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ABSTRACT: A high-performance liquid chromatographic (HPLC) method based on a reversed-phase 

C8 column and pyridine-containing mobile phases was developed for the simultaneous separation of 

chlorophylls and carotenoids. The method is selective enough to resolve monovinyl (MV) and divinyl 

(DV) pairs of polar chlorophylls and DV chlorophyll a (chl a )  (the marker pigment for the prokaryote 

Prochlorococcus marinus) from chl a (the MV analogue). Only the pair DV chl alchl b was not resolved. 

This resolution capability for chlorophylls was only prev~ously achieved using polymeric C),, columns 

in combination with ammonium acetate or pyridine-containing mobile phases. The proposed method 

also allows the separation of taxon-specific carotenoids belonging to 8 algal classes, including some 

critical pigment pairs for previous HPLC methods using C,, columns. The method employs a binary 

gradient, so it can be used with both low-pressure and high-pressure mixing instruments. Method 

transferability was tested using 3 HPLC systems. Only a slight adjustment of gradient profile was 

required to obtain similar results with HPLC equipment having different dwell volumes. The selectiv- 

ity of the method towards some recently discovered chlorophyll and carotenoid pigments makes it 

especially suitable for studying not only fleld samples, but also for re-examining the pigment composi- 
tion of different algal classes. 

KEY WORDS: HPLC pigment analysis . Phytoplankton pigments . C, column . Pyridine-containing 

mobile phases Chemotaxonomy 

INTRODUCTION 

The chemotaxonomic assessment of phytoplankton 

populations present in natural waters requires good 

biochemical markers and very efficient analytical tools. 

The analysis of photosynthetic pigments by high- 

performance liquid chromatography (HPLC) fulfils the 

above requirements as it allows the separation and 

quantification of taxon-specific chlorophylls and caro- 

tenoids, some of them present in seawater samples in 

trace amounts. The outstanding importance of HPLC- 

based phytoplankton pigment analysis in oceanographic 

studies has led to the publication of a comprehensive 

'E-mail: rnzapata@c~macoron org 

monograph in which both modern analytical methods 

and their application to biological oceanography were 

reviewed exhaustively (Jeffrey et al. 199713). 

The photosynthetic pigments of phytoplankton in 

natural samples appear a s  very complex mixtures 

whose separation has challenged analytical methods 

for decades. On the one hand, they cover a wide range 

of molecular structures, showing very different po- 

larities (from the acidic chlorophylls to the non-polar 

hydrocarbon carotenes). On the other hand, some 

chlorophylls and carotenoids are difficult to separate 

as they only differ in the presence or position of a dou- 

ble bond (e.g. monovinyl [MV] and divinyl [DV] 

chlorophyll pairs, P,P-carotene and p,€-carotene and 

their isomeric xanthophyll derivatives). 
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The classical HPLC methods were based on re- 

versed-phase octadecylsilica (ODS, C18) columns and 

gradient elution with aqueous methanol (Gieskes & 
Kraay 1983) or aqueous acetonitrile (Wright & Shearer 

1984) as initial mobile phase. To retain the most polar 

acidic chlorophylls either the ion-pair reagent tetra- 

butylammonium acetate (Mantoura & Llewellyn 1983) 

or a simple ammonium acetate buffer solution (Zapata 

et al. 1987) was incorporated to the aqueous methanol 

mobile phase. 

Combining advantages of earlier methods, Wright et 

al. (1991) developed a ternary gradient HPLC system 

which made use of the retention capacity of ammo- 

nlum acetate-containing mobile phase (Zapata et al. 

1987) and the special selectivity of acetonitrile-based 

eluents for carotenoid separation (Wright & Shearer 

1984). Wright et al.'s (1991) method was employed as a 

standard protocol in international oceanographic pro- 

9ram.s (Joint Global Ocean Flux Study: JGOFS, 

UNESCO 1994), and recommended by SCOR Working 

Group 78 (Wright & Jeffrey 1997). Although these 

methods achieved good separation for most phyto- 

plankton carotenoids, none of them was able to 

separate acidic chlorophylls, with CO-elution of chl c,, 

chl cl and Mg-3,8-divinyl-pheoporphyrin a5 mono- 

methyl ester (MgDVP). After the discovery of the 

marine prokaryote Prochlorococcus marinus (Chis- 

holm et al. 1988, 1992) a new drawback was added, as 

these methods are not able to separate DV chls a and b 

(the marker pigments for P. marinus, Goericke & 
Repeta 1992) from the MV (chls a and b) analogues. 

Once the simultaneous separation of pigments of 

different polarities had been obtained, the next step 

was to improve the HPLC methods by increasing their 

capacity to resolve photosynthetic pigments with very 

similar structures. Thus, the resolution of polar and 

non-polar chls c was improved by using a high car- 

bon-loaded CI8 column (Kraay et al. 1992), polymeric 

CI8 columns (Garrido & Zapa.ta 1993, Van Heukelem 

et al. 1994. Van Lenning et al. 1995), and by increas- 

ing the mobile phase selectivity with changes in the 

solvents or the ion-pair reagent (Garrido & Zapata 

1996, 1997). 

The use of monomeric octylsilica (OS, C8) columns 

was first introduced by Goericke & Repeta (1993) to 

achieve the resolution of chl a and DV chl a. That 

method and further modifications, which employed the 

same stationary phase (Vidussi et al. 1996, Barlow et al. 

1997), still failed in the separation of chl c-related pig- 

ments. In a recent paper (Rodriguez et  al. 1998), we 

showed that using adequate gradient profiles and 

injection conditions, monomeric C8 columns can sepa- 

rate acidic chlorophylls simultaneously with other 

chlorophylls and carotenoids. However, this method, 

which obtained good results in the analysis of pigment 

composition from many unialgal cultures, failed in the 

separation of certain pigment pairs from natural sam- 

ples, especially those composed by chls c and chl a 
acidic derivatives. To overcome such a problem, and 

knowing that the use of pyridine as the eluent modifier 

provides enhanced selectivity towards certain polar 

chlorophylls and carotenoids (Garrido & Zapata 1996, 

1997, Zapata et al. 1998), we have evaluated the per- 

formance of pyridine-containing mobile phases on 

monomeric C8 stationary phase. 

Here we present an HPLC method for the analysis of 

phytoplankton pigments which combines a CB column 

with an optimised mobile phase including an aqueous 

pyridine solution as an ion-pair reagent. The results 

obtained from analysis of unialgal culture extracts, 

complex pigment mixtures and natural samples show 

that the new method is able to separate, in a single run, 

most polar and non-polar chlorophylls and most taxon- 

specific carotenoids found in marine phytoplankton. 

MATERIALS AND METHODS 

HPLC. Method development was performed using 

Waters Alliance HPLC equipment (System l ) ,  includ- 

ing a 2690 separations module (low-pressure mixing 

system) and a Waters 996 diode-array detector (1.2 nm 

optical resolution) interfaced with a Waters 474 scan- 

ning fluorescence detector by means of a Sat/In analog 

interface. To verify the transferability of the new 

method to other HPLC systems, 2 additional instru- 

ments (Systems 2 and 3) were also employed. HPLC 

System 2 was a Beckman System Gold including a 

model 126 programmable solvent module (high-pres- 

sure mixing system), a model 168 diode-array detector 

(2 nm optical resolution) and a Rheodyne 77251 injec- 

tion valve fitted with a 200 p1 loop. HPLC System 3 

was a Waters modular system (high dwell volume) 

including a Waters 600 S controller, a Waters 616 pump 

(low-pressure mixing system), a Waters 717 Plus 

autosampler (200 p1 loop) and a Waters 996 diode- 

array detector (1.2 nm optical resolution). 

Stationary phase. Analytical separations were per- 

formed using a Waters Symmetry C8 column (150 X 

4.6 mm, 3.5 pm particle size, 100 A pore size). The col- 

umn was thermostatted at 25OC by means of a refriger- 

ated circulator water bath (Neslab RTE-200) connected 

to an HPLC column water jacket (Alltech). 

Mobile phases. Eluent A was a mixture of meth- 

anol:acetonitrile:aqueous pyridine solution (0.25 M 

pyridine, see below) (50:25:25 v:v:v) while eluent B 

was either B1, methanol:acetonitrile:acetone (20:60:20 

v:v:v), or B2, acetonitri1e:acetone (80:20 v:v). Organic 

solvents employed to prepare mobile phases were 

HPLC-grade. The aqueous pyridine solution (0.25 M) 
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was prepared as follows: 10 m1 of acetic acid and 20 m1 

of pyridine (Merck) were added to 900 m1 of milli-Q 

(Millipore) water in a 1 1 flask and mixed using a mag- 

netic stirrer. Acetic acid was then added dropwise until 

the pH was 5.0. The mixture was diluted to 1000 m1 

with water (final pyridine concentration 0.248 M) and 

the pH rechecked. All procedures were performed in a 

fume hood. The pyridine solution was filtered (0.45 pm 

GHP Gelman filter) after mixing with methanol and 

acetonitrile (eluent A).  Different gradient profiles were 

adjusted for minimising differences of equipment 

dwell volume (see Table 1). The flow rate was fixed at 

1 m1 min-l. 

Algal cultures. Two sets of algal cultures were 

employed during this study. The first one was used 

in our laboratories for HPLC method development 

and evaluation, and was selected to include the most 

diagnostic pigments and algal classes found in 

marine phytoplankton: Alexandrium minuturn ALlV- 

IEO (Dinophyceae) from the Instituto EspaIiol de 

Oceanografia, Vigo, Spain; Emiliania huxleyi NIOZ 

CH 24 (Prymnesiophyceae) from the Netherlands Insti- 

tute for Sea Research, Texel, The Netherlands; Pavlova 
gyrans CCMP 608 (Prymnesiophyceae), Prochlorococ- 
cus marinus CCMP 1375 (Cyanophyceae) and Pelago- 
coccus subviridis CCMP 1429 (Pelagophyceae) from 

the Provasoli-Guillard National Center for Culture 

of Marine Phytoplankton (CCMP), West Boothbay 

Harbor, ME, USA; Rhodomonas baltica ICMA (Cry- 

ptophyceae), Dunaliella tertiolecta ICMA (Chlorophy- 

ceae), and Tetraselmis suecica ICMA (Prasinophyceae) 

from the Instituto de Ciencias Marinas de Andalucia 

(CSIC), Cadiz, Spain; Micromonas pusilla CCAP 

1965/4 (Prasinophyceae) from the Culture Collection 

of Algae and Protozoa, Oban, UK; and Skeletonema 
costatum Sk-l (Bacillariophyceae) from the Centro de 

Investigacions Marinas, Vilanova de  Arousa, Spain. 

All cultures except Prochlorococcus marinus were 

grown on f/2 enriched seawater medium (Guillard & 
Ryther 1962) under 12:12 h L:D cycle with an irradi- 

ance of 42 pm01 photons m-2 S-' during the light period. 

Temperature was maintained at  16 + 1°C. P. marinus 
CCMP 1375 was grown as described by Moore et al. 

(1995). 

In an additional study performed at the CSIRO 

Marine Laboratories in Hobart, Australia, the method 

was transferred to other HPLC equipment (System 3) 

and the following SCOR reference microalgal cultures 

(Jeffrey & LeRoi 1997) were analysed: Amphidiniurn 
carterae CS-2 12 (Dinophyceae), Dunaliella tertio- 
lecta CS-175 (Chlorophyceae), Erniliania huxleyi 
CS-57 (Prymnesiophyceae), Pavlova lutheri CS-182 

(Prymnesiophyceae), Pelagococcus subviridis CS-99 

(Pelagophyceae), Phaeodactylum tricornutum CS-29 

(Bacillariophyceae), Porphyridium cruentum CS-25 

(Rhodophyceae), and Pycnococcus provasoli CS-185 

(Prasinophyceae). Culture conditions were as de- 

scribed by Jeffrey & LeRoi (1997). All cultures were 

harvested during the exponential phase of growth by 

filtering under reduced vacuum onto 25 mm diameter 

Whatman GF/F filters. 

The macroalga Codium tomentosum (Chlorophy- 

ceae) was employed as source of siphonaxanthin and 

siphonein. Isolated pigments were injected in HPLC 

System 1 to establish retention time and spectral infor- 

mation. 

Field samples. Seawater samples were obtained 

from different regions. During the FRUELA 96 cruise 

(January 1996) on board the RV 'Hesperides', a sample 

was collected from Gerlache Strait (64" 20'S, 61°48'W, 

at 5 m depth) near the Antarctic Peninsula. A sample 

from oligotrophic waters was collected (May 1999) 

from eastern subtropical North Atlantic (33' 03' N, 

21" 16'W, at the deep chlorophyll maximum depth: 

80 m). Seawater samples were filtered through a 

47 mm diameter Whatman GF/F filters. An estuarine 

sample was collected (November 1998) from the Ria 

of Arousa (Galician coast, NW Spain). Seawater was 

size-fractionated by sequential filtration through 

47 mm diameter Whatman GF/D filter (nominal pore 

size 2.7 pm) and a Whatman GF/F filter (nominal pore 

size 0.7 pm). 

Filters were kept frozen prior to HPLC analysis. The 

FRUELA sample was stored at  -30°C for 2 yr, the North 

Atlantic sample at -80°C for 10 d and filters from the 

estuarine sample at -30°C for 1 d. 

Pigment extraction. Frozen filters from algal cultures 

and natural samples were extracted in a Teflon-lined 

screw-capped tube with 5 m1 95% methanol (2 m1 for 

the oligotrophic sample) using a stainless steel spatula 

for filter grinding. The tube was then placed in a 

beaker with ice and water, and the whole set placed in 

an ultrasonic bath for 5 min. Extracts were then filtered 

through 25 mm diameter polypropylene syringe filters 

(MFS HP020, 0.2 pm pore size) to remove cell and filter 

debris. An aliquot (1 ml) of methanol extract was mixed 

with 0.2 m1 of water (0.4 m1 for SCOR culture extracts) 

to avoid the shape distortion of earlier eluting peaks 

(Zapata & Garrido 1991). Each sample was injected 

just after water addition, as a decrease in non-polar 

pigment concentrations was observed m~hen diluted 

extracts were held inside the refrigerated autosampler 

(4OC) prior to injection. The injection volume was 

200 p1. All samples were prepared under subdued 

light. 

Pigment detection and identification. Chlorophylls 

and carotenoids were detected by diode-array 

spectroscopy (350 to 750 nm). Chlorophylls were also 

detected by fluorescence (Ex [excitation]: 440 nm, Em 

[emission]: 650 nm). Absorbance chromatograms were 
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extracted at  different wavelengths (430, 440 and 

450 nm). Pigments were identified by co-chromatogra- 

phy with authentic standards and by diode-array spec- 

troscopy (wavelength range: 350 to 750 nm, 1.2 nm 

spectral resolution). Each peak was checked for spec- 

tral homogeneity using the Millenium software 

(Waters) algorithms, and the absorption spectrum was 

compared with a spectral library previously created. 

Pigment standards were isolated from microalgal cul- 

tures or seaweeds of well-known pigment composition, 

purified by semi-preparative HPLC, and transferred 

into standard solvents following protocols described by 

Jeffrey (1997) and Repeta & Bjarland (1997). Novel 

compounds, such as 4-keto-19'-hexanoyloxyfucoxan- 

thin (Egeland et al. in press) and MV chl cg, were 

isolated and characterised as previously described 

(Garrido & Zapata 1998). 

Resolution (R,) between a peak and the preceding 

one was calculated by means of Millenium System 

Suitability software (Waters) using the following equa- 

tion: R, = 2(Rt, - Rt,)IW, where Rt2 and Rt, are the 

retention times of 2 adjacent peaks, and W is the sum 

of peak widths at baseline. As resolution was mea- 

sured for peaks eluting in the same absorbance chro- 

matogram, mixtures of several culture extracts were 

injected when necessary for obtaining adjacent peaks. 

Pigment nomenclature and abbreviations suggested 

by SCOR WG 78 (Jeffrey & Mantoura 1997) were used. 

A prefix indicating structural variations of well-known 

pigments (e.g. chls a, b, and c3) was used for designat- 

ing novel compounds (i.e. DV chls a and b, MV chl c3).  

For the chlorophylls %.hose molecular structure has not 

yet been elucidated, the nomenclature includes the 

pigment type and the species name where it was first 

detected (e.g. chl c from Pavlova gyrans or non-polar 

chl c from Emiliania huxleyi]. 

RESULTS 

Mobile phase composition 

The optimal composition of eluents A and B was 

studied by isocratic elution. Mixtures of isolated polar 

and non-polar chlorophylls were used as resolution 

probes for optimising mobile phases A and B, respec- 

tively. The aqueous component in eluent A (0.25 M 

ammonium acetate or 0.25 M pyridine solutions, 

employed in parallel experiments) was fixed at  25 % in 

volume, a proportion previously found to be optimal 

for the retention capacity of C8 columns (Rodriguez et 

al. 1998). The percentage of acetonitrile and methanol 

in mobile phase A was varied from 75:O (v:v) to 03.5 

(v:v), and the resolution of acidic chlorophylls mea- 

sured in each case. The best resolutions for MV and 

DV pairs of polar chlorophylls were obtained using 

methano1:acetonitrile (50:25 v:v). For any combination 

of organic solvents the mobile phases, including pyri- 

dinium acetate, always provided better results than 

those containing ammonium acetate. 

Mobile phase B was initially methanol, but the reso- 

lution of non-polar chlorophylls (i.e. chl b, non-polar 

chl c from Ernlliania huxleyi, DV chl a ,  and chl a) was 

improved when acetonitrile was added in increasing 

proportions. This change produced an unexpected 

increase in retention time that was compensated for 

by the addition of acetone to increase the solvent 

strength. The best results were obtained when mobile 

phase B was acetonitrile:methanol:acetone (60:20:20, 

v:v:v). 

Elution gradient 

To optimise the gradient profile, different slopes in 

the rate of change from mobile phase A to mobile 

phase B (A %B min-l) were evaluated. The mobile 

phase change rate was kept slow at the beginning of 

the analysis to ensure a good separation of acidic 

chlorophylls and the most polar carotenoids. The gra- 

dient steepness was then increased to achieve the nec- 

essary solvent strength for the elution of non-polar pig- 

ments. The optimum gradient and mobile phases for 

the 3 HPLC systems employed are shown in Table 1 

After all other chromatographic conditions were fixed, 

a further comparison between mobile phase A contain- 

ing pyridine (Fig. 1A) or ammonium acetate (Fig. 1B) 

was performed. The pyridine-containing mobile phase 

A shows better selectivity not only for the anionic 

(acidic) chlorophylls but also for the group of fuco- 

xanthin-related carotenoids. 

Pigment composition of microalgal cultures 

The HPLC chromatograms (System 1 and mobile 

phase B1) of pigment extracts from 10 microalgal cul- 

tures are shown in Fig. 2. Most pigments of the species 

studied have been characterised in the literature 

(Egeland 1996, Jeffrey et al. 1997a). Table 2 lists the 

microalgal pigments detected, as well as siphonaxan- 

thin and siphonein standards, in increasing elution 

order. The resolution for pigment pairs is only indi- 

cated when R, < 1.40. Spectral characteristics of pig- 

ments in the mobile phase are also included. 

Variability in retention time between injections was 

evaluated using 3 pigments eluting at different regions 

of the chromatogram: chl c2 (mean retention time Rt = 

11.46 min, standard deviation [SDI = 0.15 min, n = 17, 

relative standard deviation [RSD] = 1.28 %), diadino- 
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Table 1.  Gradient profile and mobile phase composition employed with different HPLC systems. (System 1 :  Waters Alliance; Sys- 
tem 2: 6eckman system  old; and System 3: waters 600) 

(a) Analytical gradient protocol (HPLC Systems 1 and 2) 

Time (min) A :  Methano1:acetonitrile;aqueous pyridine Bl:  Methano1:acetonitrile:acetone 
(50:25:25 v:v:v) (20:60:20 v:v:v) 

% p, % B  

(b) Analytical gradient protocol (HPLC System 3) 

Time (min) A :  Methano1:acetonitnle:aqueous pyr~dine 

(50:25:25 v:v:v) 
% A  

Ammonium acetate I I 

0 10 20 30 40 

Time (rnin) 

Fig. 1. Effect of (A) pyridine (pyridinium acetate) and (6) am- 

monium acetate solutions a s  aqueous components of mobile 

phase A on pigment resolution, Sample was a mixed meth- 

anol extract of Emiliania huxleyi NIOZ C H  24, Micromonas 

pusilla C C A P  1965/4 and Tetraselmis suecica I C M A .  HPLC 
System 1 .  Detection by absorbance at 440 nm. Peak identifi- 

cations as in Table 2 

xanthin (mean Rt = 24.08 min, SD = 0.19 min, n = 16, 

RSD = 0.80%), chl a (mean Rt = 33.15 min, SD = 0.13 

min, n = 19, RSD = 0.38%). 

Several inversions in elution order, compared with 

that on monomeric Cis  columns (see Wright & Jeffrey 

1997, Table 12.2), are observed. Such is the case for the 

pigment pairs chl c3 (peak 4]/chlorophyllide a (Chlide 

a,  peak 8);  prasinoxanthin (Pras, peak 20)/19'-hexa- 

noyloxyfucoxanthin (Hex-Fuco, peak 24); violaxanthin 

(Viola, peak 23)/Hex-Fuco (peak 24); diadinochrome 

(Diadchr, peak 26)/diadinoxanthin (Diadino, peak 27); 

Diadino (peak 27)/dinoxanthin (Dino, peak 28); 

Diadino (peak 27)/monadoxanthin (Monado, peak 32); 

zeaxanthin (Zea, peak 33)/lutein (Lut, peak 34); croco- 

xanthin (Croco, peak 39)/chl b (peak 43); and non- 

polar chl c (peak 45)/chl a (peak 48) (see Table 2). 

Relevant capabilities of the proposed method can 

be observed in the chromatogram of selected species. 

The chromatogram of Erniliania huxleyi NIOZ C H  24 

(Fig. 2A) illustrates the resolution of acidic chlorophylls, 

with baseline separation (R ,  > 1.40) for the pigment 

pairs chl c3 (peak 4)/MV chl c3 (peak 6) and MgDVP 

(peak 9)/chl c2 (peak 10). The separation of fucoxanthin 

(Fuco, peak 17) and its acyloxy derivatives: 19'-bu- 

tanoyloxyfucoxanthin (But-fuco, peak 16, detected in 

trace amount) and Hex-fuco (peak 24) is also achieved. 

A carotenoid recently characterised by Egeland e t  

al. (in press) as 4-keto-19'-hexanoyloxyfucoxanthin (4k- 

Hex-fuco, peak 21), and an unidentified carotenoid 

(peak 19) eluting before the novel pigment, were base- 

line resolved. Finally, the non-polar chl c from E. hux- 

leyi (peak 45), first detected by Nelson & Wakeham 

(1989), eluted well separated from chl a (peak 48). 
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A Emiliania huxleyi 

(NIOZ CH24) 

20 

Time (min) 

20 

Time (min) 

C Micromonas pusilla 

(CCAP 196514) 43 

---* - 

20 
Time (rnin) 

Fig. 2. Pigment composition from the algal cultures [A) Emiliania huxlep NIOZ CH 24, [B) Pavlova gyrans CCMP 608, 

(C) Micromonas pusifla CCAP 1965/4, ( D )  Pelagococcus subvindis CCMP 1429, ( E )  Skeletonema costatum Sk-1-CIMA, 

( F )  Dunaliella tertiolecta ICMA, ( G )  Rhodomonas baltica ICMA, ( H )  Prochlorococcus marinus CCMP 1375, (the insert shows a 

chromatogram of a mixture of P. marinus and D. tertiolecta ICMA obtained by using a modified gradient profile), (I) Alexandnum 
minuturn AL1V-IE, and [J) Tetraselmis suedca ICMA. HPLC System 1. Detection by absorbance at 440 nm (thin trace) and fluo- 

rescence at Ex 440/Em 650 nm (thick trace). Peak identifications as in Table 2 
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Fig. 2. (continued) 
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Table 2. Peak identification table. Resolution (R,) hctween pigment pairs is indicated when R, c 1.40. Wavelengths given in 

parenthesis denote shoulders. MgDVP: Mg-3,8-divinyl-pheoporphyrin a5 monomethyl ester 

Peak no Pigment Retention RS Maxima in clluant (nm) 

(peaks) 
. - -p 

0 (Solvent front) 1.93 

1 Chlorophyllide !J 5.43 4 66 60 1 64 8 

2 Peridininol 6.06 483 

3 Methyl-chlorophyllide b 7.19 4 64 601 647 

4 Chlorophyll cn 7.94 457 588 628 

5 Chlorophyll c from Pavlova gyrans 8.27 0.82 (4/5) 457 586 635 

6 MV Chlorophyll c3 8.66 0.85 (5/6) 449 584 628 

7 Unknown chlorophvll c 9.20 450 583 63 1 

8 Chlorophyllide a 10.46 430 581 663 

9 MgDVP 11.01 438 575 627 

10 Chlorophyll c2 11.44 452 583 633 

11 Chlorophyll c, 12.14 448 580 631 

12 Methyl-chlorophyllide a 13.13 430 581 663 

13 Pendinin 14.20 473 

14 Siphonaxanthin 14.76 453 

15 Uriolide 17.03 452 475 

16 19'-butanoyloxyfucoxanthin 17.94 446 469 

17 Fucoxanthin 18.87 449 

18 9'-cis-neoxanthin 19.62 413 437 465 

19 Unknown carotenoid from Emjljania huxleyi 19.72 <0.5 (18/19) 446 469 

20 Prasinoxanthin 20.46 455 

2 1 4-keto-19'-hexanoyloxyfucoxanthin 20.92 1.27 (20/21) 447 470 

2 2 h4icromonol 20.99 <0.5 (21/22) (405) 429 454 

2 3 Violaxanthin 21.32 1 08 (22/23) 416 440 470 

24 19'-hexanoyloxyfucoxanth~n 21.75 1.21 (23/24) 446 469 

25 Micromonal 23.24 462 

26 Diadlnochrome 23.27 <O 5 (25/26) (406) 429 457 

27 Diadinoxanthin 24.11 (422) 446 476 

28 Dinoxanthin 25.22 4 17 44 1 470 

29 Antheraxanthin 25.38 0.8 (28/29) (421) 446 474 

30 Alloxanthin 26.25 (426) 452 482 

31 Diatoxanthin 26.90 (426) 453 481 

32 Monadoxanthin 27.07 0.80 (31/32) (423) 447 476 

33 Zeaxanthin 27.49 (426) 453 478 

34 Lutein 27.65 0.80 (33/34) (422) 446 475 

3 5 D~hydrolutein 28.00 (405) 429 454 

3 6 Siphonein 29.37 458 

37 Unknown carotenoid from Tell-dselmls suecica 29.71 (423) 449 476 

3 8 Unknown carotenoid from T. suecica 30.45 (422) 448 476 

39 Crocoxanthin 31.11 (422) 447 476: 

40 Chlorophyll b allomer 31.28 0.8 (39/40) 462 598 646 

4 1 Unknown carotenoid from Prochlorococcus marinus 31.42 422 447 476 

42 DV chlorophyll b 3 1.58 1.02 (41/42) 470 600 648 

43 Chlorophyll b 31.62 <0.5 (-12/43) 462 599 648 

4 4 Chlorophyll b epimer 31.87 462 599 650 

4 5 Non-polar chlorophyll c from E. huxleyi 32.39 455 584 633 

4 6 Chlorophyll a allomer 32.63 430 615 662 

4 7 DV chlorophyll a 32.83 44 1 616 665 

48 Chlorophyll a 33.15 43 1 617 662 

49 Chlorophyll a epimer 33.48 430 615 664 

5 0 P,ycarotene 34.25 (436) 461 492 

5 1 Unknown carotenoid from Micomonaspusjlla 34.32 <0.5 (50151) (418) 442 470 

52 €,E-carotene 35.52 420 44 1 470 

53 p,e-carotene 35.74 0.88 (52/53) (422) 447 475 

54 P,P-carotene 35.95 0.88 (53/54) (426) 452 477 
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The resolution of other polar chlorophylls is shown 

in the chromatogram of Pavlova gyrans CCMP 608 

(Fig. 2B) where the chl c-like pigment (peak 5), first 

detected in P, gyrans by Fawley (1989), Chlide a (peak 

8), chl c2 (peak 10) and chl c l  (peak 11) were baseline 

separated. Although peak 5 (chl c-like pigment) is not 

symmetric, it is spectrally homogeneous. 

Some recently characterised carotenoids from Pra- 

sinophyceae (Egeland & Liaaen-Jensen 1995, Egeland 

et al. 1995) such as uriolide (Uri, peak 15), micromonol 

(Microl, peak 22), micromonal (Micral, peak 25) and 

dihydrolutein (Dihydrolut, peak 35) are detected in 

Micromonas pusilla CCAP 1965/4 (Fig. 2C). Although 

the separation of major peaks Pras (peak 20) and 

violaxanthin (Viola, peak 23) seems good, other 

carotenoids are only partially resolved: MicrolNiola 

(R, = 1.08), Zea/Lut (R, = 0.80). An unknown polar chl 

c-like pigment (peak 7), with spectral characteristics 

similar to chl c2 (see Table 2 ) ,  was detected in this 

strain of M. pusilla. 
The chromatogram of Pelagococcus subviridis 

CCMP 1429 (Fig. 2D) shows a major peak of But-fuco 

(peak 16), usually employed as a marker pigment for 

the class Pelagophyceae (Andersen et al. 1993), eluting 

ahead of Fuco (peak 17). A minor peak, identified as 

&,E-carotene (&&-Car, peak 52), elutes before the other 

carotenes. 

The chromatogram of the diatom Skeletonema costa- 
turn Sk-l (Fig. 2E), whose chlorophyllase activity pro- 

motes the conversion of chl a (peak 48) into Chlide a 
(peak 8) (Jeffrey & Hallegraeff 1987), shows the sepa- 

ration of this acidic derivative and its methyl ester 

(peak 12), probably generated during the extraction 

process using methanol as solvent. 

Another species showing high chlorophyllase activ- 

ity is Dunaliella tertiolecta ICMA, whose chromato- 

gram (Fig. 2F) shows the presence of Chlide b (peak l), 

Chlide a (peak 8), and their methyl esters (peaks 3 and 

12, respectively). Trace amounts of Zea (peak 33) 

eluted ahead of Lut (peak 34) achieving a partial reso- 

lution (R, = 0.80). Its characteristic monocyclic P,y- 

carotene ( 0 ~ - C a r ,  peak 50), was detected in trace 

amount eluting before p,&-carotene @&-Car, peak 53). 

In the chromatogram of Rhodomonas baltica ICMA 

(Fig. 2G) the marker pigment alloxanthin (Allo, peak 

30) was baseline resolved from monadoxanthin (Mon- 

ado, peak 32); and Croco (peak 39) and PE-Car (peak 

53) were also detected. 

The chromatogram of the cyanobacterium Pro- 
chlorococcus mannus CCMP 1375 (Fig. 2H) shows 

MgDVP (peak g), Zea (peak 33, the major carotenoid), 

an unknown carotenoid (peak 41, spectrally similar to 

PE-Car) eluting before a peak containing DV chl b 
(peak 42, the major component) plus chl b (peak 43, 

detected as a minor component eluting at the final part 

of the DV chl b peak), and peaks corresponding to DV 

chl a (peak 47) and P&-Car (peak 53). 

A mixture of methanol extracts from Prochlorococcus 
marinus and Dunaliella tertiolecta ICMA was used to 

study the effect of different gradient profiles to resolve 

the critical pair DV chl blchl b (see insert in Fig. 2H). 

Although the gradient steepness applied at minute 22 

was changed from 40-95% B in 6 min (-A 10%B min-l, 

standard conditions) to 40-95 % B in 12 min (-A 5 % B 

min-l), the pigment pair remained unresolved. How- 

ever, an improvement in the resolution was observed 

for the pigment pairs Zea/Lut (from R, = 0.80 to R, = 

1.08) and DV chl a/chl a (from R, = 1.42 to R, = 1.48). 

The chromatogram of the toxic dinoflagellate Alex- 
andrium rninutum ALlV-IEO (Fig. 21) shows an inver- 

sion in elution order (with respect C18 columns) for the 

pigment pairs: Diadchr (peak 26)/Diadino (peak 27), 
and Diadino (peak 27)IDino (peak 28). 

Two unknown carotenoids (peaks 37 and 38, Fig. 25) 

with similar visible absorbance spectra (see Table 2) 

were detected in Tetraselmis suecica ICMA. Consider- 

ing both spectral information and chromatographic 

behaviour the carotenoids were tentatively identified 

as loroxanthin esters having a different fatty acid com- 

position. 

Mixed algal extracts 

The performance of the method with mixed culture 

extracts simulating phytoplankton populations of field 

samples was also evaluated. Three regions of the 

resulting chromatograms -polar end, central region 

and non-polar end - were examined in detail (Fig. 3). 

The behaviour of polar chlorophylls can be illus- 

trated by a mixture of Emiliania huxleyi NIOZ CH 24 

and Pavlova gyrans CCMP 608 (Fig. 3A). The high 

resolution (R, = 2.31) for the pigment pair chl c3 
(peak 4)/MV chl c3 (peak 6), allows the separation of 

chl c from P. gyrans (peak 5) between them, while 

Chlide a (peak 8) and MgDVP (peak 9) elute baseline 

separated after them, followed by the pair chl c;! 
(peak 10) and chl c, (peak ll), also well resolved (R, 

= 2.09). 

Most of the taxon-specific carotenoids elute at the 

central part of the chromatogram. This is illustrated 

when a mixture of methanol extracts from Emiliania 
huxleyi NIOZ CH 24, Micromonas pusilla, Pelagococ- 
cus subvirids CCMP1429 and Rhodomonas baltica 
is analysed (Fig. 3B). Several carotenoids usually em- 

ployed as marker pigments for different algal classes 

are separated: Hex-fuco (peak 24) for Prymnesio- 

phyceae, But-fuco (peak 16) for Pelagophyceae, Allo 

(peak 30) for Crytophyceae, and Pras (peak 20) for 

Prasinophyceae. 
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Fig 3. Chrornatograrns (HPLC System 1) with inserts covering 3 polarity ranges. (A) Mixed pigment extract from Erniliania hux- 

lejrl NIOZ CH 24 and Pavlo~ra gyrans CCMP 608 (the insert shows the resolution of polar chl cpigments, Chlide a and MgDVP), 

(B) mixed pigment extract from E. huxlej/i NIOZ CH 24, Rhodomonas baltica ICMA. Micromonas pusllla CCAP 1965/4, and 

Pelagococcus subviridis CCMP 1429 (the insert shows the resolution of major carotenoids used as  marker pigments); and 

(C) mixed pigment extract from E. huxleyi NIOZ CH 24 and Prochlorococcus marinus CCMP 1375 (the insert shows the resolu- 

tlon of non-polar chl cfrom E. huxleyi, DV chl a and chl a).  Detection by absorbance at 440 nm. Peak identification as in Table 2 
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Finally, the non-polar end of the chromatogram from 

a mixture of methanol extracts from Prochlorococcus 
marinus (Cyanophyceae) and Erniliania huxleyi NIOZ 

CH 24 (Prymnesiophyceae) (Fig. 3C) shows the coelu- 

tion of DV chl b (peak 42) and chl b (peak 43) present 

in P. marinus as trace amounts; the non-polar chl c 
from E. huxleyi NIOZ CH 24 (peak 45) is well resolved 

(Rs > 1.50) from DV chl a (peak 471, and DV chl a (peak 

47) is separated (R,  = 1 47) from chl a (peak 48). 

Natural samples 

The chromatogram of a sample from Gerlache Strait 

close to the Antarctic Peninsula (Flg. 4A) shows pig- 

ments from diatoms: chl c2 (peak 10), chl c ,  (peak 11) 

and Fuco (peak 17); and from chlorophytes: Neo (peak 

18), Viola (peak 23), chl b (peak 43) and an unknown 

carotenoid (peak 38) tentatively identified as a loro- 

xanthin ester. A carotenoid spectrally similar to loro- 

xanthin was detected CO-eluting with Neo (peak 18), 

as confirm.ed by the characteristic spectra, of both 

carotenoids observed at initial and final parts of the 

peak. It is remarkable that the occurrence of Lut (peak 

34) was only in trace amounts, since this pigment usu- 

ally appears in higher amounts associated with chl b. 

Microscopic observations indicated the dominance of 

Pyrarnimonas sp. (Prasinophyceae) as a major compo- 

nent (M. Varela pers, comm.). 

The chromatogram from a sample collected from 

oligotrophic waters of eastern subtrop~cal North At- 

lantic (33"03'N, 21" 16'W) shows a very complex 

pigment composition (Fig. 4B) including DV chl a (peak 

4?), the marker pigment of the cyanobacterium 

Prochlorococcus marinus (contributing 40 % of total 

chl a ) ,  Zea (peak 33), DV chl b (peak 42) and P&-Car 

(peak 53). The chromatograrn also contains pigments 

from haptophytes as chl c3 (peak 4 ) ,  non-polar chl c 

(peak 45) and Hex-fuco (peak 241, as well as But-fuco 

(peak 16) and Fuco (peak l? ) ,  probably associated 
with pelagophytes. Other minor pigments such as Uri 

(peak 15), Pras (peak 20) and the unknown carotenoid 

(peak 51) associated with prasinophytes (Egeland et al. 

1995), Perid (peak 13) associated w ~ t h  dinoflagellates, 

and Allo (peak 30) associated with cryptophytes, were 

also identified. At the non-polar end of the chroma- 

togram, DV chl b (peak 42) and chl b (peak 43) elute to- 

gether as a single peak, while the non-polar chl c from 

Emiliania huxleyi (peak 45) is well resolved (R, > 1.50) 

from DV chl a (peak 47) and the latter appears well 

separated (R, = 1.42) from chl a (peak 48). 

The phytoplankton of a seawater sample collected 

from Ria of Arousa (Galician coast, NW Spain) was 

fractionated into 2 size categories. The chromatogram 

of the nano- and microplankton size-fraction (Fig. 4C, 

upper trace) shows pigments associated with diatoms: 

chl c, (peak 10) a.nd chl c, (peak I l ) ,  and Fuco (peak 

17) as the major carotenoid. Chl c3 (peak 4), chl, cl 
(peak to), Fuco (peak l?),  Hex-fuco (peak 24) and But- 

fuco (peak 16) could be related with the algal classes 

Pelagophyceae and Prymnesiophyceae. The presence 

of chl b (peak 43) and minor peaks of Neo (peak 18) 

and Pras (peak 20) was associated with the class 

Prasinophyceae and Perid (peak 13) with Dino- 

phyceae. 

The chromatogram of the picoplankton fraction 

(Fig. 4C, lower trace) shows the dominance of pig- 

ments associated with different algal classes such as 

Prasinophyceae (MgDVP [peak 91, chl b [peak 431, uri- 

olide [peak IS], Neo [peak 181, Pras [peak 201, Viola 

[peak 231, micromonal [peak 221 and dlhydrolutein 

[peak 351) and Cryptophyceae (Allo [peak 301). The 

combined presence of chl c3 (peak 4), chl c2 (peak 10), 

But-fuco (peak 16) and Fuco (peak 17) in samples lack- 

ing Hex-fuco (peak 24) and non-polar chl c (peak 45) 

could be attributed to members of the class Pelago- 

phyceae. This pigment diversity reflects the complex- 

ity of the eukarotlc picoplankton community. 

Method transferability 

The transferability of the proposed method be- 

tween low-pressure mixing (HPLC System 1) and 

high-pressure mixing (HPLC System 2) instruments 

was checked In our laboratories using the same mix- 

ture of algal p~gments, operators and chemicals. A good 

agreement was observed between systems (Fig. 5A,B). 

However, when the method was transferred to the 

other low-pressure mixing equipment (HPLC System 

3) employed at the CSIRO Marine Laboratories in 
Hobart, Australia, during a collaborative study, a slight 

adjustment was required to equal the resolution capac- 

ity of HPLC Systems 1 and 2. A modified gradient pro- 

file (see Table 1) was applied to correct differences 

between equipment dwell volumes (4 m1 higher than 

System 1, as informed by the manufacturer). In addi- 

Fig. 4. Chromatograms (HPLC System 1) of phytoplankton 
pigments from seawater samples collected from (A) Gerlache 
Strait (64"20'S, 61°48' W, at 5 m depth) close to the Antarctic 

Peninsula, (B) eastern subtropical North Atlantic (33'03'N. 
21" 16'W), sample from deep chlorophyll maximum layer 
(80 m depth); and (C) Ria of Arousa (Galician coast, NW 
Spain), integrated profile (15 m depth) Pigment composition 
of micro- and nanoplankton fraction (upper traces) and pig- 
ment cornposltlon of picoplankton fraction (lower traces). 
Detection by absorbance at 440 nm (thin trace) and fluores- 
cence Ex 440/Em 650 nm (thick trace). Peak identifications as 

in Table 2 
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Fig. 5 .  Method transferability. Chromatograms of a mixed methanol extract from Emiliania huxleyi NIOZ CH 24 and Tetraselmis 
suecica ICMA obtained with (A) a low-pressure mixing solvent with low dispersion design (HPLC System 1) and (B) a high- 

pressure mixing solvent (HPLC System 2). Detection by absorbance at 430 nm. (C) HPLC chromatogram of a mixed methanol 

extract from the following SCOR reference cultures. Arnphidinium carterae (CS-212), Dunaliella tertiolecta (CS-175), Erniliania 
huxleyi (CS-57), Pavlova lutheri (CS-182), Pelagococcus subviridis (CS-99), Phaeodactylurn tricornuturn (CS-29), Porphyridium 
cruentum (CS-25) and Pycnococcus provasoli (CS-185). HPLC System 3 and mobile phase B2. Detection by absorbance at 

450 nm. Peak identification as in Table 2 
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- 

tion, the methanol of mobile phase B was substituted 

with acetonitrile (eluent B2). After that, a mixture of 

selected SCOR reference cultures was analysed and a 

similar retention time and resolution were obtained 

(see Fig. 5C).  

DISCUSSION 

Chromatographic aspects 

The advantages of using pyridinium acetate instead 

of ammonium acetate as a mobile phase additive seem 

to be based on the fact that the pyridinium ion not only 

acts as a more hydrophobic ion-pair reagent (increas- 

ing the retention of acidic chlorophylls), but also as a 

real mobile phase modifier, affecting the selectivity 

towards both neutral (carotenoids and esterified chl- 

orophyll~) and charged compounds (dephytylated chl a 

and b derivatives and acidic chl c pigments). This 

results in the improved separation of fucoxanthin- 

related carotenoids, where the pyridine-containing 

mobile phase allows the resolution of 4-k-Hex-fuco 

(peak 21) from Viola (peak 23). Similarly, polar chloro- 

phy l l~  show an increase in retention time and a better 

resolution between DV/MV chl cpigment pairs. A pos- 

sible explanation for this effect could rely on n-n inter- 

actions established between the aromatic ring of pyri- 

dine and the aromatic chlorophyll macrocycles or the 

polyene system in the carotenoids. 

Different mobile phase combinations can be used if 

the method is to be applied to different kinds of sam- 

ples. For example, the mobile phase B2 was optimum 

for the pigment analysis of Haptophyta (Zapata et al. 

unpubl.). 

About method transferability we stress that different 

HPLC instruments, even employing the same gradient 

mixing principle (high or low pressure systems), could 

have different dwell volumes, so any HPLC method 

developed for one system may require slight changes 

to provide a similar performance on another system. 

One of the main features that a method should have 

is the capacity of being reproduced by different ana- 

lysts, laboratories, columns, instruments and reagents 

(Snyder et al. 1997). Methods based on ternary elution 

gradients cannot be reproduced on a 2-pump high- 

pressure gradient mixing system, equipment which is 

still very popular and widespread. The binary gradient 

method proposed can be implemented both in high 

and low pressure mixing systems (Fig. 5 ) ,  

From the method development stage to routine 

analysis of cultures and natural samples, four Cg Sym- 

metry columns (belonging to different lots) have been 

used with a remarkable reproducibility. The particle 

size (3.5 pm) of this column seems to be a good com- 

promise between the efficiency of 3.0 pm particle size 

and the lower back pressure of 5 pm particle size Ca 
columns. The separation capability of the proposed 

method could vary if other monomeric Cg columns are 

employed, The selection of a column has to be an 

informed decision, based on the knowledge of station- 

ary phases properties such as bonding chemistry, pore 

size, surface area, coverage and carbon load. The col- 

umn used in this study was selected after considering 

the results of a previous study (Rodriguez et al. 1998) in 

which we evaluated the performance of 4 commercial 

CÃ monomeric columns for resolution of MV and DV 

pairs of chl cs, 

Separation of polar and non-polar chlorophylls 

The proposed method allows the simultaneous reso- 

lution of pigments belonging to the chl c family and 

Chlides a and b, in the same chromatographic run 

in which carotenoids, non-polar chlorophylls and caro- 

tenes are analysed. This ability deserves special 

emphasis, as the detailed study of distribution patterns 

of chl c pigments into several taxonomic groups has 

been hampered due to previous analytical limitations. 

The simultaneous separation of polar and non-polar 

chl c pigments was previously achieved employing 

polymeric Ci8 columns in which their special shape- 

selectivity governed the elution order (Garrido & Zap- 

ata 1997). On these columns divinyl forms that have 

planar structures (e.g. chl c2 and chl c3) elute after their 

monovinyl counterparts (e.g MV chl cy and chl c,), 

whose molecules are more voluminous. In the pro- 

posed method the elution order seems to be controlled 

by subtle differences in the overall polarity of the mol- 

ecule, eluting the slightly more polar DV chl forms 

before their MV counterparts. 

Separation of carotenoids 

Besides separating polar and non-polar chlorophylls, 

the method shows a good resolution towards caro- 

tenoids. This includes the separation of Fuco and its 

well-known acyloxy derivatives (But-fuco and Hex- 

fuco) from the novel 4-keto-19'-hexanoyloxyfucoxan- 

thin (Egeland et al. 1999), first detected in Emiliania 
huxleyj using polymeric Cis columns (Garrido & 
Zapata 1998). The presence in this carotenoid of a 

novel end-group with 3 oxygenated functions (-keto, 

-hydroxy- and -epoxy groups), explains why this com- 

pound elutes before Hex-fuco. Studies on the distribu- 

tion pattern of 4-k-Hex-fuco into several taxonomic 

groups, and natural samples, are currently in progress 

(Zapata et al. unpubl.). 
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Natural samples 

The proposed method improves the resolution of a 

wide range of pigments present in field samples, 

achieving a baseline separation (R, > 1.40) of polar 

chlorophylls (including Chlide a and b and the diverse 

family of chl c pigments), non-polar chlorophylls 

(except the critical pair DV chl b/chl b), and excellent 

resolution of many taxonomically significant caro- 

tenoids in a reasonable run time of 36 min. 

The coelution of DV chl b/chl b does not hamper the 

identification of Prochlorococcus marinus in seawater 

samples, since DV chl a is well separated from chl a. In 

addition, DV chl b is a less specific marker pigment for 

P. marinussince some cultured isolates are able to syn- 

thesise chl b as a response to high irradiance (Moore et 

al. 1995). A recent study has identified surface eco- 

types of P. marinus with low DV chl b/DV chl a ratio 

CO-existing, at intermediate water depths, with deep- 

water ecotypes characterised by high DV chl b/DV chl 

a ratio (Moore et al. 1998). The coelution of chl b and 

DV chl b in a single peak could be a drawback if 

the contribution of algal classes as Chlorophyceae, 

Euglenophyceae and Prasinophyceae has to be evalu- 

ated when DV chl a-containing cyanobacteria are pre- 

sent. 

A matrix factorisation program (Chemical taxonomy. 

CHEMTAX) recently developed by Mackey et al. 

(1996) is able to resolve such limitations. It exploits the 

capability of the chemotaxonomic approach to infer the 

contribution of different algal groups to natural phyto- 

plankton assemblages. This approach has been suc- 

cessfully applied to HPLC pigment data obtained from 

field samples (Wright et al. 1996, Mackey et al. 1998, 

Pinckney et al. 1998), allowing the quantitative estima- 

tion of algal class abundance from marker pigments. 

The combination of new HPLC methods, able to sep- 

arate additional marker pigments, and the new gener- 

ation of mathematical tools for interpreting the HPLC 

pigment data, will provide invaluable information 

about the variability of phytoplankton populations 

from different oceanic regions. 
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