote the number of facets, or the facet complexity, of the poly-
hedron P . To simplify the presentation, we restrict our discussion to bounded polyhedra,
although all our results hold for unbounded polyhedra as well.

A convex polyhedron P can be represented either as the convex hull of its vertex set,
or the common intersection of halfspaces determined by its facets. In this paper, we will
primarily use the halfspace-intersection form. Given a convex polyhedron P , we let H(P )
denote the family of hyperplanes that bound the facets of P ; thus, jP j = jH(P )j. (Each
member of H(P ) contributes a facet to P .) A hyperplane h 2 H(P ) bounds two halfspaces,
denoted h+ and h�, and we adopt the convention that the halfspace containing P is positive:

P =
\

h2H(P )

h+:

The family H(P ) will be referred to as the intersection form representation of P .
In the following two sections, we develop our approximation algorithm for separating a

convex polyhedron from a nonconvex polyhedron. For technical reasons, we assume that
the two given polyhedra, P and Q, are nested, namely, Q�P . This results in no loss of
generality, since we can easily modify one of the polyhedra to surround the other. (Without
loss of generality, assume that P is the nonconvex polyhedron. We put a suitably large box
B around P [Q, and consider a vertex p 2 P that is also a vertex of CH(P [Q), the convex
hull of the two polyhedra. The vertex p sees at least one corner, say b, of the box B. We
add a thin \tube" having a constant number of faces between p and b, thus connecting P
to B. Now, B \ P c plus the tube connecting p and b is a polyhedron P 0 that contains Q,
where P c is the complement of P . It is easy to see that any polyhedron separating P and
Q can be modi�ed, by the addition of at most one face, into a polyhedron nested between
P 0 and Q. ) Thus, a separator of P and Q is a polyhedron K such that Q�K �P . We say
that K is a minimum separator if K has the minimum possible facet-complexity. Clearly,
if M is a minimum separator, then jM j � min fjP j; jQjg. We say that a separator K is
an f(n)-approximation of a minimum separator if jKj=jM j � f(n). Our algorithm �nds
an O(logn)-approximation of the minimum separator, where n = jP j + jQj is the input
complexity.

A surface separates P from Q if and only if every path from a point on @P to a point on
@Q meets the surface. This notion of separation, though clearly su�cient, is algorithmically
not very attractive. In order to formulate the separation problem as a discrete problem,
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we partition the boundary @P into a polygonal cell complex, and then use the hyperplanes
from the set H(Q) to separate portions of this complex from Q. A set of hyperplanes that
together separates the entire cell complex will be used to form a separator polyhedron. We
use a greedy approach to select the hyperplanes, and then show that the facet-complexity
of the resulting separator is not too far from the optimal. The performance analysis of our
algorithm mimics the analysis of a well-known greedy set covering heuristic.

We �rst consider the special case of two convex nested polyhedra.

3.2 Separating nested convex polyhedra

The problem of minimally separating two nested convex polyhedra is one of the simplest
forms of polyhedral separation problem in 3-space. In this problem, we are given two nested
convex polyhedra P and Q, that is, Q�P , and we want to �nd a third polyhedron K with a
minimum number of facets such that Q�K�P . This problem in a dual form arises in the
study of sequential stochastic automata [23], where a minimum vertex nested polyhedron
is desired. In this application, the number of vertices in a polyhedron corresponds to the
number of states in a given machine, and the geometric containment of one polyhedron
by another corresponds to the covering of the state space of one machine by another. As
mentioned in the introduction, this problem is NP-complete [7], but our approximation
algorithm produces a solution having O(logn) times the optimal number of vertices. (The
problems of minimizing the number of vertices and the number of facets are duals of each
other, under a standard geometric transformation.)

3.2.1 Canonical separators and covering of P

We start by de�ning the canonical form of a separator polyhedron. LetH(Q) = fq1; q2; : : : ; qmg,
where m � n, be the intersection form of the inner polyhedron Q. We say that a separator
K is canonical if H(K)�H(Q); in other words, the hyperplanes bounding the facets of K
also bound facets of Q. Our �rst observation is that we can �nd an approximately minimum
separator by searching only the space of all canonical nested polyhedra. This reduces the
search space from in�nite to �nite.

Lemma 3.1 [Canonical Form] There exists a canonical separator of P and Q whose facet-
complexity is at most three times the facet-complexity of a minimum separator.

Proof. Let M be a minimum separator of P and Q, and let H(M) = fm1; m2; : : : ; mpg
be its intersection form. We can translate each mi towards Q until it becomes tangent
to Q and, thus, assume without loss of generality that each facet of M is incident with a
vertex of Q. Given a hyperplane m 2 H(M), let v 2 Q be a vertex incident to it, and let
q1(v); q2(v); : : : ; qs(v) be the hyperplanes of H(Q) passing through v. Observe that m+ �Ts

i=1 q
+
i (v), which implies that m�� Ss

i=1 q
�
i (v). By Caratheodory's Theorem (see [3, 22]),

there exist three hyperplanes qj(v); qk(v); ql(v) such that m�� q�j (v) [ q�k (v) [ q�l (v). We
replace m by the triple of hyperplanes qj(v); qk(v), and ql(v). Let

H(M 0) = (H(M)� fmg)
[

(qj(v)[ qk(v)[ ql(v)) :
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Then, it is easy to see that Q�M 0�M �P . By applying this procedure to all the hy-
perplanes of H(M), we obtain a new family of hyperplanes, say, H(K), such that (i)
H(K)�H(Q), (ii) Q�K �P , and (iii) jKj � 3jM j. Now, K is a canonical separator
and the proof is complete. a

We now discuss the discretization of @P , which is a partition of the boundary into a
family of polygonal cells. Let C(H) denote the cell complex formed on the boundary @P by
the family of hyperplanes H = H(Q). This cell complex is a subdivision of the surface @P
into convex polygonal cells, with disjoint relative interiors. The edges of C(H) are either
the portions of edges of P or they are contributed by the intersection between a hyperplane
of H and a facet of P . The vertices of C(H) are formed by an intersection between three
hyperplanes in the family H(P ) [ H(Q), such that at least one of the hyperplanes is from
H(P ). Thus, a vertex can either be a vertex of P (all three planes from H(P )), or it can
arise from an intersection between a plane of H(Q) and an edge of P , or it can arise from an
intersection between a plane of H(P ) and two planes of H(Q). We use the notation C(H)
to also denote the set of all cells in the complex.

Lemma 3.2 The cell complex C(H) has O(n2) vertices, edges and faces.

Proof. A plane qi 2 H intersects the boundary @P in a convex polygonal curve, 
(qi),
which has at most n vertices and edges. Two such curves, 
(qi) and 
(qj), i 6= j, can
intersect (cross) in at most two points. This follows since the points of crossing must lie
both on @P and on the line qi\qj ; but a line can cross the boundary of a convex polyhedron
in at most two points. Finally, the number of edges and vertices contributed by P itself is
at most n. Thus, the total number of vertices, edges and faces in the cell complex C(H) is
O(n2). a

Consider a hyperplane qi 2 H(Q). It divides the cells of C(H) into two sets: those
contained in the positive halfspace q+i and those contained in the negative halfspace q�i .
(Observe that since qi 2 H(Q), it does not properly intersect the interior of any cell in
C(H).) Let S(qi) denote the set of cells contained in the negative halfspace bounded by qi:

S(qi) = fc 2 C(H) j c � q�i g:

We say that qi covers the cells in S(qi), in the sense that qi separates any cell in S(qi) from
Q, and we call S(qi) the cover set of qi. We show that a subfamily of hyperplanes that covers
all the cells of C(H) forms a separator of P and Q, and that the following algorithm based
on a greedy strategy produces a good approximation of a minimum separator polyhedron.

3.2.2 The Algorithm and its analysis

The following procedure computes a separator polyhedron for P and Q.

Separate (P;Q)
1. C  C(H)
2. H(K)  ;

11



3. while C 6= ; do
4. Select a plane qi 2 H(Q) that maximizes jC \ S(qi)j
5. H(K)  H(K) [ fqig
6. C  C � S(qi)
7. end while
8. return H(K)

First, we show that the polyhedron K returned by the algorithm is, indeed, a separator
of P and Q; then, we provide an analysis of the running time of the algorithm; and, �nally,
we analyze the performance of our algorithm and show that K is a O(logn)-approximation
of a minimum separator.

Lemma 3.3 The polyhedron K returned by the algorithm Separate satis�es Q�K�P .

Proof. A cell c 2 C(H) is removed from the list C only after we add a plane qi to H(K)
such that c 2 q�. Since the cells of C(H) cover the boundary of P and since K =

\
q2H(K)

q+,

it follows that K�P . Further, since H(K)�H(Q), clearly Q�K. This completes the
proof. a

A straightforward implementation of the algorithm Separate would require O(n4) time:
n iterations of the while loop, each requiring O(n3) for updating the cover sets S(q) of all
the hyperplanes q 2 H(Q). By exploiting the fact that the total number of \incidences"
between the cells of C(H) and the cover sets is O(n3), we establish the following lemma.

Lemma 3.4 The algorithm Separate can be implemented to run in time O(n3).

Proof. We build the arrangement C(H), and compute the cover sets S(q), for all q 2 H(Q).
For each cell c 2 C(H), we also maintain the list L(c) of all the planes q 2 H such that
c 2 S(q). These steps take O(n3) time. Observe thatX

c2C(H)

jL(c)j = O(n3): (2)

The bound in Eq. (2) follows from the facts that the total number of cells is O(n2) and that
the maximum size of each list is n.

During the algorithm we maintain the sets C \ S(qi), for all qi. Initially, these sets are
given by our preprocessing step. After a plane qi is selected by the algorithm and added to
the set H(K), we remove each of the cells c 2 C \ S(qi) from the cover sets of other planes.
In particular, given a cell c 2 C \ S(qi), we scan the list L(c) and for each q 2 L(c), set
S(q) = S(q)�fcg. This takes time proportional to

X
c2C\S(qi)

jL(c)j. A cell c is processed only

once during the algorithm and, thus, the bound on the running time follows from Eq. (2).
a

To analyze the performance of our algorithm, we cast the problem as a set cover problem.
We have an underlying universal set C(H), and a family of subsets S = fS(h) j h 2
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Hg. We want to choose a minimum number of sets from S whose elements together cover
C(H). We start by establishing the connection between a set cover and a separator. The
following lemma shows that the sets associated with the hyperplanes in the intersection-form
representation of a separator cover the cell complex C(H).

Lemma 3.5 Let K be a canonical separator of P and Q, and let H(K) be its intersection
form. Then, C(H) =

[
h2H(K)

S(h).

Proof. Assume, for the sake of contradiction, that there exists a cell c 2 C(H) that is not
covered by the hyperplanes in H(K). In other words, c 2 h+, for all planes h 2 H(K). But,
since Q�

\
h2H(K)

h+, we can join some point of c with any point of Q by a path without

intersecting any of the planes in H(K), which contradicts the hypothesis that K separates
P from Q. Thus, the sets S(h), for h 2 H(K), must together cover all the cells of C(H). a

Thus, our problem is to show that the set cover found by the algorithm Separate is
close to an optimal set cover. Our analysis mimics the analysis of a well-known greedy
set cover heuristic, see Johnson [15] and Lov�asz [16]. We include a proof for the sake of
completeness | our presentation is borrowed from [4].

Let K be the separator returned by our greedy algorithm, and let M be an optimal
separator of P and Q. We will show that the set cover corresponding toK is within O(logn)
of an optimal set cover, say, the one corresponding to M . Let H(K) = fh1; h2; : : : ; hkg be
the intersection-form of K, and assume without loss of generality, that the algorithm picks
the planes in the order h1; h2; : : : ; hk. Let Si denote the cover set S(hi) corresponding to
the ith hyperplane, and let Ti denote the set of elements covered by the �rst i cover sets:

Ti =
iS

j=1
Sj.

When the ith hyperplane is picked, our greedy algorithm incurs a cost of one, which it
distributes evenly among the elements of Si that are covered for the �rst time. That is, if
c 2 Si is covered for the �rst time, then

cost(c) =
1a

jSi � Ti�1j :

Thus, the size of the set cover found by the greedy algorithm is

jH(K)j =
X

c2C(H)

cost(c)

�
X

h�2H(M)

X
c2S(h�)

cost(c): (3)

Next, we show that for any set S(h), h 2 H(Q),X
c2S(h)

cost(c) � O(logn): (4)

To prove the above inequality, let S = S(h) be an arbitrary set, and let ui = jS�Tij be
the number of elements in S that remain uncovered after the greedy algorithm has picked

13



its �rst i sets; we set u0 = jSj. Observe that ui�1 � ui, and ui�1 � ui elements of S are
covered for the �rst time by Si. Thus,

X
c2S

cost(c) =
kX
i=1

(ui�1 � ui) � 1a
jSi � Ti�1j :

However,
jSi � Ti�1j � jS � Ti�1j = ui�1;

since the greedy algorithm always picks a hyperplane that covers the most among the
remaining elements. It follows that

X
c2S

cost(c) �
kX
i=1

(ui�1 � ui) � 1a
ui�1

;

from which it follows easily that

X
c2S

cost(c) �
jSjX
i=1

1=i = O(logn):

Notice that a set S(h) can have size O(n2).
Now, Equations (3) and (4) together imply that

jH(K)j � O(logn)jH(M)j;

which shows that ratio between the facet-complexities of the greedy separator and an opti-
mal separator is O(logn). The following theorem summarizes this result.

Theorem 3.6 Let P and Q be two convex nested polyhedra in three dimensions, with a total
of n facets (resp., vertices). One can �nd an O(logn)-approximation of a minimum-facet
(resp., minimum-vertex) polyhedral separator of P and Q in O(n3) time.

3.3 Separating a convex polyhedron from a nonconvex polyhedron

We now consider two nested polyhedra P and Q, Q�P , one of which is convex and the
other is a general nonconvex polyhedron. Clearly, if P is convex, then we can simply replace
Q with the convex hull of Q and apply the algorithm of Section 3.2. If, on the other hand, P
is nonconvex (Q is convex), then we cannot simply replace P with its convex hull. Instead,
we note that the algorithm of the previous section still works for this case; however, the
running time deteriorates by a factor of n. The key di�erence lies in the size of the cell
complex C(H). We now elaborate on this di�erence.

It is easily observed that an optimal separator of P and Q is a convex polyhedron. Thus,
Lemma 3.1 applies, stating that there exists a canonical separator whose facet complexity
is at most three times the optimal. In order to invoke the algorithm Separate, we again
partition the surface @P into a cell complex C(H), which is formed by intersection of @P
with the family of hyperplanes H = H(Q). This cell complex is similar to the one in the
previous section, and consists of polygonal cells with disjoint interiors, however, the total
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number of vertices, edges, and faces is now O(n3) | this follows from the fact that a
cell complex produced by n planes in three dimensions has O(n3) cells, facets, edges and
vertices. Except for this di�erence in the size of C(H), the details and the analysis of the
approximation algorithm are identical to the convex case. The following theorem states our
result.

Theorem 3.7 Let P and Q be two polyhedra in three dimensions, one of which is con-
vex, with a total of n facets. One can �nd an O(logn)-approximation of a minimum-facet
polyhedral separator of P and Q in O(n4) time.

3.4 Separating two point sets

Our method also works if P and Q are two disjoint sets of points in three dimensions. In
this case, we can �nd an O(logn)-approximation of their minimum-facet convex separator.
Without loss of generality, assume that the convex hull of Q does not contain any point of P
| if neither convex hull is empty of points from the other set, then clearly P and Q cannot
be separated by a convex polyhedron. In this case, we let H(Q) denote the intersection
form of the convex hull of Q. The cover set S(q), for q 2 H(Q), is de�ned as the set of
points of P that lies in the negative halfspace bounded by q:

S(q) = fp 2 P j p � q�g:

The underlying set to be covered is P . It is easy to see that the algorithm Separate �nds
an O(logn)-approximate convex separator of P and Q. The running time improves to O(n2)
since there are n cover sets, each of size at most n.

Theorem 3.8 Let P and Q be two sets of n points in three dimensions. If the two point
sets are separable by a convex polyhedron, then one can �nd an O(logn)-approximation of
their minimum-facet convex separator in O(n2) time.

4 Separating k Disjoint Convex Polyhedra

Let P = fP1; P2; : : : ; Pkg be a family of k disjoint convex polyhedra in three dimensions,
with a total of n facets. We want to �nd a minimum separating family for P , that is, a
family of disjoint convex polyhedra fR1; R2; : : : ; Rkg, with Pi�Ri, such that

Pk
i=1 jRij is

minimized. This problem is NP-complete, even in two dimensions [5]. The following result,
however, guarantees a separating family whose size depends only on k, and not on n.

Theorem 4.1 Given a family of k convex polyhedra in three dimensions, a separating fam-
ily of size O(k2) always exists, and this bound cannot be improved in the worst case. After an
O(n) time preprocessing, one can �nd a separating family with O(k2) facets in O(k2 log2 n)
time, where n is the total complexity of the input polyhedra.

Proof. Let pi 2 Pi and pj 2 Pj denote two points that form a closest pair for Pi and Pj :

d(pi; pj) = minfd(x; y) j x 2 Pi; y 2 Pjg;
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where d(�; �) denotes the Euclidean distance. Let Bij denote the hyperplane that is normal
to the line determined by pi and pj, and that passes through the midpoint of the segment
(pi; pj). Let

Ri =
\
j 6=i

B+
ij ;

where B+
ij is the halfspace containing Pi. Observe that Ri is a convex polyhedron with at

most k facets and that Pi�Ri. Thus, R = fR1; R2; : : : ; Rkg is a separating family for P
and the total number of facets in R is O(k2).

To establish the lower bound on the size of a separating family, consider the family of
convex polygons shown in Figure 4. Let C be a unit-height cylinder whose base is shaped
like the regular k-gon in the center of Figure 4. The side length of the k-gon is assumed to
be large, so that the cylinder C looks like a \pancake." We place k copies of the cylinder
C at z = 2i, for z = 0; 1; : : :; k � 1. We lift the outer polygons into cylinders of height 2k,
extending from z = 0 to z = 2k. Any polyhedron that separates the ith cylinder Ci from
the remaining polyhedra has at least k + 2 facets. Thus, the total number of facets in the
whole separating family is at least 
(k2).

C

Figure 4: The top view of our lower bound construction for separating k convex polyhedra
in three dimensions.

Finally, in order to construct the polyhedron Ri, for i = 1; 2; : : : ; k, we only need to
�nd the minimum distance between two convex polyhedra. This can be done in O(log2 n)
time, assuming that the input polyhedra are preprocessed in a logarithmic hierarchy [8].
Such an hierarchy can be built in linear time from any other standard description of the
polyhedra, such as doubly-connected-edge-lists [20]. Thus, we can compute a separating
family consisting of O(k2) facets in O(k2 log2 n) time. a

5 Higher Dimensions

The separation algorithm of Section 3 was presented in enough abstraction to admit im-
mediate extension to higher dimensions. Suppose that P and Q are two d-dimensional
polyhedra, with a total of n facets. We assume that Q is convex and that Q�P . An easy
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extension of Lemma 3.1 shows that there always exists a canonical separator of P and Q
whose facet-complexity is at most d times the optimal. The combinatorial complexity of
the cell complex C(H) on the boundary of P is O(nd); the arrangement formed by n planes
in d-space has O(nd) faces of all dimensions. The cover set S(q), for q 2 H(Q), is the set
of d-dimensional cells in C(H) that lie in the closed halfspace q�. Our algorithm �nds a set
of hyperplanes H(K) that together separate every point of @P from Q. The same analysis
as before shows that the size of H(K) is within O(logn) of the best canonical separator.
The total running time of the algorithm is dominated by the initial construction of the
arrangement C(H) and the updating of cover sets.

Theorem 5.1 Let P and Q be two polyhedra in d dimensions, where d � 3 is considered
�xed. Assume that Q is convex and that P and Q have a total of n facets. In O(nd+1) time,
one can �nd a polyhedral separator of P and Q whose facet-complexity is O(d logn) times
the optimal.

6 Curved Surfaces

In many real applications, the surfaces of choice are non-polyhedral. Solid modelers, for
instance, often use boundary representations that include spherical patches in addition to
planes. Thus, it is interesting to investigate the separability problem using non-polyhedral
surfaces.

Consider, for instance, the problem of separating two polyhedral solids using a spherical
surface | we call a surface spherical if the enclosed solid is the intersection of a �nite
number of spheres. Given a spherical surface K, its intersection form H(K) is the set of
spheres that de�ne the \facets" of K. A separator K is called a canonical separator if each
sphere in H(K) is determined by four vertices of the inner polyhedron Q.

A simple extension of Lemma 3.1 shows that an optimal spherical separator can always
be transformed into a canonical separator, at the expense of increasing the facet-complexity
three-fold. There are O(n2) circumspheres of Q determined by quadruples of vertices of Q
| each such sphere corresponds to a Voronoi vertex in the farthest point Voronoi diagram
of the vertices of Q and this Voronoi diagram has O(n2) vertices [10].

We form the cell complex C by intersecting the O(n2) canonical spheres with the bound-
ary of P . This gives a subdivision of size O(n5) | each pair of spheres intersects @P in
O(n) points. By running our greedy heuristic on this cell complex, we can �nd a canonical
spherical separator whose facet-complexity is O(logn) times the optimal.

Theorem 6.1 Let P and Q be two polyhedra in three dimensions, one of which is convex,
with a total of n facets. In O(n7) time, one can �nd a spherical separator of P and Q whose
facet-complexity is O(logn) times the optimal.

Extensions to higher dimensions and other elementary surfaces can be obtained along
similar lines.
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7 Conclusion

We have presented polynomial-time approximation algorithms for several polyhedral sep-
aration problems. Our main results are an O(1)-approximation algorithm for a family of
polygons in the plane, and an O(logn)-approximation algorithm for separating a convex
polyhedron from a nonconvex polyhedron. The general topic of polyhedral separation and
approximation is quite fundamental, and poses several challenging problems of both theo-
retical and practical nature. There are numerous possibilities for further research on these
problems. We outline a few in the following.

1. Our algorithms for polyhedral separation are based on the greedy set-cover heuristic.
It is an interesting problem to determine if the special structure of the geometric
problem can be used to improve the logn approximation ratio.

2. Is it possible to improve the approximation ratio if the two polyhedral surfaces P and
Q are scaled copies of each other, or if they arise from the fattening of a single surface?

3. The problem of �nding approximation algorithms for separation of a family of non-
convex polyhedra in three (or more) dimensions remains open. While our methods
here cannot be applied directly to this problem, we suspect that some transformation
to a set-cover problem is possible. We are currently examining this problem.

4. Can our methods be generalized to handle separation with more general curved sur-
faces?

5. We have studied the problem of minimizing facet complexity of a separating surface.
It would be interesting to study the problem of �nding a minimum surface-area sepa-
rator. In two dimensions, the problem of �nding a minimum-length separating cycle
is known as the relative convex hull problem, and is well-studied. In three dimensions,
the problem of minimum-area surfaces has a long history in the physics and mathe-
matical literature on soap �lms. What can be said about approximation algorithms,
or about the problem of minimizing the area of a polyhedral separating surface?
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