SEPARATION METRICS FOR REAL-VALUED RANDOM VARIABLES

MICHAEL D. TAYLOR

Department of Mathematics University of Central Florida Orlando, Florida 32816

(Received April 3, 1984)

ABSTRACT. If W is a fixed, real-valued random variable, then there are simple and easily satisfied conditions under which the function d_W , where d_W (X,Y) = the probability that W "separates" the real-valued random variables X and Y, turns out to be a metric. The observation was suggested by work done in [1].

KEY WORDS AND PHRASES. Random variables, probability spaces, distribution functions metrics, metrics on random variables

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 60 A 99

THEOREM 1. Let Ω be a probability space with probability measure P, and let W be a fixed, real-valued random variable on Ω . Then the function d_W defined by

$$d_{U}(X,Y) = P[X \le W < Y \text{ or } Y \le W < X]$$

is a pseudo metric on the space of real-valued random variables defined on Ω . PROOF. We need check only the triangle inequality. Let X, Y, and Z be real-valued random variables on Ω and set

$$A = \{\omega \in \Omega : X(\omega) \leq W(\omega) < Y(\omega) \text{ or }$$

$$Y(\omega) \leq W(\omega) < X(\omega)\},$$

$$B = \{\omega \in \Omega : Y(\omega) \leq W(\omega) < Z(\omega) \text{ or }$$

$$Z(\omega) \leq W(\omega) < Y(\omega)\}, \text{ and }$$

$$C = \{\omega \in \Omega : X(\omega) \leq W(\omega) < Z(\omega) \text{ or }$$

$$Z(\omega) \leq W(\omega) < X(\omega)\}$$

Let $\omega \in C$. If $X(\omega) \leq W(\omega) < Z(\omega)$, then $Y(\omega) \leq W(\omega)$ implies $W(\omega)$ "separates" $Y(\omega)$ and $Z(\omega)$ in such a fashion that $\omega \in B$, and $W(\omega) < Y(\omega)$ implies $W(\omega)$ "separates" $X(\omega)$ and $Y(\omega)$ in such a fashion that $\omega \in A$. A similar conclusion holds in the case $Z(\omega) \leq W(\omega) < X(\omega)$. Thus $C \subseteq A \cup B$ and $P(C) \leq P(A) + P(B)$ which is the triangle inequality.

REMARK. Random variables which differ only on a set of probability measure 0 will be considered to be identical.

THEOREM 2. Let Ω , P, and W be as in Theorem 1. Let R be some given collection of real-valued random variables on Ω , and suppose that (1) W is independent of every pair of members of R in the sense that if X, Y ϵ R and A, B, and C are intervals in \mathbb{R} , then

P [X
$$\epsilon$$
 A, Y ϵ B, W ϵ C] =

P [X ϵ A, Y ϵ B] • P [W ϵ C] and

(2) for every open interval J in \mathbb{R} we have

$$P[W \in J] > 0$$
.

Then d_{ψ} , as defined in Theorem 1, is a metric on R.

PROOF. Let X, Y \in R such that X \neq Y. We have only to show $d_{\widetilde{W}}(X,Y) > 0$. We may, without loss of generality, suppose that the set

$$A = \{\omega \in \Omega : X(\omega) < Y(\omega)\}$$

has positive P-measure. Then there must be rational numbers p and q such that

$$B = \{\omega \in \Omega : X(\omega)$$

has positive P-measure. It follows that

$$d_{W}(X,Y) \ge P [X < W < Y]$$

$$\ge P [X
$$= p(B) \cdot P [p < W < q] > 0.$$$$

REMARK 1. In connection with this last theorem, it can be shown that if $\mathbf{F}_{\mathbf{W}}$, the cumulative distribution function of \mathbf{W} , is continuous, then

$$d_{W}(X,Y) = E(|F_{W}(X) - F_{W}(Y)|)$$

where E means expected value.

REMARK 2. Again in connection with the last theorem, it might be objected that for some R no W exists with the desired properties; this would be the case, for example, if R was the set of all real-valued random variables on Ω . However, one can always "embed" R in a larger space of real-valued random variables containing something suitable for use as W. Simply take another probability space Ω ', let W be a real-valued random variable on Ω ' taking on values in every open interval of \mathcal{R} with positive probability, let Ω^* be the product space $\Omega \times \Omega'$, let each X in R be replaced X* where $X^*(\omega,\omega') = X(\omega)$, and let W be replaced by W* where $W^*(\omega,\omega') = W(\omega')$. It follows that X_1^*, \ldots, X_n^* must have the same joint distribution function as X_1, \ldots, X_n when X_1, \ldots, X_n are members of R and that W* is independent of all X* such that $X \in \mathbb{R}$ in the desired fashion. So one may construct the metric d on R defined by

$$d(X,Y) = d_{W*}(X*,Y*).$$

REFERENCE

TAYLOR, Michael D., New metrics for weak convergence of distribution functions.
 To appear.

Submit your manuscripts at http://www.hindawi.com

Journal of Discrete Mathematics

