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ABSTRACT

Seismic acquisition is a trade-off between economy and qual-

ity. In conventional acquisition the time intervals between suc-

cessive records are large enough to avoid interference in time.

To obtain an efficient survey, the spatial source sampling is

therefore often (too) large. However, in blending, or simultane-

ous acquisition, temporal overlap between shot records is

allowed. This additional degree of freedom in survey design

significantly improves the quality or the economics or both.

Deblending is the procedure of recovering the data as if they

were acquired in the conventional, unblended way. A simple

least-squares procedure, however, does not remove the interfer-

ence due to other sources, or blending noise. Fortunately, the

character of this noise is different in different domains, e.g., it is

coherent in the common source domain, but incoherent in the

common receiver domain. This property is used to obtain a con-

siderable improvement. We propose to estimate the blending

noise and subtract it from the blended data. The estimate does

not need to be perfect because our procedure is iterative. Start-

ing with the least-squares deblended data, the estimate of the

blending noise is obtained via the following steps: sort the data

to a domain where the blending noise is incoherent; apply a

noise suppression filter; apply a threshold to remove the remain-

ing noise, ending up with (part of) the signal; compute an esti-

mate of the blending noise from this signal. At each iteration,

the threshold can be lowered and more of the signal is recov-

ered. Promising results were obtained with a simple implemen-

tation of this method for both impulsive and vibratory sources.

Undoubtedly, in the future algorithms will be developed for the

direct processing of blended data. However, currently a high-

quality deblending procedure is an important step allowing the

application of contemporary processing flows.

INTRODUCTION

In current seismic data acquisition, sources are fired with

large time intervals in order to avoid interference, leading to

time-consuming and expensive surveys. Furthermore, the source

side of the acquisition geometry is often coarsely sampled, caus-

ing spatial aliasing. The concept of simultaneous acquisition has

been introduced to address these issues by either reducing the

temporal interval between successive shots, leading to reduced

acquisition costs, or by increasing the number of sources within

the same survey time, leading to a higher data quality. Note that

a combination of the two approaches combines these benefits.

Several authors have discussed the concept of simultaneous

and near-simultaneous shooting for impulsive and vibroseis-type

sources and their particular advantages. The use of simultaneous

vibrators transmitting the same or different reference signals

was proposed by Silverman (1979). Beasley et al. (1998) and

Beasley (2008) proposed acquiring seismic data by means of si-

multaneous impulsive sources with large spacing between illu-

minating shots. The High Fidelity Vibratory Seismic (HFVS)

method has been developed by Sallas et al. (1998) in order to

increase the productivity of land seismic acquisition and to

reduce acquisition costs. Romero et al. (2000) suggested the use

of phase encoding in prestack shot record migration such that

multiple shots can be migrated simultaneously. Although this

work was focused on the migration process, it can be simply

generalized to the acquisition phase. Acquiring marine seismic

data with random, quasirandom, or systematic delay times

between firing sources was proposed by Vaage (2002). Bagaini

(2006) discussed various simultaneous vibroseis acquisition

methods including simultaneous sweeps, cascaded sweeps, and

slip sweeps. The term source blending was introduced by Berkh-

out (2008), and the differences with plane wave synthesis
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(Rietveld and Berkhout, 1994) were pointed out. A near-simulta-

neous shooting technique with small random time delays

between impulsive sources was presented by Hampson et al.

(2008). Vibroseis acquisition by means of Simultaneous Pseu-

dorandom Sweep Technology (SPST) has been suggested by

Sallas et al. (2008). Berkhout et al. (2009) extended the concept

of source blending to the detector side by combining incoherent

shooting with incoherent sensing and introducing the concept of

double blending.

The separation process (deblending) was addressed as a blind

signal separation problem by Ikelle (2007), using independent com-

ponent analysis as the tool to distinguish between the different

blended sources. Lin and Herrmann (2009) and Herrmann et al.

(2009), under the umbrella of compressive sensing, use an inver-

sion approach constraining the separated data to be sparse in the

curvelet domain. It is worth mentioning that both these approaches

use sophisticated source codes (e.g., sweeps or random phase or/

and amplitude encoding). Furthermore, Neelamani et al. (2008)

have used simultaneous sources and compressive sensing in a simi-

lar way to speed up forward modeling.

By reforming the deblending problem into a denoising one,

treating the interference due to blending as noise, one can use

all kinds of signal processing tools available. It has been

reported by various authors — e.g., Moore et al. (2008), Aker-

berg et al. (2008) — that by sorting the acquired blended data

into a different domain than the common source domain (e.g.,

the common offset domain), the interference noise appears as

random spikes; thus, the separation process turns into a typical

random noise removal procedure. Based on this property, Huo

et al. (2009) use a vector median filter after resorting the data

into common mid-point gathers. This 2D filter acts locally and

effectively reduces the amplitude of the random spikes. Moore

(2010) uses an inversion process with sparsity constraint applied

in the radon domain.

Spitz et al. (2008) introduced the idea of building a noise

model based on the subsurface’s velocity model and the wave

equation. The modeled interference noise is adaptively sub-

tracted from the data. Moving a step further, Kim et al. (2009)

built a noise model from the data itself and then adaptively sub-

tracted the modeled noise from the acquired data. This algo-

rithm was implemented in the common offset domain and was

applied to OBC (ocean bottom cable) data.

In the present work, we developed an iterative noise estimation-

and-subtraction process for the effective separation of blended

data. A noise model is progressively built from the blended data

itself and subsequently subtracted. The method, which can also be

formulated as a steepest descent type of method, was applied to

field data, where the blending process had been simulated numeri-

cally for both impulsive and vibrating sources.

The concept of source blending and pseudodeblending

Berkhout (1982) showed that seismic data (2D or 3D) can be

arranged in the so-called data matrix P. In the temporal fre-

quency domain, each element of P corresponds to a complex-

valued frequency component of a recorded trace, each column

represents a shot record, each row represents a detector gather,

each diagonal represents a common offset gather, and each anti-

diagonal represents a common midpoint gather. Figure 1 illus-

trates the data matrix. An example of the different gathers

extracted from the data matrix is given in Figure 2 for a numeri-

cal data set.

A system representation of seismic data is given by the fol-

lowing monochromatic expression (Berkhout, 1982):

P zd; zsð Þ ¼ D zdð ÞX zd; zsð ÞS zsð Þ: (1)

Here zs and zd correspond to the source and detector depth level

respectively. S represents the source matrix where each column

corresponds to the source wavefield at zs due to one source

(array). D represents the detector matrix where each row repre-

sents one detector (array). The X matrix is the multidimensional

transfer function of the earth, which contains the entire subsur-

face impulse response, including (internal) multiples, wave con-

version, etc. The importance of the source and detector sampling

and other acquisition design parameters can be clearly realized

from the logical combination of the D and S matrices with the

X matrix. If the source and detector side of the acquisition are

sparsely sampled or badly designed, X can not be well repre-

sented by P.

The concepts of source blending and incoherent shooting

stand for the continuous recording of sources that are encoded

with incoherent codes. Source blending is theoretically consist-

ent with plane wave synthesis and controlled source illumination

(Rietveld and Berkhout, 1994) in the sense that multiple sources

are activated within certain time intervals. However, it differs in

the way that the latter methods generate continuous (coherent)

wavefronts. In the case of source blending it is important that

such wavefronts are not generated. This is because of the spatial

band limitation introduced in this way. Instead, we know that

the full temporal and spatial bandwidth is preserved in the case

that a white, random signal is arriving at every subsurface loca-

tion, i.e., white within the available bandwidth. By incoherent

shooting of the sources in blending we are aiming at preserving

the full temporal and spatial bandwidth; see also Lin and

Herrmann (2009). In general, source blending can be formulated

as follows:

P0 zd; zsð Þ ¼ P zd; zsð ÞC ¼ D zdð ÞX zd; zsð ÞS zsð ÞC; (2)

Figure 1. Schematic representation of data matrix. Every element
is a complex valued number that represents one frequency
component.
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where P0 is the blended data matrix. Blending matrix C contains

the blending parameters. Each column C‘ is related to a blended

shot record and its elements Ck‘ are the source codes that can

be phase and/or amplitude terms. For example, in the simple

case of a marine survey with random firing times, Ck‘ ¼ e�jxsk‘

is a linear phase term that expresses the time delay sk‘ given to

source k in blended source array ‘. Similarly, in the case of

vibrating sources transmitting a linear sweep, Ck‘ ¼ e�jbk‘x
2

is a

quadratic phase term describing the source code. An example of

the different gathers extracted from a blended data matrix and

their f -k spectra is given in Figure 3. Here, five shot records

from the data set used in Figure 2 were blended. In this example

linear phase encoding was applied (corresponding to applying

time delays). Note the incoherent structure of the blended data

in different domains, and the data compression due to the

blending.

To retrieve individual “deblended” shot records from blended

data, a matrix inversion has to be performed. In general, the

Figure 2. Different sections of the data matrix and their corre-
sponding f -k spectra for a numerical data set. (a) One column of
the data matrix (common source gather), (b) one row of the data
matrix (common detector gather), (c) one diagonal of the data ma-
trix (common offset gather), and (d) one antidiagonal of the data
matrix (common midpoint gather).

Figure 3. Different sections of the blended data matrix and their
corresponding f -k spectra for the same data set as shown in Figure
2. The number of sources that are blended together is five. (a) One
column of the blended data matrix, (b) one row of the blended
data matrix, (c) one diagonal of the blended data matrix, and (d)
one antidiagonal of the blended data matrix.
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blending problem is underdetermined (i.e., P0 has fewer col-

umns than P), which means that the blending matrix is not in-

vertible. Instead, a least-squares inverse could be used accord-

ing to

C
�1 zd; zsð Þ

� �

¼ C
H
C

� ��1
C
H: (3)

It can be shown that if the blending matrix only contains phase

terms (phase encoding), its least-squares inverse corresponds to

the transpose complex conjugate (Hermitian). This leads to the

following expression for pseudodeblending:

P zd; zsð Þh i ¼ P0 zd; zsð ÞCH: (4)

From the physics point of view, the pseudodeblending process

carries out an expansion corresponding to the number of sources

that are blended together; for example, if this number is b, each

blended shot record is copied b times. Then, each of these cop-

ies is corrected for the corresponding time delays introduced in

the field or decoded in the case of encoded sources (correlation).

Due to the fact that the responses of multiple sources are

included in a single blended shot record and the source codes

are not orthogonal, the pseudodeblending process generates cor-

relation noise. This correlation noise is known as “blending

noise” or “cross terms.” Figure 4 contains an example of differ-

ent sections of pseudodeblended data recovered from the

blended data of Figure 3; the corresponding f -k spectra are

shown as well. Note the existence of incoherent blending noise

in the pseudodeblended common detector and common offset

and common midpoint gathers, in contrast with the signal that is

coherent in all gathers. The incoherent nature of the blending

noise is the discriminating power we will use in the deblending

process, to be discussed in detail in the next section.

METHOD

The blending information contained in C is known. This

means that CH is known as well, and therefore, if the unblended

data P zd; zsð Þ were known, the blending noise that is present in

the pseudodeblended data P zd; zsð Þh i could be computed as the

difference between the pseudodeblended and the unblended

data.

Using equation 4 we obtain

N ¼ P zd; zsð Þh i � P zd; zsð Þ ¼ P0 zd; zsð ÞCH � P zd; zsð Þ; (5)

where N represents the blending noise. However, the initial

unblended data are not available and obviously, if they were,

there would be no need for a deblending method. Suppose

though, that part of P zd; zsð Þ could be extracted from the pseu-

dodeblended data P zd; zsð Þh i. Then, an iterative estimation-and-

subtraction process could be initiated where more of the cross

terms could be computed and removed at each iteration. In the

following section, we give an intuitive explanation of our itera-

tive method for the separation of blended sources in the com-

mon detector domain. The mathematical formulation in the form

of a general framework as well as the extension of the method

to other domains will be discussed later.

Iterative deblending in the common detector domain

In the common detector domain, the signal is arranged in

coherent events, whereas the cross terms appear as random

spikes (see Figures 4b and 5b). Hence, any method that can dis-

tinguish between coherent events and random spikes to some

degree could be used to suppress the blending interference to

some degree (Doulgeris et al., 2010).

A simple example of such a method is a frequency-wavenumber

(f -k) filter that passes only the part of the pseudodeblended data

Figure 4. Different sections of pseudodeblended data and their
corresponding f -k spectra, generated by expanding and restoring
the phase applied to the blended data of Figure 3. (a) One column
of the pseudodeblended data (common source gather), (b) one
row of the pseudodeblended data (common detector gather), (c)
one diagonal of the pseudodeblended data (common offset
gather), and (d) one antidiagonal of the pseudodeblended data
(common midpoint gather).
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that resides in the f-k band of the signal (i.e., in the signal cone).

We propose to compute the signal bandwidth based on the highest

velocity observed in the data. The random spikes have a white

spectrum in the spatial wavenumber direction, extending out of the

signal cone (Figure 4d). Thus, by applying the f -k filter, these

spikes are somewhat suppressed and we may assume that the high-

est amplitudes of the pseudodeblended data now belong to the

desired signal P zd; zsð Þ (Figure 5c). Again, any spike removal tool

could be used instead of or in combination with the f -k filter.

In order to select the unblended part of the data from the out-

put of the filter, we apply a threshold in the x-t domain that

keeps only the parts of the signal that have an amplitude higher

than a certain predefined value (e.g., 0.9 times the maximum

amplitude present). Note that alternatively the application of the

threshold could take place in the filtering domain (in this exam-

ple, f -k), being integrated in this way in the filtering process.

This thresholding process is shown in Figure 5d. Note that,

ideally, after the thresholding process no blending noise is pres-

ent anymore. In practice, there may be some leakage of blend-

ing noise. The consequence of this will be discussed later.

We can now predict part of the blending noise, based on the out-

put of the previous step. This output contains part of the unblended

data, so by applying the blending matrix C to it we can simulate

the blending that took place in the field. Then, we can apply the

pseudodeblending process via C
H , producing in this way data that

contain part of the unblended data as well as the cross terms that

were created by that part. Because that part of the unblended data

is known, it can be subtracted, resulting in only the cross terms.

Using the matrix formulation, this could be summarized as multi-

plying the known part of the unblended data by a term CC
H � I

� �

.

Hence, an estimate of the blending noise has now been computed

(Figure 5e).

At this point, we can subtract this blending-noise estimate

from the pseudodeblended data. In the case that the blending

parameters are not known exactly, the subtraction could be car-

ried out in an adaptive way. The new estimate of the unblended

data, which has less blending noise, can now serve as the

updated input to the f -k filter (or in fact any spike removal fil-

ter). The filter output is expected to contain less blending noise

than in the previous iteration, so that the threshold can be low-

ered, leading to an even better estimate of the blending noise.

Repeating this process leads to the gradual removal of cross

terms from the pseudodeblended gather, until no further

improvement is achieved. A criterion has been implemented to

monitor and terminate the iterative procedure (see the next sec-

tion). Once terminated, the last output of the filter is taken as

the deblended common detector gather (Figure 5f). Figure 5g

displays a shot record of the final deblended data.

As mentioned, after thresholding some blending noise may still

be present. For example, think of a weak cross term interfering with

a strong signal event such that it partly passes the threshold. In our

experience, this type of leaked blending noise appears to spread out

spatially and decrease its amplitude in the course of the highly non-

linear iterative process. Note, that a better incoherency filter might

do a much better job than our simple thresholding procedure. Still, it

is our belief that this leakage sets a lower bound on the residual

blending noise in the final result. However, this is a subject of fur-

ther research.

As a final remark we mention that a common detector gather

has a unique property that can prove very useful in the imple-

mentation of the algorithm. Namely, the blending noise present

in the gather after pseudodeblending is solely produced by the

signal present in the very same gather. This stems from the fact

that all the sources are present in each common detector gather.

It follows that each pseudodeblended common detector gather

can be treated individually. This means that the algorithm can

be very easily parallelized when implemented in the common

detector domain.

Convergence and stopping criterion

The algorithm iterates to the correct solution if no blending

noise remains in the output of the thresholding process and, for

convergence, the threshold decreases at each iteration. These

requirements rely on the sequence of thresholds chosen during

the execution of the algorithm. We can predefine the thresholds

or set them during execution. As a rule of thumb, a predefined

sequence of the form ni, where i is the iteration number and n,

being the threshold at the first iteration, is chosen as

n � 0:9�max P0 zd; zsð Þf g, is a safe choice. On the other hand,

setting the threshold manually after inspection of the results at

each iteration gives an extra degree of freedom that can be used

to fine-tune the process and leads to faster convergence.

The stopping criterion is based on an energy measure that is

computed as follows. The deblended output of each iteration is

Figure 5. The flow chart of the deblending algorithm (CDG, com-
mon detector gather; CSG, common source gather). (a) Blended
common source gather, (b) pseudodeblended common detector
gather, (c) the output of the f-k filter on the first iteration, (d) the
output of the thresholding process on the first iteration, (e) the
blending-noise estimate on the first iteration, (f) the deblended com-
mon detector gather, and (g) the deblended common source gather.
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blended again by applying the blending matrix C and is then

subtracted from the corresponding blended shot record as it was

acquired in the field; the root mean square of this difference,

once integrated over the record, provides the measure. The itera-

tive procedure is stopped once this measure is no longer

decreasing or when it is lower than a predefined value.

Iterative deblending in other domains

The iterative deblending method can also be implemented in

domains other than the common detector domain, for example,

in the common offset, common midpoint, or common source do-

main. Some of the properties of the algorithm will now be dis-

cussed for each of these domains.

Common offset domain

The noise removal filter involved in our method requires a

sufficiently large number of traces in each gather to be proc-

essed. In many acquisition configurations, the common offset

domain offers the largest gathers, making it a good choice for

this method.

Another interesting property of the pseudodeblended common

offset gathers is displayed in Figure 6. The signal-to-blending

noise ratio varies among different common offset gathers. Near-

offset gathers tend to contain high-amplitude signal and lower-

amplitude interference (Figure 6a). On the other hand, far-off-

sets tend to have lower-amplitudes, thereby suffering more from

the blending noise from all the other offsets (in particular from

the strong near-offsets; see Figure 6c). Treating the different

bands of offsets sequentially and starting with the near-offsets

allows the method to process data with more blending noise

faster. By the time the algorithm starts processing the far-off-

sets, most of the cross terms that were caused by the near- and

mid-offsets will have been removed. Information on the particu-

lar blended acquisition geometry used here is given in the sub-

section “Application to impulsive sources.”

Common midpoint domain

Our method can also be implemented in the common mid-

point (CMP) domain. Applying normal moveout correction to a

pseudodeblended common midpoint gather forces the signals’

f -k spectrum to be concentrated in a narrow-band cone. On the

other hand, the cross terms still have a white spectrum in the

spatial wavenumber direction. Hence, an f -k filter can suppress

the cross terms better in the CMP domain than in other

domains.

Common source domain

Because the cross terms have a coherent structure in the com-

mon source domain (see Figure 4b), a spatial filter (e.g., an f -k

filter) is not able to discriminate the desired signal from the

cross terms. However, the use of sophisticated source codes,

such as incoherent sweeps or random phase, may result in cross

terms with a lower amplitude level than that of the signal.

Therefore, thresholding can be done directly after pseudode-

blending without the need for a spatial filter. However, depend-

ing on the cross-term structure, different types of filters could

be applied prior to thresholding (e.g., time-frequency filters) to

suppress the cross-term energy further. An advantage of the

common source domain is that the deblending process can be

executed per blended shot record, which may result in an effi-

cient implementation.

General framework

The iterative deblending method can be generalized to work

on the data matrix P zd; zsð Þ as a whole rather than on subsets

such as common detector gathers individually. Dropping the

depth variables zd and zs as well as the brackets from the

deblended estimate for notational convenience, the general

framework can be formulated as

Piþ1 ¼ P0
C
H � Pi

CC
H � I

� �

; (6)

where Piþ1 is the deblended estimate at iteration iþ 1 and Pi is

the deblended estimate at iteration i processed in such a way that

only (part of) the signal is contained. The f -k filtering and thresh-

olding, as described earlier, is a simple example of such a process-

ing step. However, the domain-specific filter can now be replaced

by a multidimensional filter. Such a filter can take even better

advantage of the lateral consistency of the seismic data versus the

incoherency of the blending noise. In fact, any (multidimensional)

denoising technology can be integrated into this step.

The second term on the right-hand side of equation 6 trans-

forms the estimated unblended data Pi into blending noise. This

is achieved by applying both blending and pseudodeblending

via multiplication with CC
H , while making sure that the initial

signal is removed by subtracting PiI.

It is interesting to notice that an alternative way of deriving

equation 6 can be obtained by formulating deblending as an

optimization problem and solving it with a steepest-descent type

method. The optimization problem could be written as
Figure 6. Pseudodeblended common offset gathers. (a) Near-off-
set gather, (b) mid-offset gather, and (c) far-offset gather.
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minimize f Pð Þ ¼
1

2
P0 � PCk k

2

2 (7)

subject to CPj j > b;

where CP denotes a normalized coherency measure of the data,

(e.g., normalized crosscorrelation or semblance coefficient, inte-

grated over the whole dataset; see Neidell and Taner, 1971).

The absolute value of this coherency measure takes values in

the interval 0,1 with values close to 1 showing high coherency.

It follows that the parameter b takes values in the same interval.

Ignoring, for the moment, the inequality constraint in Equation 7,

a steepest descent iteration in matrix notation would be

Piþ1 ¼ Pi þ aiþ1 P0 � Pi
C

� �

C
H; (8)

with P0 ¼ 0 and a being the step length. In the absence of noise

in the forward model, i.e., when the blending parameters are

known precisely, the blending matrix C can be chosen such that

the diagonal of the CC
H matrix is populated with ones. In this

case, the parameter a should be equal to 1. Equation 8 can then

be written as

Piþ1 ¼ P0
C
H � Pi

CC
H � I

� �

: (9)

In order to take into account the inequality constraint in Equa-

tion 6, a projection of the current estimate onto the feasible set

is required, i.e., the set of coherent signals in the model space.

This projection can be implemented as a coherency-pass filter.

If we denote the projected Pi as Pi, then Equation 6 is obtained.

Note that this means that our method belongs to the class of

inversion type of methods. Other examples of such methods are

Abma and Yan (2009) and Abma et al. (2010).

RESULTS

We now demonstrate how this approach performs when

applied to marine field data with two examples, one for encoded

sources and one for impulsive sources. We applied numerical

blending to a data set that was acquired using a traditional acqui-

sition design by Statoil in the Haltenbanken field, in Norway.

The temporal and spatial sampling interval for this example are 4

ms and 25 m, respectively.

Application to encoded sources

As stated before, the deblending process can be performed in the

common source domain as long as the sources are encoded with so-

phisticated incoherent codes. The process of deblending has been

carried out for a blended record containing two marine shot

records. Each shot record contains 281 traces and 1024 time sam-

ples. In this example, the shot records, which were acquired with

an air-gun source, are encoded with up-sweep and down-sweep sig-

nals of 6 seconds, respectively, and blended numerically. The result

can be interpreted as the recording of two marine vibrators firing

simultaneously with mentioned sweeps. The two original shot

records and the blended shot record are shown in Figure 7. The

deblending results, obtained after 67 iterations, are depicted in

Figure 8, and can be compared with the pseudodeblended results.

Figure 7. (a) Marine shot record 1, (b) marine shot record 2, and
(c) numerically blended shot record (sum of two encoded shot
records).

Figure 8. (a) Pseudodeblended shot record 1, (b) deblended shot
record, (c) difference of deblended and unblended shot record 1
(8b–7a), (d) pseudodeblended shot record 2, (e) deblended shot
record 2, and (f) difference of deblended and unblended shot re-
cord 2 (8c–7b).

Q15Separation of blended data

Downloaded 26 Sep 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Note the cross terms that are still present in the pseudodeblended

results. Records containing the residual cross-term energy are also

shown. As illustrated, the two shot records have been deblended

almost perfectly. The signal-to-blending noise ratio (S/N) after n

iterations is calculated as follows:

S=N ¼ 20 log10
Prms

Pn � Pð Þrms

; (10)

where the subscript rms stands for root mean square; the mean

being computed over all elements of P as well as overall fre-

quency components. The S=N of the deblended shot records is

27 dB. In practice, equation 10 cannot be used because the

unblended data are not available. However, this S=N definition

provides the most direct measure of separability and could be

computed in our examples because blending was performed

numerically.

Note that in practice the use of downsweeps is often

avoided because of the presence of harmonics (Abd El-Aal,

2010). Alternatives are the use of upsweeps with different

lengths or, in the case of the same sweep length for all sour-

ces, application of the method in one of the other domains dis-

cussed earlier.

Application to impulsive sources

We have simulated a 2D blended marine survey based on a

subset of the unblended data set of the previous example. The

blended acquisition design consists of one streamer in which

three sources fire with small random time delays. The detectors

of the streamer record the responses of all three sources, result-

ing in blended shot records that contain negative offsets as well

as very small offsets. We obtained the negative-offset traces via

reciprocity. In addition, the missing near-offsets were obtained

via interpolation. Note that the offset range is not the same for

the three sources because of this special acquisition configura-

tion. Figure 9a shows a shot record after the aforementioned

processing. The same shot record after pseudodeblending can

be seen in Figure 9b. Notice that the three different shot

records that were involved in the blending process can still be

recognized. The S=N of this shot record — as far as blending

noise is concerned — is around �6 dB, i.e., more noise than

signal.

The deblending procedure was carried out in the common off-

set domain. The near-offsets were processed first until no further

improvement could be achieved; the mid- and far-offsets fol-

lowed. The filter used for this example is a simple f -k filter and

the thresholding process takes place in the x-t domain. Figure 9c

shows the deblended estimate obtained after 26 iterations. So far

only the near-offsets have been used to estimate and subtract

the blending noise. Figure 9d shows the results after 36 itera-

tions where the algorithm had finished processing the mid-off-

sets. The final result, obtained after 44 iterations when process-

ing the far-offsets was finished and no further improvement

could be achieved, is shown in Figure 9e. Although some resid-

ual energy is left (see Figure 9f), the result is close to the

desired output, with the S/N being approximately 12 dB. Hence,

the enhancement, in terms of S/N, achieved by the simple

implementation of the algorithm in this example is around 18

dB.

DISCUSSION

In this paper we introduced a general framework for the

separation of blended data. The result is a data set as if it

were acquired without blending. The major benefit of the

method is that the data can be processed further with the cur-

rent, existing algorithms and available tools. However, we re-

alize that in the future the processing of blended data will

most likely be direct, i.e., with new algorithms that are capa-

ble of handling blended data without the need for a deblend-

ing step, e.g., see Verschuur and Berkhout (2010). In this

context, this method can be regarded as a necessary transition

step toward this direction. Furthermore, we envision that even

in the case of direct processing of blending data, a deblending

algorithm may still be applicable as a valuable tool at the pre-

processing stage.

Figure 9. (a) Unblended shot record, (b) initial estimate (pseudo-
deblended result), (c) estimate after 26 iterations, (d) estimate af-
ter 36 iterations, (e) final deblended result after 44 iterations, and
(f) residual energy.
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CONCLUSIONS

The emerging concept of blended or simultaneous sources prom-

ises higher quality seismic data at lower cost. Although the direct

processing of blended data may prove to be the way to go, separa-

tion algorithms can facilitate the transition from traditional to

blended techniques by providing a way to process blended data

with contemporary processing tools. In this paper, we have intro-

duced a framework for the separation of blended data based on the

iterative estimation and subtraction of blending noise. In an optimi-

zation context, this could be expressed as a steepest-descent type of

method for solving regularized least-squares problems.

This method can be implemented in the common source,

common detector, common offset, or common midpoint domain,

benefiting from the special properties of blended data in each of

these. Typically, the nature of the survey should dictate the

most suitable domain. Furthermore, this method can handle both

vibrating and impulsive sources and can integrate any existing

denoising technique for the extraction of unblended data from

the pseudodeblended data. The method can be generalized to

integrate the various domains in such a way that the domain-

specific advantages are combined.

We have applied a simple implementation of this iterative

scheme to field data that were blended numerically, using impul-

sive as well as vibrating sources, producing promising results.
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