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ABSTRACT
In this paper, we present a simple and fast method to sep-
arate a monaural audio signal into harmonic and percussive
components, which is much useful for multi-pitch analysis,
automatic music transcription, drum detection, modification
of music, and so on. Exploiting the differences in the spectro-
grams of harmonic and percussive components, the objective
function is defined in a quadrature form of the spectrogram
gradients. Applying the auxiliary function approach to that,
simple and fast update equations are derived, which guaran-
tee the decrease of the objective function at each iteration.
We show some experimental results by applying our method
to popular and jazz music songs.

1. INTRODUCTION

Recently, music signal has become a significant target in the
signal processing field and various tasks have been discussed
like audio music retrieval, audio onset detection, multiple
fundamental frequency estimation, and so on [1]. The mu-
sic signal often consists of two different components: har-
monic one and percussive one. The simultaneous presence of
them makes some tasks harder because of their much differ-
ent spectral structures. For instance, most of the multipitch
analysis are interfered by percussive tones, while suppression
of harmonic components will facilitate the drum detection or
the rhythm analysis.

In this paper, aiming to efficient pre-processing of music
signal analysis, we present a simple and fast method to sep-
arate a monaural audio signal into harmonic and percussive
components. This kind of separation problem has been dis-
cussed in several pilot research. Uhle et al. applied Indepen-
dent Component Analysis (ICA) to the power spectrogram,
and classified the extracted independent components into a
harmonic and a percussive groups based on the several fea-
tures like percussiveness, noise-likeness, etc [2]. Helen and
Virtanen utilized Non-negative Matrix Factorization (NMF)
for decomposing the spectrogram into elementary patterns
and classified them by pre-trained Support Vector Machine
(SVM) [3]. Through modeling harmonic and inharmonic
tones on spectrogram, Itoyama et al. proposed separation
of an audio signal to each track part based on the MIDI in-
formation synchronized to the input audio signal [4]. Daudet
reviewed recent separation algorithms of music signals into
steady and transient components [5]. Other kinds of single
channel separation problem have been recently developed in
[6, 7, 8, 9]. The contribution of this paper is to derive a simple
and fast algorithm specifically for the harmonic/percussive
separation based on the anisotropy of them on spectrogram.

We present the formulation of the separation as an optimiza-
tion problem, derive the fast iterative solution to it by aux-
iliary function approach, and examine the performance by
experiments to popular and jazz music songs.

2. FORMULATION OF HARMONIC/PERCUSSIVE
SEPARATION

Let Fh,i be a Short Time Fourier Transform (STFT) of a
monaural audio signal f(t) and Wh,i = |Fh,i|2 be its power
spectrogram, where h and i represent indices of frequency
and time bins. A typical spectrogram of an audio signal is
shown in Fig. 1. In it, the vertical and horizontal structures
are clearly observed. The harmonic component usually has a
stable pitch and forms parallel ridges with smooth temporal
envelopes on the spectrogram, while the energy of a percus-
sive tone is concentrated in a short time frame, which forms
a vertical ridge with a wideband spectral envelope. Exploit-
ing the anisotropy, we decompose the original power spec-
trogram Wh,i into the harmonic component Hh,i and the per-
cussive component Ph,i on the spectrogram. For evaluating
their anisotropic smoothness, L2 norm of the power spectro-
gram gradients is examined here, that is, Hh,i and Ph,i are
found by minimizing

J(H,P ) =
1

2σ2
H

∑
h,i

(Hh,i−1−Hh,i)2

+
1

2σ2
P

∑
h,i

(Ph−1,i−Ph,i)2 (1)

under the constraint as

Hh,i +Ph,i = Wh,i (2)

Hh,i ≥ 0, Ph,i ≥ 0, (3)

where H and P are sets of Hh,i and Ph,i, respectively,
and σH and σP are parameters to control the weights of
the horizontal and vertical smoothness. Minimizing eq. (1)
is equivalent to maximum likelihood estimation under the
assumption that the spectrogram gradients (Hh,i−1 −Hh,i)
and (Ph−1,i −Ph,i) follow independent Gaussian distribu-
tions. Although the actual distributions of the spectrogram
gradients are different from them, the assumption leads us
to simple and comprehensive formulation and solution. As
confirmed later, replacing the power spectrogram Wh,i by
the range-compressed version: W̃h,i = |Fh,i|2γ(0 < γ ≤ 1)
partially bridges a gap between the assumption and the real
situation.



Figure 1: A spectrogram of a popular music song

3. DESIGN OF AUXILIARY FUNCTION

Since the objective function defined by eq. (1) is quadratic
for all variables, it is monomodal and has a single global
minimum, which can be directly obtained by solving
∂J/∂Hh,i =0 and ∂J/∂Ph,i = 0. But they yield much large-
size simultaneous equations of Hh,i and Ph,i (the order of the
equations is equal to the number of all time-frequency bins
of (h, i)). To avoid it and derive a simple iterative solution,
we adopt an auxiliary function approach, which is used in
other signal processing methods as NMF [10] or Harmonic-
Temporal Clustering (HTC) [11].

In order to design the auxiliary function of our problem,
note that

(A−B)2 ≤ 2(A−X)2 +2(B−X)2 (4)

for any A, B, and X since

2(A−X)2 +2(B−X)2 − (A−B)2

= 4
(

X− A+B

2

)2

(5)

is obviously nonnegative and equal to zero where X = (A+
B)/2. Applying the inequality to eq. (1), we have

(Hh,i−1−Hh,i)2 ≤ 2(Hh,i−1−Uh,i)2 +2(Hh,i−Uh,i)2,
(6)

(Ph−1,i −Ph,i)2 ≤ 2(Ph−1,i−Vh,i)2 +2(Ph,i −Vh,i)2,
(7)

for any Uh,i and Vh,i. The equalities are valid for Uh,i =
(Hh,i−1 +Hh,i)/2 and Vh,i = (Ph−1,i +Ph,i)/2. Hence, the
auxiliary function:

Q(H,P ,U ,V )

=
1

σ2
H

∑
h,i

{
(Hh,i−1 −Uh,i)2 +(Hh,i−Uh,i)2

}

+
1

σ2
P

∑
h,i

{
(Ph−1,i−Vh,i)2 +(Ph,i −Vh,i)2

}
(8)

satisfies

J(H,P ) ≤ Q(H,P ,U ,V ), (9)
J(H,P ) = min

U ,V
Q(H,P ,U ,V ). (10)

Then, the following updates:

{U (k+1),V (k+1)} = min
U ,V

Q(H(k),P (k),U ,V ), (11)

{H(k+1),P (k+1)} = min
H ,P

Q(H,P ,U(k+1),V (k+1)), (12)

decrease J monotonically, where k represents the number of
iterations, and U and V are sets of Uh,i and Vh,i, respec-
tively.

4. DERIVATION OF UPDATE RULES

First, we here derive H(k+1) and P (k+1) satisfying eq. (12)
under the constraint of eq. (2). With introducing Lagrange
multipliers λh,i, consider

Q̃(H,P ) = Q(H ,P ,U(k+1),V (k+1))

+
∑
h,i

λh,i(Hh,i +Ph,i−Wh,i). (13)

Differentiating it by Hh,i, Ph,i, and λh,i yields, respectively

2
σ2

H

(2Hh,i−U
(k+1)
h,i+1 −U

(k+1)
h,i )+λh,i = 0, (14)

2
σ2

P

(2Ph,i−V
(k+1)

h+1,i −V
(k+1)
h,i )+λh,i = 0, (15)

Hh,i +Ph,i−Wh,i = 0. (16)

Solving them, we obtain

H
(k+1)
h,i =

α

2
(U (k+1)

h,i+1 +U
(k+1)
h,i )

+
(1−α)

2
(2Wh,i −V

(k+1)
h+1,i −V

(k+1)
h,i ), (17)

P
(k+1)
h,i =

(1−α)
2

(V (k+1)
h+1,i +V

(k+1)
h,i )

+
α

2
(2Wh,i −U

(k+1)
h,i+1 −U

(k+1)
h,i ), (18)

where

α =
σ2

P

σ2
H +σ2

P

. (19)

While, the auxiliary parameters U (k+1) and V (k+1) satisfy-
ing eq. (11) are easily given by

U
(k+1)
h,i =

H
(k)
h,i−1 +H

(k)
h,i

2
, V

(k+1)
h,i =

P
(k)
h−1,i +P

(k)
h,i

2
.

(20)
By substituting eq. (20) into eq. (17) and eq. (18), we can re-
move the auxiliary parameters Uh,i and Vh,i from the update
rules as

H
(k+1)
h,i = H

(k)
h,i +Δ(k), (21)

P
(k+1)
h,i = H

(k)
h,i −Δ(k), (22)

where

Δ(k) = α

(
H

(k)
h,i−1−2H

(k)
h,i +H

(k)
h,i+1

4

)

−(1−α)

(
P

(k)
h−1,i−2P

(k)
h,i +P

(k)
h+1,i

4

)
. (23)



Introducing a process to restrict the obtained solution to
satisfy eq. (3) and binarizing a separation result, which is
experimentally confirmed to yield better separation perfor-
mance, the separation algorithm is consequently summarized
as follows.
1. Calculate Fh,i, the STFT of an input signal f(t).
2. Calculate a range-compressed version of the power spec-

trogram by

Wh,i = |Fh,i|2γ (0 < γ ≤ 1). (24)

3. Set initial values as

H
(0)
h,i = P

(0)
h,i =

1
2
Wh,i, (25)

for all h and i and set k = 0.
4. Calculate the update variables Δ(k) defined as eq. (23).
5. Update Hh,i and Ph,i as

H
(k+1)
h,i = min(max(H (k)

h,i +Δ(k),0),Wh,i), (26)

P
(k+1)
h,i = Wh,i −H

(k+1)
w,i . (27)

6. Increment k. If k < kmax−1 (kmax: the maximum num-
ber of iterations), then, go to step 4, else, go to step 7.

7. Binarize the separation result as

(H(kmax)
h,i ,P

(kmax)
h,i )

=

{
(0,Wh,i) (H(kmax−1)

h,i < P
(kmax−1)
h,i )

(Wh,i,0) (H(kmax−1)
h,i ≥ P

(kmax−1)
h,i )

.(28)

8. Convert H
(kmax)
h,i and P

(kmax)
h,i into waveforms by

h(t) = ISTFT[(H(kmax)
h,i )1/2γej � Fh,i ], (29)

p(t) = ISTFT[(P (kmax)
h,i )1/2γej � Fh,i ], (30)

where ISTFT represents the inverse STFT.
Since the update variable Δ consists of the second order

derivative of Hh,i and Ph,i, the update in step 4 has basically

the same form as the diffusion equation:
df

dt
= C

d2f

dx2
, which

represents dynamics of diffusion phenomena like heat. But
unlike the physical diffusion process, each update of Hh,i

and Ph,i includes a negative diffusion term derived from
the other. As iterations, the energy distribution of Hh,i on
the spectrogram diffuses horizontally and concentrates verti-
cally. Ph,i follows the inverse way. Both of which hold that
Hh,i +Ph,i = Wh,i, Hh,i ≥ 0, and Ph,i ≥ 0. We denote the
diffusion-like process of two energy distributions with a bal-
ance by complementary diffusion. The balance parameter α
(0 < α < 1) controls the strength of the diffusion along the
vertical and the horizontal directions.

5. EXPERIMENTAL EVALUATIONS

We here show several results by experiments. The target sig-
nals were chosen from the RWC Music Database (Popular
Music Database) [12] and the sampling frequency was con-
verted into 16kHz. The frame length of STFT is 1024 and

Figure 2: The spectrograms of the iteratively-updated har-
monic component H

(k)
h,i (left) and the percussive component

P
(k)
h,i (right) at k = 0, k = 3, k = 10, k = 50, and after bina-

rization, from top to bottom, respectively.

the frame shift is 512. The balance parameter α was experi-
mentally determined to be 0.3. The resultant spectrograms of
the harmonic component H(k)

h,i and the percussive component

P
(k)
h,i to 6.25s fragment of RWC-MDB-P-2001 No.7 is shown

in Fig. 2, where γ = 0.3 was used. We can see that the energy
of spectrogram is splitting to two components as iterations,
each of which is forming horizontal and vertical ridges, re-
spectively. The computational time for a 6.25s-length signal
with 50 iterations is about 2.3s at a laptop-PC with 1.20GHz
Pentium in our implementation, which is nearly three times
faster than real-time processing. Indeed, we have developed
the real-time processing version of it.

In auditory evaluation, pitched instrument tracks and
drum tracks are well separated into h(t) and p(t), respec-
tively. Nevertheless, the duration of some percussion, typi-
cally bass drum was almost separated into h(t) since it has
a smooth temporal envelope, too. Inversely, the attack of
pitched tone had a tendency to belong to p(t). A singing



voice is also difficult to be perfectly classified to h(t) due to
the nature of time-varying pitch. In the condition, most of
them except pitch-varying component belonged to h(t). We
think that utilizing wavelet transform instead of STFT has
some potential to improve the performance for pitch-varying
components. The resultant sound will be presented in the
conference.

In order to quantitatively evaluate the separation perfor-
mance of our algorithm, we prepared each track of audio
signals in two songs (RWC-MDB-P-2001 No.18 and RWC-
MDB-J-2001 No.16) by MIDI-to-WAV conversion. Let fi(t)
be one audio track signal where i is an index of the track.
and inputed the summation of all tracks to our algorithm.
Then, the energy ratio of each track included in h(t) and p(t)
was calculated as rh = Eh/(Eh +Ep), rp = Ep/(Eh +Ep),
where Eh =< fi(t),h(t) >2, Ep =< fi(t), p(t) >2, and <>
represents the cross correlation operation. The energy ra-
tio of the harmonic component, rh in each track is shown in
Fig. 3 and Fig. 4, where several γs were examined. The
tendency that pitched instrumental tracks and the bass drum
track belong to h(t) and other percussion tracks to p(t) is
consistent to the auditory evaluation. We can see that the
separation performance gets worse as γ is larger, especially
for drum tracks. Thus, the range compression facilitates the
separation and γ � 0.3 seems to give the best separation per-
formance for these two songs. Probably, it is related to the
actual distribution of spectrogram gradients of harmonic and
percussive components.

6. CONCLUSION

In this paper, we derived a simple and fast method for a
monaural audio signal into harmonic and percussive compo-
nents, which is performed by the complementary diffusion
on spectrogram. Despite of the simplicity of the algorithm,
pitched instruments and drums are well separated. Apply-
ing the proposed algorithm as a pre-process to multi-pitch
analysis or other tasks of music signal analysis is our current
concern.
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