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SEPARATION AXIOMS FOR INTERVAL TOPOLOGIES

MARCEL ERNE

Abstract. In Theorem 1 of this note, results of Kogan [2], Kolibiar [3],

Matsushima [4] and Wölk [7] concerning interval topologies are presented under a

common point of view, and further characterizations of the T2 axiom are obtained.

A sufficient order-theoretical condition for regularity of interval topologies is

established in Theorem 2. In lattices, this condition turns out to be equivalent both

to the T2 and to the T3 axiom. Hence, a Hausdorf f interval topology of a lattice is

already regular. However, an example of a poset is given where the interval

topology is T2 but not T3.

1. Introduction. It is well known that the interval topology of any chain satisfies

each of the separation axioms T0, . . . , T5 (cf. [6, p. 67]). This no longer holds if

chains are replaced with arbitrary lattices or posets. Although the interval topology

of any poset is T„ there are even complete lattices for which the interval topology

is not T2. A necessary and sufficient condition for the interval topology to be T2

has been given by M. Kolibiar [3]. In this note, we mainly study under which

conditions the interval topology may be regular. Specifically, in the case of lattices

we shall find that for interval topologies, the T2 axiom and the T3 axiom are

equivalent.

2. Basic notations. Let X be an arbitrary poset, the partial ordering of which is

indicated by the symbol < . For Y c X, Y^ and Y* denote the set of all lower and

upper bounds of Y, respectively. The sets

jc+ := {*}+ = {v G X: y < x}    and   x* := {*}* = {y E X: x < y)

are referred to as closed rays. Every closed ray, every set of the form

[x, z] = x* n z+ = {y £ X: x < y < z},

and the entire set X are called (closed) intervals. The interval topology 5E on X is the

smallest topology in which all intervals are closed sets. Thus the interval topology

(considered as the collection of all open sets) is generated by the set-complements

of all closed rays. In particular, each singleton

{x} =[x,x]

is closed in S£, and one has

Lemma 1. The interval topology of any poset is T,.
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3. The T2 axiom. For a subset W, let N(W) denote the set of all elements in X

which are neither upper nor lower bounds of W, i.e.

N(W) := X\(W*\j W*).

We shall write N(x) for N({x}) and N(x,y) for N({x,y}). Thus N(x) consists of

all elements not comparable with x. A set Y c X is finitely separable if there is a

finite subset F of y such that every element of Y is comparable with some element

of V. For the sake of brevity, we put

| y := {x <E X:x < y for some y E y) = U {v*: v S Y),

fy := {x G X: v < x for some y G y} = U {v*: v G y}.

Hence a set y c A' is finitely separable iff Y c | F u T V for some finite Fey.

The following assertion is clear by the definition of the interval topology.

Lemma 2. The sets X \ (J, Y u \Z), where Y and Z run over all finite subsets of X,

form a base of the interval topology.

As an easy consequence, one obtains

Lemma 3. The interval topology % of any poset X is T2 iff for all x ¥^y, there are

finite sets Y, Z with Y n (x, v}* = 0, Z n {x, v}f = 0, X = IY u fZ.

Proof. If £ is T2 then for x ¥=y, we can find finite sets Yx, Zx, Yy, Zy such that

x £ U >• X \ (IYX u ÎZJ, v £ F :- * \ (¿JJ, U \Zy\ Un V = 0. Thus
y := y^ u y, and Z := Zx u Z^ have the required properties.

Conversely, let Y, Z be finite sets such that Y n {x,y}* = 0, Z n {x, v}+ = 0,

* = |y u ÎZ. Then Í/ := X \ (l(Y \ x*) u Î(Z \ jc1)) and F := X \ (l(Y \y*)

U t(Z \ v1)) are disjoint open neighbourhoods of x and v, respectively.

Lemma 4. For any subset W of X containing at least two elements, N{ W) is finitely

separable iff there are finite sets Y, Z with Y n W* = 0, Z n »F+ = 0, JT U |Z
= *.

Proof. Suppose K c iV(fF) c|KuîK, \V\ < oo. Since |H^| > 2, we can

choosey, z El W with z ^ y. The sets y := V u { v} and Z := V u {z} have the

required properties. Conversely, assume Y n W* = 0, Z c\ W* = 0, J, y u |Z =

A' for some finite sets Y, Z. Then F := JV(fF) n (Y u Z) is a finite subset of

AT(JF), and it is easily verified that N(W) c [V u \V.

Corollary 1. If N(rV) is finitely separable and \W\ > 2 then for all sets Y

containing W, N( Y) is also finitely separable.

Proof. W c Y implies Y+ c W^ and Y* c W*, so we can apply Lemma 4.

By an antichain, we mean a set of pairwise incomparable elements. Adjoining a

least element 0 and a greatest element 1 to an infinite antichain, a complete lattice

is obtained in which N(0) and 7V(1) are finitely separable (being empty) while

N(0, 1) is not.
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Theorem 1. Consider the following statements for a partially ordered set X:

(a) X contains no infinite antichain.

(a') Every subset of X is finitely separable.

(b) For all x E X, the set N(x) is finitely separable.

(b') For every subset W of X, N( W) is finitely separable.

(c) For all x ¥=y, the set N(x,y) is finitely separable.

(c') For every subset W of X containing more than one element, N(W) is finitely

separable.

(c") The interval topology of X is T2.

One has the following implications:

(a) *> (a') =» (b) «» (b') => (c) ** (c') « (c").

Proof. The equivalence of (a) and (a') is clear. In view of Lemma 3, Lemma 4,

and Corollary 1, it only remains to show the implication (b)=»(c): Assume

x < z <y or y < z < x for some z. Then we find a finite set V c N(z) with

N(z) c | V u Î V, and W := V u {z} is a finite subset of N(x,y) with IW u î W

= X. In particular, N(x,y) is finitely separable. In all other cases, we obtain

N(x,y) = N(x) u N(y), and then hypothesis (b) ensures again that N(x,y) is

finitely separable.

The implication (a)=>(c") is due to E. S. Wölk [7], and (b)=>(c") has been

shown by Y. Matsushima [4] who also disproved the implication (b) => (a) by a

counterexample. The equivalence of (c) and (c") has been stated without proof by

M. Kolibiar in [3]. Moreover, Kolibiar has constructed an example where (c") but

not (b) holds. Finally, as F. S. Northam [5] has remarked, (c") implies that every

open interval ]x,y[ = {z: x < z <y} be finitely separable.

4. The T3 axiom. The investigation of regularity for interval topologies involves

some more effort. First of all, we reduce the separation of points from closed sets

to subbasic closed sets.

Lemma 5. The interval topology 5t of a poset X is regular (i.e. T3) iff the following

condition and its dual hold:

(*) For all x, y E X with x ^ y, there exist disjoint X-open sets U, V with x G U,

y+c V.

Proof. The necessity of this condition is clear. To show sufficiency, let A be an

arbitrary SE-closed set with x £ A. Then A can be written as an intersection of sets

Aj each of which is a finite union of closed rays, say

At - IY, U \Zi

where Y¡ and Z¡ are finite subsets of X (i E /). x & A implies x £ A¡ for some

/ e /, and it follows x \ y for all y G Y¡, z 4¿ x for all z E Z¡. Hence we find

open sets Uy, Vy with x E Uy, y1 c Vy, Uy n Vy = 0 (y E Y¡), and open sets U'z,

v; with x e t/;, z* c vz, u't n f; = 0 (z E Z,.). U := n{Uy: y E Y,} n
D{c/': z E Z,} is a neighbourhood of x, and V := \J{Vy: y E Y¡) u

U { V'z: z E Z,} is an open set disjoint from U and containing A¡. In particular,

A c V, and we have separated x and /I by disjoint open sets U, V.
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Remember that the interval topology is T2 iff the sets

N(x,y)-X\((x*nyf)\j(x*ny*))      (x*y)

are finitely separable. Now defining

M(x,y):=X\((x*ny*)l)x*),

P(x,y):=X\((x*ny')uy%

we can show a similar result concerning the T3 axiom:

Theorem 2. For the interval topology of a poset X to be regular it is sufficient that

for all x, y G X with x ^ y, the sets M(x,y) and P(x,y) are finitely separable. In

lattices, this condition is also necessary.

Proof. Suppose x { v. We have to separate x and v* by open sets. (Dual

arguments show that v and x* can be separated.) By hypothesis, there is a finite set

W with W c M(x, y) c | W u ]W. Define

Y:=wu{y],       Z»W\x\       Z':= (W \ vf) u {x}.

Then Y, Z, Z'are finite sets such that

(i) w c y
(2) w n xf n vf = 0, w = (w \ jc*) u (*f \ v^ c z u z;
(3) x G J, y (since x «j; v and JF n x* = 0),

(4) JcifZ (since Z n xf = 0),

(5)y+ n TZ'= 0 (since v+ n Z' = 0),

(6)* \ m(x, v) = (jc+ n v1) u x* c |y u tz;

(7) M(x,^) c 4W U T^ C iy U TZ u TZ' (by 1 and 2).

Hence,

x G t/:= A" \(iy uTZ) EÏ   (by 3 and 4),

v+c K:= A-XTZ'GS;   (by 5),

[/ n F = 0   (by 6 and 7).

In a lattice with join V and meet A, one has

JV(x, v) - * \ ((x A v)f U (x V v)*),

A/(x,v) = A-\((xA^)+Ux*),

i>(x,v) = A-\(v+u(xVy)»).

Furthermore, x ^=_y impUes x /\y <x\J y, and x ^ v implies x A v < x and

y < x Vv. Accordingly, the second statement in Theorem 2 can be sharpened to

Theorem 3. In a lattice, the following statements are equivalent:

(a) For all x, y with y < x, the set X \ ( vT U x*) is finitely separable.

(b) The interval topology is T2.

(c) The interval topology is T3 {regular).

The equivalence of (a) and (b) is due to S. A. Kogan [2].

In lattices, Matsushima's condition (Theorem 1, b) implies that for all x, v with

x ^ v, M(x,y) and P(x, y) are finitely separable. This implication no longer holds
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in arbitrary posets, and not even in semilattices.

Example 1. Adjoin three new elements x,y, z to the set Z of all integers and

define a partial ordering on X := Zu {x, y, z) by setting

*+ := Z u {x},        y+ := {a E Z: a > 0} u {>-},       z+ := X,

a* := {è E Z: 0 < 6 < a}        (a E Z, a > 0),

¿>t := {a EZ:0 <a < -6} u {b}       (bEZ,b<0).

Then A1 becomes a join-semilattice in which all points except x are isolated in the

interval topology. In particular, the separation axioms are trivially fulfilled. More-

over, an easy verification shows that for all w E X, N(w) is finitely separable.

However, M(x, y) is an infinite antichain and therefore not finitely separable. This

example also shows that in general, the condition stated in Theorem 2 is not

necessary for regularity.

Finally, let us construct a counterexample disproving the conjecture that

Matsushima's condition might imply regularity in general. Thereby, we shall see

that in arbitrary posets, the T3 axiom is strictly stonger than the T2 axiom.

Example 2. For any integer j > 1, let p(J) denote the least prime divisor of j.

Consider a set X constituted by three sequences (an), (bn), (c„), and define a partial

ordering on X by setting

bj < a, «=> /' ¥=j and   (i* = 1 orj = 1 orp(j) < i),

ck < bj <=> k ¥= I   and  j ¥= 1 and/>(./') > k,

ck < a¡ <=> k =fc I   and   (/' = 1 or k < i),

ck < c„ <=> n = 1    or    1 < k < n,

while all other pairs of distinct elements are assumed to be incomparable. A

straightforward computation shows that for all w E X, the set N(w) is finitely

separable, and in particular, the interval topology is T2. However, for x := ax and

y := c„ we shall see that x and the closed rayy* cannot be separated by open sets,

disproving regularity. In fact, a neighbourhood base for the point x is made up by

the sets

Uim := {by.] > m,p(j) > i) u {x}       (m > i),
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and for each prime number p = k + I > 2, a neighbourhood base of ck is con-

stituted by the sets

Vkn = {by.j > n,p(j) =p)u {ck}       (n >p).

All other points ck are isolated in the interval topology. Assume there would exist

disjoint open sets U, V such that x G U, v* c F. Then we find some m > i with

x G Uim C U. Choose a prime numberp = k + 1 > m. Then ct£/c F implies

c¿ G Vkn c F for some n > p. But for j := />", we obtain bj G í//m n Vkn = 0, a

contradiction.

:i = y_x'

Concluding Remark. By a theorem of O. Frink [1], the interval topology of a

lattice is compact iff the lattice is complete. Observing that a compact T2 space is

always normal (cf. [6, p. 25]), we infer that in complete lattices, the separation

axioms T2, T3 and T4 are trivially equivalent for the interval topology. It remains

open whether this is true in arbitrary lattices.
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