Separation Logic Contracts for a Java-like Language
with Fork/Join

Christian Haack!* and Clément Hurlin?**

! Radboud Universiteit Nijmegen, The Netherlands
2 INRIA Sophia Antipolis - Méditerranée, France

Abstract. We adapt a variant of permission-accounting separation logic to a con-
current Java-like language with fork/join. To support both concurrent reads and
information hiding, we combine fractional permissions with abstract predicates.
As an example, we present a separation logic contract for iterators that prevents
data races and concurrent modifications. Our program logic is presented in an al-
gorithmic style: we avoid structural rules for Hoare triples and formalize logical
reasoning about typed heaps by natural deduction rules and a set of sound ax-
ioms. We show that verified programs satisfy the following properties: data race
freedom, absence of null-dereferences and partial correctness.

1 Introduction
1.1 Context

Over the past ten years or so, substructural logics and type systems have proven to be
very valuable formalisms for reasoning about pointer-manipulating programs. Exam-
ples include static capabilities [10,11], alias types [29] and separation logic [18,28]. In
these systems, the underlying specification language contains linear formulas for spec-
ifying memory access policies. Whereas traditional program logics control memory
access via frame conditions, separation logic tightly integrates access policy specifica-
tions into the formula language itself. Formulas represent access tickets to heap space,
and possession of access tickets gets verified statically. Access policies are tightly cou-
pled with assertions about memory content, so that separation logic’s Hoare rules make
it impossible to maintain assertions that can be invalidated by thread interference or
memory updates through unknown aliases. This is achieved without annoying side con-
ditions like non-interference tests or frame conditions.

While initially separation logic mostly focused on low level programs, researchers
have more recently started to adapt it to object-oriented features for use in contract
languages for OO [25,26], and very recently [9,27].

1.2 Contributions

We present the careful design of a small Java-like model language with separation logic
contracts, including the definition of a program logic and its soundness proof. Our lan-
guage has simple threads, with fork/join as concurrency primitives. In order to facili-
tate concurrent reads we employ fractional permissions [5]. Our rules allow multiple

* Supported in part by IST-FET-2005-015905 Mobius project.
** Supported in part by IST-FET-2005-015905 Mobius and ANR-06-SETIN-010 ParSec project.

threads to join on the same thread, in order to read-share the dead thread’s resources.
This is not possible with a lexically scoped parallel composition operator or with Posix
threads, and is thus not supported by recent work that adapts separation logic to Posix
threads [14]. To support data abstraction and recursive data types, we use abstract
predicates [26]. Class axioms complement abstract predicates to export relations be-
tween predicates without revealing their full definitions. Abstract predicates satisfying
a split/merge axiom generalize datagroups [21], which are common in specification lan-
guages for OO. In order to support concurrent read access to whole datagroups (rather
than single fields), access permission to datagroups can be split by splitting their per-
mission parameters. In order to allow fine-grained permission-splitting for overlapping
datagroups, we support datagroups with multiple permission parameters. To achieve
modular soundness in the presence of subclassing, we axiomatize the “stack of class
frames” [12,1] in separation logic. We support value-parametrized classes, where class
parameters have the same purpose as final ghost fields in specification languages like
JML [20]. In particular, class parameters can represent static ownership relations.

1.3 Background on Separation Logic and Fractional Permissions

Separation logic combines the usual logical operators with the points-to predicate x. f —
v, the resource conjunction F * G, and the resource implication F —* G.

The predicate x.f +— v has a dual purpose: firstly, it asserts that the object field
x.f contains data value v and, secondly, it represents a ticket that grants permission to
access the field x. f. This is formalized by separation logic’s Hoare rules for reading and
writing fields:

{x.fre_*Flx.f=v{x.f—v* F} {x.f=v* Fly=x.f{x.f—v*v==y* F}

The crucial difference to standard Hoare logic is that both these rules have a precondi-
tion of the form x.f — _.* This formula functions as an access ticket for x.f.

It is important that tickets are not forgeable. One ticket is not the same as two tickets!
For this reason, the resource conjunction * is not idempotent: F' is not equivalent to
F *F. The resource implication —* matches the resource conjunction *, in the sense
that the modus ponens law is satisfied: F * (F -* G) implies G. However, F * (F -* G)
does not imply F * G. In English, F —* G is pronounced as “consume F yielding G”. In
terms of tickets, ' —* G permits to trade ticket F and receive ticket G in return.

Separation logic is particularly useful for concurrent programs: two concurrent
threads simply split the resources that they may access, as formalized by the rule for the
parallel composition ¢ | ¢’ of threads ¢ and ¢’ [22].

{F}{G} {F'}'{G'}
{FxF'}t|/{G*G'}

With this concurrency rule, separation logic prevents data races. There is a caveat,
though. The rule does not allow concurrent reads. Boyland [5] solved this problem
with a very intuitive idea, which was later adapted to separation logic [4]. The idea
is that (1) access tickets are splittable, (2) a split of an access ticket still grants read
access and (3) only a whole access ticket grants write access. To account for multiple

3 x.f + _is short for () (x.f > v).

 abandon
iterator and

get back access
right for ¢y, hasNext()
\CD init(c) Q
init
abandon access hasNext()==true

right for ¢
1
1
|
|

element=next()

get access right for element

.abandon access
right for element ',

Remove

Fig. 1. Usage Protocol for Iterators

splits, Boyland uses fractions, hence the name fractional permissions. In permission-
accounting separation logic [4], access tickets x. f — v are superscripted by fractions 7.

. . /2 /2 .. .
x.f v s equivalent to x.f >L> v ox x.f |L> v. In the Hoare rules, writing requires
the full fraction 1, whereas reading just requires some fraction 7:

{x.f»Ln* F}x.f=v{x.f»¢>v * F} {x.flin} * F}y=x.f{x.f|i>v xy==y * F}

Permission-accounting separation logic maintains the global invariant that the sum of
all fractional permissions to the same cell is always at most 1. This prevents read-write
and write-write conflicts, but permits concurrent reads.

In our Java-like language, we use ASCII and write Perm (x.f, 7) for x.f V25 _, and
PointsTo (x.f,7,v) for x.f — v.

1.4 Example: A Usage Protocol for Iterators

Often one wants to constrain object clients to adhere to certain usage protocols. Object
usage protocols can, for instance, be specified in typestate systems [2] or, using ghost
fields, in general purpose specification languages. A limitation of these techniques is
that state transitions must always be associated with method calls. This is sometimes
not sufficient. Consider for instance a variant of Java’s Iterator interface (enriched
with an init method to avoid constructor contracts):

If iterators are used in an undisciplined way, there

interface Iterator { is the danger of unwanted concurrent modifica-
void init(Collection c¢); tion of the underlying collection (both of the col-
boolean hasNext(); lection elements and the collection itself). More-
Object next(); over, in concurrent programs bad iterator usage
void remove(); can result in data races. It is therefore important
b that Iterator clients adhere to a usage discipline.

Figure 1 shows a state machine that defines a safe
iterator usage discipline. Unfortunately, the dashed transitions are not supported by ex-
isting typestate systems, because they are not associated with method calls. Specifying

this protocol with classical program logics would be clumsy. In [13] (Section 1.1.4),
Girard explains how linear implications can be used to logically represent state transi-
tions. Applying this idea to the iterator protocol, we obtain the following formalization
where the dashed transitions are represented by resource implications:

interface Iterator<perm p, Collection iteratee> {
pred ready; // prestate for iteration cycle
pred readyForNext; // prestate for next()
pred readyForRemove<Object element>; // prestate for remove()
axiom ready -* iteratee.state<p>; // stop iterating
axiom readyForRemove<e> * e.state<p> -* ready; // back to ready
req init * c.state<p> * c==iteratee; ens ready;
void init(Collection c);
req ready; ens ready & (result —* readyForNext);
boolean hasNext();
req readyForNext; ens result.state<p> * readyForRemove<result>;
Object next();
req readyForRemove<_> * p==1; ens ready;
void remove();

}

The interface has two parameters: firstly, a permission p and, secondly, the iteratee.
If the permission parameter is instantiated by a fraction p < 1, one obtains a read-only
iterator, otherwise a read-write iterator. The states of our our state diagram are repre-
sented by three abstract predicates: ready, readyForNext and readyForRemove.

Class axioms express relations between abstract predicates, without revealing the
complete predicate definitions. Implementations must define the abstract predicates by
separation logic formulas such that the class axioms are tautologically true. In the ex-
ample, the two class axioms represent the dashed transitions of the state machine. We
represent the heap space associated with an object by a generic datagroup state, which
has a default definition in the Object class and needs to be overridden by each class.
The definition of this state predicate should describe the heap space associated with
the object. Often this heap space will consist of the object’s fields only, but sometimes
it will also include other objects and change dynamically, as in the case of Collection
objects. The state predicate is parametrized by a fraction so that it can be read-shared.

The precondition of init () consumes a fraction p of the access right for the iter-
atee and puts the iterator in the ready state. The crux is that, by linearity, the iterator
client temporarily looses a p-fraction of the access right on the collection, which he can
only gain back by “invoking” the first class axiom. The init predicate in init()’s
precondition is a special abstract predicate that every object enters right after object
creation and that grants access to all of the object’s fields.

The postcondition of hasNext () uses a resource implication whose antecedent is
a boolean expression. We treat boolean expressions as copyable resources that satisfy
e —* (e*e).* Furthermore, hasNext ()’s postcondition uses additive conjunction &. A

4 We could equivalently use classical implication: result = readyForNext. Even the two
class axioms could equivalently use classical implication, because they are tautologies, and in

resource satisfies F & G, if it satisfies both F and G.> Operationally, & represents choice.
If F & G holds, then F and G are available, but are interdependent: using either one of
them destroys the other one, too. Additive conjunction can conveniently represent non-
deterministic state transitions, as exhibited in hasNext ()’s postcondition. Note that
this postcondition allows clients to stay in the ready-state, even if hasNext () ==true.
This can, for instance, be useful for removing the 10th element of an ordered collection.

In our companion report [16], we have implemented the Iterator interface for a
doubly linked list implementation of the Collection interface. In [15], we refine the
protocol to support unrestricted access to immutable collection elements, and to support
shallow collections that do not govern access to their elements.

1.5 Example: Representing Datagroups

We represent datagroups [21] as abstract predicates satisfying a datagroup axiom that
says split/merging datagroup parameters split/merges datagroups:

_ 4 pred P<T x>; axiom P<i> *x—* (P<&>* P<é>);
group P<T x>, = a . 4 .
where e; = x;/2, if T; = perm, and ¢; = x;, otherwise

The formula F *—* G is short for (F —*x G) & (G - F). Here are simple examples of a
legal and an illegal datagroup definition (where | is disjunction):

group P<perm p> = Perm(this.f,p) * Perm(this.g,p);
legal because the datagroup axiom holds
group P<perm p> = Perm(this.f,p) | Perm(this.g,p);
illegal because the datagroup axiom’s right-to-left direction does not hold

On the right, you see a fractional interface Sprite {

permission version of Leino’s run- group position<perm p>;

ning example [21]. The datagroups group color<perm p>;

position and color are nested axiom position<p> ispartof state<p>;
in state, as expressed by the axiom color<p> ispartof state<p>;
two class axioms. The formula req position<l>; ens position<i>;
“F ispartof G” is a derived void updatePosition();

form for G-* (F* (F-xG)). In- req color<1>; ens color<i>;
tuitively, this formula says that F void updateColor();

is a physical part of G: one can req state<i>; ens state<i>;

take G apart into F' and its comple- void update();

ment F'—* G, and one can put the req state<p>; ens state<p>;

two parts back together to obtain G void display();

back. }

intuitionistic separation logic F —* G is a tautology if and only if ' = G is. However, in our
implementations of the Iterator interface, we use true resource implications that cannot be
replaced by classical implications. In this paper, we avoid classical implication because having
just one implication simplifies the natural deduction rules for reasoning about resources.

5 In contrast, a resource satisfies F * G if it can be split into separate resources, one of which
satisfies F and the other satisfies G.

1.6 Example: Recursive and Overlapping Datagroups

Our next example illustrates that multiple threads can concurrently access overlapping
datagroups, as long as they only read-access their intersection. Consider a linked list
that implements a simple class roster. Each node stores a student identifier and a grade.
We design the roster interface so that multiple threads can concurrently read the ros-
ter. Moreover, when a thread updates the grades we allow other threads to concur-
rently read the student identifiers. To this end, the interface defines two datagroups
ids_and_links<p,q> and grades_and_links<p,q> that overlap in the links of the
list. The permission parameter p is associated with the student id fields and grade fields,
respectively. The permission parameter q is associated with the links.

interface Roster {

group ids_and_links<perm p, perm g>;

group grades_and_links<perm p, perm gq>;

axiom state<p> *-* (ids_and links<p,p/2> * grades_and_links<p,p/2>);
req grades_and links<1,p> * ids_and_links<q,r>;

ens grades_and_links<1,p> * ids_and_links<q,r>;

void updateGrade(int id, int grade);

req ids_and_links<p,q>; ens ids_and_links<p,q>;

bool contains(int id);

}

The updateGrade () method requires write access (permission 1) for the grades and
read access for the links and ids. The contains () method requires read permission for
the ids and the links. The axiom exposes that the state datagroup is the union of the
datagroups ids_and_links and grades_and_links and that these datagroups overlap
on the links. In our companion report [6], we have implemented this interface.

2 A Model Language with Separation Logic Contacts
2.1 Syntax

We distinguish between read-only variables i, read-write variables ¢, and logic vari-
ables . Method parameters (including this) are read-only. Logic variables can only
occur in specifications and types. They range over both fractional permissions and val-
ues (like integers, object identifiers and null).

C,D e Classld I¢€lInterld s,r € Tyld=Classld U Interld o,p,q € Objld f € Fieldld
m € Methld P € Predld 1€ RdVar ¢ € RdWrVar « € LogVar
x,¥,z € Var = RdVar U RdWrVar U LogVar

We include read-only variables (but not read-write variables) in the syntax domain
of values. This is convenient for our substitution-based operational semantics. Frac-
tional permissions are represented symbolically: split”(1) represents the concrete
fraction 2%, In examples, we sometimes write 2]7 as syntax sugar for split”(1). Spec-
ification values union values and fractional permissions. Interfaces and classes are
parametrized by specification values. Correspondingly, object types <> instantiate
the parameters.

n € Int integers b € Bool = {true,false} booleans

uyyweVal m=mnull | n | b|o |1 values
weSpecVal m= v | 1| split(w) | a specification values
T,U,V,W €Ty = void | int | bool | <> | perm types

Interface Declarations:

I
F € Formula ::= ... specification formulas (defined in Section 2.3)

spec ::= reqF;ensF; pre- and postconditions

mt = <T a>specUm(V1) method types (scope of &,iis T ,spec,U,V)
pt == pred P<T a> predicate types

ax 1= axiom F class axioms

int € Interface ::= interface I<T &> ext U {pt* ax* mt*}

interfaces (scope of & is T, U, pt*, ax*, mt*)

Syntactic restriction: The type “perm” may only occur inside angle brackets or formulas.
| |

Method types include pre- and postconditions and are parametrized by logic variables.
In examples, we often leave these quantifiers over logic variables implicit. Interfaces
may declare abstract predicates and classes must implement them by providing con-
crete definitions as separation logic formulas. Like [26], we allow abstract predicates to
have parameters in addition to the implicit self-parameter (as listed in the typed formal
parameter lists T &). The types T for predicate parameters range over all Java types and
the distinguished type perm for fractional permissions.

We assume that the Object class declares a distinguished datagroup called state:

class Object { group state<perm p> = true; }

This datagroup represents the access permissions for the object state. Every class must
extend it and thereby define what the object states of its instances are. Our syntax for
predicate extensions is as follows:

class C ext D { ... ext pred P<T%> by F; ...}

Semantically, the extension F of abstract predicate P gets *-conjoined with P’s defini-
tion in C’s superclass D. We do not allow arbitrary predicate redefinitions in subclasses
in order to facilitate modular verification, avoiding re-verification of inherited methods.

Class Declarations:
I 1

fd :=Tf field declarations

pd = predicate definitions
final? pred P<T a>=F root definition (scope of & is F)
final? ext pred P<T &> by F extension (scope of & is F)

md = final? <T a>spec U m(V1){c} method (scope of &,7is T,spec,U,V,c)
cl € Class ::= final? class C<T &> ext U impl V {fd* pd* ax* md*}
class (scope of & is T,U,V,fd*, pd*, ax*,md*)
ct C Interface U Class class tables
Syntactic restrictions:
e The type “perm” may only occur inside angle brackets or specification formulas.

e Cyclic predicate definitions in ¢z must be positive.
| |

The first syntactic restriction ensures that fractional permissions do not spill into the
executable part of the language. The second syntactic restriction ensures that predicate
implementations (which can be recursive) are well-founded. We allow negative depen-
dencies of predicate P on predicate Q as long as Q does not also depend on P.

We use the symbol =<, for the partial order on type identifiers induced by class
table ct, usually leaving the subscript ct implicit. We write s <1 ¢ when s and ¢ are
neighbours with respect to <. Subtyping is inductively defined by the following rules:

T<:T T<UU<V =T<V s<Ta>extt<it/> = s<ii> <:1<@'[/a)>

(<> <:0bject 1<T @>impl I<7'> = <> < I<T' [T/ a)>
We assume that class tables always contain the following class declaration:
class Thread ext Object {
final void fork(); final void joinQ);
req false; ens true; void run() { null }

}

The run-method is meant to be overridden. The contracts for fork and join are omit-
ted, because our verification system ignores them anyway. Instead, it uses the precon-
dition for run as the precondition for fork and the postcondition for run as the post-
condition for join. The methods fork and join do not have implementations, but the
operational semantics treats them in a special way®: o.fork() creates a new thread,
whose thread identifier is o, and executes o.run() in this thread. The o.f ork-method
should not be called more than once (on the same receiver o). A second call results in
blocking. 0.join() blocks until thread o has terminated.

Commands:
I 1
opeOp D {==1.& |} U {Cisclassof |C € Classld}
ceCmd:= commands
v return value (or null in case of type void)
TV c local variable declaration (scope of ¢ is ¢)
final T i1=/(;¢c local read-only variable declaration (scope of 1 is ¢)
unpack (exT a) (F);c unpacking an existential (scope of & is F, ¢)
he; ¢ first do hc, then do ¢

hc € HeadCmd = l=v | L=0p(V) | £=v.f | v.f=v | £=(T)v | L=new C<T> |
if (W {cYelse{c'} | £=v.m<A>(¥) | assert(F)

Synt. Restr.: Logic variables that occur in /=new C<Z> must be bound by class parameters.
| |

Our command language assumes that Java-like commands have been transformed so
that intermediate values are always assigned to local variables. Following [17], we as-
sume that methods only return at the end of their body. We omit the return-command.
Values are included in the syntax domain of commands, so that a terminating, non-
blocking execution of a command results in the return value. Methods of type void
return null, which is the only member of type void. We usually omit terminating
occurrences of null. The operator for existential unpacking has no effect at runtime.
It makes the existential variable o available in the continuation ¢ for instantiation of
logic method parameters. In examples, we often omit explicit existential unpacking and
instantiation of logic method parameters. Making these explicit helps with the theory.

6 In reality, they would be implemented natively.

2.2 Operational Semantics

Runtime Structures:

I

ClVal = Val \ RdVar closed values
s € Stack = RdWrVar — ClIVal stacks

t € Thread = Stack x Cmd = sinc threads

ts € ThreadPool = Objld — Thread ::= ojist{ | --- |oyist, thread pools
os € ObjStore = Fieldld — ClIVal object stores
obj € Obj = Ty x ObjStore ::= (T,o0s) objects

h € Heap = Objld — Obj heaps

st € State = Heap x ThreadPool ::= (h, ts) states

prog € Program = ClassTable x Cmd = (ct,¢) programs

|

Each thread “s in ¢” consists of a thread-local stack s and a process continuation c. In
thread pools, each thread ¢ is associated with a unique object identifier, which serves as
a thread identifier. The dynamic semantics of our language is a small-step operational
semantics st —; st and can be found in [16].

There is one (and only one) reduction rule where our operational semantics de-
pends on class parameters, namely the reduction rule for type casts. Downcasts to
parametrized types require a runtime check that looks at the type parameters, which
the standard JVM does not keep track of. There are at least three ways how one could
deal with that in practice: Firstly (and most pragmatically), one could simply forbid
downcasts to reference types that have a non-empty parameter list. Secondly, one could
develop an enhanced virtual machine that keeps track of class parameters. Thirdly, one
could devise a syntactic translation that erases class parameters such that the target of
this translation throws a ClassCastException whenever the source does.

2.3 Specification Formulas and Their Semantics

Specification Formulas:
I

ecExp u=m | (| op(é) lop € {*,-x,&, |} gt € {ex,fa}

K € Pred ::= predicates

P P at receiver’s dynamic class

paC P atclass C
E,F,G,H € Formula ::= specification formulas

e boolean expression

PointsTo(e.f,m,e') e.f points to ¢’ and the access permission for e.f is 7

Perm(e.join,) permission to use a split of join’s postcondition

T.K<T'> predicate 7.k applied to 7’

Flop G binary logical operator

(¢t Ta)(F) quantifier

Derived forms: F *—*G L2 (F+G)& (G-*F) F assures G = F —* (F*G)
F ispartof G =G —* (F* (F -*G))

The formula semantics is defined by a Kripke resource interpretation [23] of the form
't &;%;s = F, where I is a type environment, & is a predicate environment that
maps predicate names to predicates, Z is a resource, and s is a stack. Resources are
triples Z = (h, &, 2) of heaps h and two permission tables &2 and 2. Permission

tables are functions of type Objld x (Fieldld x {join}) — [0,1] that map fields and
join to fractional permissions. The resource components 4 and & are local resources,
whereas 2 is a global resource. We denote the projections to the resource components
by %hp, Hioc and Hgio. The definition of the forcing relation |= is pretty standard, and
we refer to [16] for details.

2.4 Soundness Theorems

Below, we define a verification system whose top level judgment is prog : ¢ (read: “prog
is verified”). We have proven a preservation theorem from which we can draw several
corollaries, namely, data race freedom, null error freedom and partial correctness.

A pair (he, hc’) of head commands is called a data race iff hc = (o0.f=v) and either
he' = (o0.f=V') or hd' = ({=o0.f) for some o, f,v,V,£. A head command hc is called a
null error iff he = (¢=null.f) or hc = (null.f=v) or hc = ({=null.m<aT>(V)). We
define initial states: init(c) = ({main — (Thread,0)}, mainis (0 in ¢)), where main is
some distinguished object id for the main thread. The main thread has an empty set of
fields (hence the first 0), and its stack is initially empty (hence the second 0).

Theorem 1 (Verified Programs are Data Race Free). If (ct,c) : ¢ and init(c) —
(h,ts | o1 is (s1in herser) | o2 is (52 in hep;er)), then (hey,hey) is not a data race.

*
ct

Theorem 2 (Verified Programs are Null Error Free). If (ct,c) : ¢ and init(c) —
(h,ts | ois (sin hc;c)), then he is not a null error.

Theorem 3 (Partial Correctness).
If (ct,c) s o andinit(c) =2, (h,ts|ois (sinassert (F);c)), then (I' - &;%;s = F[o])
for some I', &, X such that %n, = h, and 6 € LogVar — SpecVal.

3 The Verification System
3.1 Proof Theory

Many presentations of separation logic are based on a model-theoretic logical conse-
quence. We, instead, define logical consequence proof-theoretically. This gives our sys-
tem an algorithmic flavour, similar to recent static assertion checkers for fragments of
separation logic [2,9] that are built upon proof-theoretic decision procedures’.

C;v,FFG from v’s point of view, G is a logical consequence of the *-conjunction of F
I';vEF from v’s point of view, F' is an axiom

In the former judgment, F' is a multiset of formulas. The parameter v represents the
current receiver, which is needed to determine the scope of predicate definitions.

The logical consequence judgment is driven by standard natural deduction rules that
are common to the logic of bunched implications [23] and linear logic [30]. These rules
are detailed in [16]. We admit weakening, because Java is a garbage-collected language.
The link between I';v;F I G and the axiom judgment I";v - F is established by the
following rule. (We omit the definitions of typing judgments 'Fv:T and ' F : ¢.)

7 Unfortunately, these fragments do not include —*, as needed for our iterator implementation.

10

C;vEG T'Rv:0bject 'FF,G:o
;vi;FEG
We now define the complete set of axioms. First, we repeat the split/merge law:

I';vF PointsTo(e.f,m,¢') ** (PointsTo(e.f, §,¢') * PointsTo(e.f, F,€))
I';vE Perm(e.join,) *—* (Perm(e.join, Z) * Perm(e.join, %))
For the following axioms, recall that “F assures G” abbreviates “F —* (FxG)”.
I';vE true I';vifalse-*F I'svE (e& F) —* (ex F)
;v (PointsTo(e.f,7,e') & PointsTo(e.f,7n',e")) assures ¢ ==¢”
(T'tee:T ANT,x:THF:0)=T;vk (Fle/x]*e==¢') - F[e’ /x]
The third of these axioms implies that boolean expressions are copyable: e —* (exe).

The following axiom lifts semantic validity of boolean expressions (which we do
not axiomatize) to our proof theory:

(CT'E'egllex |l €) = vk (ep*xep) ¢
The next axiom allows to apply class axioms. Here, axiom(¢<&'>) is the *-conjunction
of all class axioms in #<&’> and its supertypes.
(C'E 7 t<@'> A axiom(1<@'>) =F) = I';vt F[n/this]
The open/close axiom allows predicate receivers to replace abstract predicates by their

definitions. It uses a function pbody(v.P<ZT>,C<@'>) that returns the extension F of
predicate v.P<@> in class C<T'>.
(C'+v:C<A"> A pbody(v.P<T,'>,C<i">)=F A C <1 D)
= ;v Fv.POCLTT, t'> *-* (F *v.P@D<T>)

Note that the current receiver, as represented on the left of I, has to match the predicate
receiver on the right. This rule is the only reason why our logical consequence judg-
ment tracks the current receiver. Note also that P@C may have a higher arity than P@D:
following [26] we allow subclasses to extend predicate arities.

The following axiom deals with unqualified predicates with missing parameters:

vl 7. P<> *—* (ex T &) (m.P<7T,0>)

The following axioms capture additional facts about abstract predicates. Recall that

“F ispartof G” is defined as G —* (F x (F -xG)).
I';vEnull. k<> I';vE m.P@0bject I';vE m.POC<7> ispartof m.P<T>
C <D = I';vF m.PeD<7> ispartof m.PQC<T,'>
The next axioms allow to drop the class modifier C from 7.P@C, if we know that C is
7’s dynamic class:
I';vE (m.PRC<7> * C isclassof @) —* T.P<T>
(Cisfinal or Pis finalinC) = I';vF m.P@C<T> — 7T.P<T>

Here, the expression “7 isclassof C” evaluates to true whenever C is 7’s dynamic
class. “C isclassof m” surely holds right after object 7 of class C has been created.
Consequently, our Hoare rules introduce it as a postcondition of object creation com-
mands. The second axiom makes use of final classes (resp. predicates), which are
classes (resp. predicates) that are prohibited to be extended.

11

3.2 Method Subtyping
Method types are of the following form:
<T a>reqF;ens G, UmVyip; V1)
In method types, we make the self-parameter explicit, separated from the other formal
parameters by a semicolon. In the scheme above, ¢ is the self-parameter.

Before presenting the method subtyping rule in full generality, we present its in-
stance for method types without logic parameters:

U Vo,V < U V5,V T up:Vp,1:V'; 19; truek F' —x (F* (faUresult) (G-*G))
I'treqF;ens G;Um(Vyip; V1) <:reqF';ens G; U m(Vjip;V'D)

This rule has the following two derived rules (where types are elided):
FF'+xF +G-*G
FreqF;ens G <:reqF’;ens G FreqF;ens G <:reqF*H;ens Gx H

The first of these derived rules is standard behavioural subtyping, the second one ab-
stracts separation logic’s frame rule. In order to see that these two rules follow from the
above rule, note that the following two formulas are tautologies (as can be easily proven
by natural deduction):

(F'-*F)*H-*xF' -« FxH F+xH-xF*(faUx) (G-* G* H)
The general method subtyping rule also accounts for logic parameters:®
m # run T,U Vo,V <: T, U"V},V
I,i9:Vosig;true b (fa T/ &) (£a V') (F' —x (exWa&') (F* (faUresult) (G-*G')))
I'E<Ta,Wa'>reqF;ens G, Um(Vyip; VD) <:<T’@>reqF’; ens G'; U'm(Vj1p; V'D

Note that the subtype may have more logic parameters than the supertype. For instance,
we obtain the following derived rule:

F<Ta>reqF;ens G <:req (exT a) (F);ens (exT a) (G)

This derived rule is an abstraction of separation logic’s auxiliary variable rule. It follows
from the method subtyping rule by the following tautology:

(exT) (F)—*(exTa) (Fx(faUx)(G—* (exT) (()))

3.3 Hoare Triples

Our Hoare rules are syntax-directed, omitting structural rules. Separation logic’s frame
rule is admissible. Separation logic’s auxiliary variable rule is subsumed by our syntax
for existential unpacking. We omit the rules of conjunction and disjunction, and did not
need them in the examples we considered. We could soundly add the rule of disjunction.
To add the rule of conjunction, we would need to assume that preconditions of run ()
are supported [14].°

8 The subtyping rule for run is restricted to avoid dependencies between pre- and postcondition.

9 Supported formulas are formulas that have the property that, for any resource, the set of sub-
resources that satisfy it is either empty or has a least element. They play a similar role for
intuitionistic predicates, as precise formulas for non-intuitionistic predicates [24]. In our vari-
ant of separation logic, all predicates are intuitionistic, as we admit weakening.

12

Hoare triples have the forms (I';vF {F}c: T{G}) and (I';vF {F }hc{G}), where v
is the receiver parameter. We present a few selected rules and refer to [16] for the com-
plete rule system.

The rules for reading and writing fields are standard:

;v F -PointsTo(w.f,mu) I'kw:U TfefldU) Tlw/this|<:I'({) (¢F

i {FH=w.f{F*{==u}

I'kv,F:0bject,o I'tu:U TfefldlU) I'kw:Tu/this]
I';vE {F*PointsTo(u.f,1,T) }u.f=w{F * PointsTo (u.f,1,w) }

The rule for forking a thread consumes run’s precondition. The postcondition of
fork() is empty.'” The rule makes use of the function mtype(m,T), which looks up
m’s type in the smallest supertype of T that declares m:

mtype(run,T) =req G; ens G';void run(T 1p;)
{gF TI'({)=void TI'hu:T <:Thread I';v;FF u'!=null
v {F* Glu/y]H=ufork () {F}

The most interesting rule is the one for joining threads. It allows the caller to ex-
change a fraction fr of the join-permission Perm(u.join, 1) for a fraction fr of u.run’s
postcondition:'!

mtype(run,T) = req G; ens G'; void run(T1y;) fr = all or G’ is supported
{gF TI'({)=void TI'Fu:T <:Thread I';v;FtF u'!=null
;v {F* fr-Perm(u.join, 1) Y=u.join O {F * fr-G'[u/1o]}

Here, fr ranges over linear combinations. These represent numbers of the forms 1 or
Yo bit; - 5
bir€{0,1} bits := 1 | bit,bits fr € BinFrac == all | fr() | fr(bits)

To define the scalar multiplication fr - F, we first extend the split-operation from per-
missions to formulas:

split(e) = e split(m.k<@'>) = m.x<split(7)>
split(PointsTo(e.f, m,¢')) = PointsTo (e.f,split(r),e’)
split(Perm(e.join, 7)) = Perm(e.join, split (7))
split(F lop G) = split(F) lop split(G) split((gr T &) (F)) = (gt T &) (split(F))

Now, the scalar multiplication fr- F is defined as follows: all- F = F, fr() - F = true,
fr(1)-F =split(F), fr(0, bits) - F = fr(bits) - split(F), and fr(1, bits) - F = split(F) * fr(bits)-
split(F). For instance, fr(1,0,1) - F *=* (split(F)*split®(F)).

Via the bijection fr(bits) — Y.}, bit; - %, we can define an addition on linear com-
binations that reflects the addition on concrete binary fractions. For proving soundness
of the join()-rule, it is crucial that join()’s postcondition satisfies the following dis-
tributivity law, which holds if G’ is supported:

(fry +fry) - G *=x (fr| -G’ * fry-G)

10 The permission Perm(u.join, 1) gets introduced when the thread object u is created.
1T We assume that postconditions of methods with return type void do not mention the result-
variable.

13

4 Comparison to Related Work and Conclusion

Parkinson/Bierman are the first to adapt separation logic to a Java-like language [25,26].
We build on their work, using abstract predicates, but extend it to a concurrent language
and combine abstract predicates with fractional permissions.

Boyland and Retert [7] explain the relation between write-effects, uniqueness and
datagroups in terms of a linear type-and-effect system. Their system features a nesting
operation and recursive definitions, which serve as an abstraction mechanism similar
to abstract predicates, but in addition promote linear formulas to non-linear ones. Re-
cently, Boyland presented a semantics for formulas that combine nesting and fractional
permissions [6]. His semantics is quite different from ours. Generally speaking, our
semantics is closer to standard semantics of BI [23]. Boyland facilitates permission
splitting for datagroups through an operation that scales formulas by fractions, whereas
we require datagroups to be fully permission-parametrized and scale the parameters.
Because we allow multiple parameters, our approach permits more fine-grained scaling
for overlapping datagroups (see Section 1.6 for an example).

Bierhoff and Aldrich [3] combine typestates and fractional permissions to specify
object usage protocols. They use iterators as an example, but they do not allow linear
implications in method contracts. As a result, their usage protocol regulates access to
the collection itself, but not access to the elements of the collection, and their protocol
would not prevent data races in concurrent programs. Krishnaswami [19] (in higher-
order separation logic) and Boyland et al [8] (in their linear type-and-effect system)
present iterator contracts that use linear implication and are related to ours.

Gotsman et al [14] recently adapted concurrent separation logic to Posix threads,
treating storable locks. They do not support read-sharing of join’s postcondition like us.

Regarding the interplay between abstract predicates and subclassing, we axioma-
tize the “stack of class frames™ [12,1] to control predicate extensions in subclasses. The
stack of class frames supports the use of subclassing for specialization and is well-suited
for dealing with extended object state. Furthermore, the stack of class frames facilitates
fully modular verification, avoiding the need to re-verify inherited methods, which is re-
quired in [25,26] where unrestricted predicate re-definitions in subclasses are allowed.
In recent work, Parkinson and Bierman argue that a verification systems should support
subclassing for code reuse in addition to subclassing for specialization, and present a
system that supports both uses of subclassing while avoiding re-verification of inherited
methods [27]. To this end, they associate with each method fwo contracts: a concrete
“static” contract, and an abstract “dynamic” contract. Their system checks that predi-
cate re-definitions in subclasses are compatible with concrete static contracts of inher-
ited methods, thereby avoiding re-verification of implementations of inherited methods.
The advantage over the stack of class frames is increased flexibility, the disadvantage
is heavier specification machinery, although much of this can be hidden behind good
defaults. Chin et al [9] make a similar proposal.

Conclusion. We have presented a variant of concurrent separation logic with frac-
tional permissions for a Java-like language with fork/join and proved it sound. Future
work includes algorithmic checking and extension to handle lock synchronization.

Acknowledgments. We thank John Boyland, Marieke Huisman, Erik Poll and anony-
mous reviewers for their very useful comments that helped to improve this paper.

14

References

1. M. Barnett, R. DeLine, M. Fihndrich, K. R. M. Leino, W. Schulte. Verification of object-oriented
programs with invariants. Journal of Object Technology, 3(6), 2004.

2. J. Berdine, C. Calcagno, P. W. O’Hearn. Smallfoot: Modular automatic assertion checking with sepa-
ration logic. In Formal Methods for Components and Objects, 2005.

3. K. Bierhoff, J. Aldrich. Modular typestate verification of aliased objects. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications, 2007.

4. R. Bornat, P. O’Hearn, C. Calcagno, M. Parkinson. Permission accounting in separation logic. In
Principles of Programming Languages, New York, NY, USA, 2005. ACM Press.

5. J. Boyland. Checking interference with fractional permissions. In R. Cousot, ed., Static Analysis
Symposium, vol. 2694 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

6. J.Boyland. Semantics of fractional permissions with nesting. Technical report, University of Wisconsin
at Milwaukee, 2007.

7. J.Boyland, W. Retert. Connecting effects and uniqueness with adoption. In Principles of Programming
Languages, 2005.

8. J. Boyland, W. Retert, Y. Zhao. Iterators can be independent “from” their collections. International
Workshop on Aliasing, Confinement and Ownership in object-oriented programming, 2007.

9. W. Chin, C. David, H. Nguyen, S. Qin. Enhancing modular OO verification with separation logic. In
Principles of Programming Languages, 2008.

10. K. Crary, D. Walker, G. Morrisett. Typed memory management in a calculus of capabilities. In Princi-
ples of Programming Languages, 1999.

11. R. DeLine, M. Fiahndrich. Enforcing high-level protocols in low-level software. In Programming
Languages Design and Implementation, 2001.

12. R. DeLine, M. Fihndrich. Typestates for objects. In European Conference on Object-Oriented Pro-
gramming, 2004.

13. J.-Y. Girard. Linear logic: Its syntax and semantics. InJ.-Y. Girard, Y. Lafont, L. Regnier, eds., Advances
in Linear Logic. Cambridge University Press, 1995.

14. A.Gotsman, J. Berdine, B. Cook, N. Rinetzky, M. Sagiv. Local reasoning for storable locks and threads.
In Asian Programming Languages and Systems Symposium, 2007.

15. C. Haack, C. Hurlin. Resource usage protocols for iterators. http://www.cs.ru.nl/~chaack/
papers/iterators.pdf.

16. C. Haack, C. Hurlin. Separation logic contracts for a Java-like language with fork/join. Technical
Report 6430, INRIA, 2008.

17. A. Igarashi, B. Pierce, P. Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM
Trans. Program. Lang. Syst., 23(3), 2001.

18. S.Ishtiaq, P. O’Hearn. BI as an assertion language for mutable data structures. In Principles of Pro-
gramming Languages, 2001.

19. G. Krishnaswami. Reasoning about iterators with separation logic. In Specification and Verification of
Component-Based Systems, 2006.

20. G.T. Leavens, A. L. Baker, C. Ruby. Preliminary design of JML: a behavioral interface specification
language for Java. SIGSOFT Software Engineering Notes, 31(3), 2006.

21. K. R. M. Leino. Data groups: Specifying the modification of extended state. In ACM Conference on
Object-Oriented Programming Systems, Languages, and Applications, 1998.

22. P. O’Hearn. Resources, concurrency and local reasoning. Theor. Comp. Science, 375(1-3), 2007.

23. P. W. O’Hearn, D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2), 1999.
24. P. W.O’Hearn, H. Yang, J. C. Reynolds. Separation and information hiding. In Principles of Program-
ming Languages, Venice, Italy, 2004. ACM Press.

25. M. Parkinson. Local reasoning for Java. Technical Report UCAM-CL-TR-654, University of Cam-
bridge, 2005.

26. M. Parkinson, G. Bierman. Separation logic and abstraction. In Principles of Programming Languages,
2005.

27. M. Parkinson, G. Bierman. Separation logic, abstraction and inheritance. In Principles of Programming
Languages, 2008.

28. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in Computer
Science, Copenhagen, Denmark, 2002. IEEE Press.

29. F. Smith, D. Walker, G. Morrisett. Alias types. In G. Smolka, ed., European Symposium on Program-
ming, vol. 1782 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

30. P Wadler. A taste of linear logic. In Mathematical Foundations of Computer Science, 1993.

15

http://www.cs.ru.nl/~chaack/papers/iterators.pdf
http://www.cs.ru.nl/~chaack/papers/iterators.pdf

	Christian Haack and Clément Hurlin

