Separation of Concerns: Overhead in Modeling and
Efficient Simulation Techniques -

Guang Yang,
Alberto Sangiovanni-Vincentelli
University of California at Berkeley
Berkeley, CA 94720, USA

{guyang, alberto}@eecs.berkeley.edu

ABSTRACT

Separating the description of important aspects of a design
such as behavior and architecture, or computation and com-
munication, may yield significant advantages in design time
as well as in re-usability of the design. However, exploiting
fully the re-usability opportunities offered by this approach
implies to keep the various aspects of the design separated
while verifying the design at a given level of abstraction. In
particular, simulation of the design may undergo significant
overhead versus a traditional approach where the design is
represented and analyzed monolithically. In this paper, we
present a few techniques that eliminate almost entirely the
overhead while maintaining the positive aspects of the sep-
aration of concerns. Experimental results on a complex de-
sign back this assertion.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Validation

General Terms

Design, Verification, Performance

Keywords

Platform-based Design, Orthogonalization of Conerns, Sim-
ulation, Interleaving Concurrency

1. INTRODUCTION

To deal with constantly increasing complexity, safety and
security requirements, and time-to-market pressure, embed-
ded system designers are turning to more rigorous design
methods that favor the adoption of higher levels of abstrac-
tion in system specification, correct-by-construction deploy-
ment, and re-usability. A paradigm called platform based

*This work is partially supported by Gigascale Systems Re-
search Center, Center for Hybrid and Embedded Software
Systems and Columbus.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT 04, September 27-29, 2004, Pisa, Italy.

Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

Yosinori Watanabe, Felice Balarin
Cadence Berkeley Laboratories
Berkeley, CA 94704, USA

{watanabe, felicey@cadence.com

design [8] has been proposed to offer a way of coping with
the difficulties of design. In this paradigm, a platform is de-
signed with sufficient flexibility to support implementation
of an entire series of products. The product design problem
is then one of configuring the platform, and deciding which
parts of the product functionality are to be implemented
by which platform resources. Typically, designers evaluate
several configurations before selecting one that meets design
goals. This process is called design space exploration. 1t re-
quires building a series of models, one for each combination
of configurations to be evaluated. Developing these models
is time consuming and error prone. Therefore, it is natural
to try to re-use them as much as possible, but it is often hard
to do so because modifying a configuration or a part of the
description of a model usually requires extensive changes of
other models in the rest of the design.

A solution to the re-use problem is to orthogonalize con-
cerns and keep various aspects of a design separate. There
are several concerns in embedded system design that could
be orthogonalized. In particular,

e Behavior versus Architecture Behavior represents the
functionality that the designers want the system to
provide, while the architecture represents a configura-
tion of resources that can implement the functional-
ity. The two design aspects are fairly orthogonal, ex-
cept that the architecture determines the performance
level at which the functionality can be implemented. If
the behavior can be represented as a separate model,
it could be re-used with many possible architectures.
Similarly, if the architecture can be modeled sepa-
rately, it could be used to evaluate implementations
of many other behaviors.

o Capability versus Cost Even within a model of archi-
tecture there are two aspects that could be represented
separately: capability, i.e. the set of behaviors it can
implement versus the cost it bears when it implements
a given behavior. For example, in modeling a CPU in
terms of the instructions it supports, the model would
capture the behavior of each instruction such as addi-
tion or data move, as well as the cost of the instruction
such as the number of required clock cycles or latency
in the local time defined for the CPU. Since the same
set of instructions can be realized by another CPU
which may achieve different cost, the model for the in-
structions separately described from their cost can be
re-used at a level of abstraction where detailed imple-

mentation of the CPU is of little concern. Therefore,
representing these two aspects orthogonally simplifies
architecture modeling and increases the re-usability of
the resulting models.

e Processes versus Coordination The behavior of a de-
sign is often specified as a set of concurrent objects,
where each object executes a sequential program and
communicates with other objects. We call such an ob-
ject process in this paper. A part of the behavior of
a process requires resources to be shared with other
processes, e.g. data or storages for communication, or
time for synchronization. The presence of this part of-
ten requires a specification about coordination among
multiple processes, and such a specification can be sep-
arately described from the sequential programs for the
individual processes. In fact, it is often convenient to
model the coordination using declarative constraints,
rather than imperative programs. For example, it is
often simpler to declare that two actions should be
mutually exclusive, rather than write a program for a
protocol that realizes the exclusion. The mix of declar-
ative constraints and imperative code is a convenient
way to describe design aspects separately.

While the benefit of the orthogonalization of concerns is
well recognized for the re-usability of the models, it is often
underestimated that a design description made of re-usable
models could introduce significant overhead in analyzing the
design. The reason is simple. Each individual part of the
design description specifies only the aspect it is concerned
with. We need to find out how this aspect is related to other
aspects in the overall design by looking at other parts of the
description that specify the related aspects. For example,
a design description for a particular implementation of the
behavior using a given architecture can consist of at least
three parts: a behavioral model, an architectural model, and
a description that specifies the correspondence between the
two models. The third part is often called mapping, and it
specifies which part of the behavior is implemented by using
which part of the architecture in what way. If the architec-
tural model is further separated in terms of its capability
and cost, or if the coordination of concurrent objects is sep-
arately specified in the behavioral model, it requires more
investigation of the models to understand what the speci-
fied implementation really is. Some of those models may be
described as imperative programs while others may be writ-
ten declaratively. A simulator, for instance, needs to take
into account all these models and their relationship, to gen-
erate legal traces for the design being specified. This does
affect the efficiency of the simulation as compared with an
approach that does not keep the aspects of the design sepa-
rated, and it must be considered carefully when evaluating
a modeling approach for platform-based design.

In this paper, we propose static and dynamic analysis
techniques for “orthogonalized” design descriptions to re-
duce the run-time overhead in simulation. We demonstrate
that simulating the design directly does yield a significant
penalty, while using our proposed methods, the penalty is
almost completely eliminated, thus eliminating a serious ob-
jection to the use of the orthogonalization of concern prin-
ciple embodied in platform-base design. To demonstrate
the power of our method, we implemented this approach
in a design environment supporting platform-based design:

45

Metropolis [3]. Metropolis uses layers on top of an imper-
ative programming language to separately specify how the
individually described models should be related. While the
syntax and details of these layers are specific to the Metropo-
lis environment, they are representative of other design en-
vironments that use imperative programming languages to
describe concurrent components interacting through multi-
ple coordination mechanisms.

Instead of natively simulating the design description, our
tool generates SystemC code that captures the behavior
specified in the original description, where additional mod-
ules are generated to manage the coordination among the
original models while implementing the dynamic analysis
for efficiency. The experimental results show that (1) the
simulation overhead caused by the orthogonalization can be
significant in general, and (2) the proposed techniques can
eliminate almost completely the overhead so that the objec-
tions to orthogonalization of design representations due to
simulation inefficiency are mostly irrelevant.

The paper is organized as follows. We start with a brief
description of the modeling mechanisms used in Metropolis
for separately specifying orthogonal design aspects in Sec-
tion 3. Section 4 presents the techniques for reducing the
simulation overhead, which is followed by experimental re-
sults in Section 5. Section 6 concludes the paper.

2. RELATED WORK

In current practice, design space exploration is done using

either physical prototypes, or hardware/software co-verification

tools that combine processor instruction set simulators with
HDL simulators. Building models of this kind requires es-
sentially all design details, so very few alternatives can be
explored in a reasonable time frame. In addition, simu-
lation speed of HW/SW co-verification tools (typically, at
least three orders of magnitude slower than real time), does
not allow exercising realistic test cases.

Recently, there have been several attempts at building
system-level design environments that allow more efficient
verification and design space exploration. To compare to
our approach, we analyze them with respect to the trade-
off between the strength and flexibility of orthogonalization
they allow, and the efficiency of verification they achieve.

On one side of the spectrum is Rosetta [1] where many
orthogonal design aspects (called facets) can be described
separately, and very rich interactions between facets can be
specified. The downside of this approach is that finding a
simulation trace consistent with all the facets and their in-
teractions is very hard, if not impossible. Therefore, Rosetta
relies mostly on formal verification techniques that do not
scale well to complex designs of today.

On the other side of the spectrum are system-level model-
ing languages and frameworks like Ptolemy [4], SystemC [6],
SpecC [5], and ForSyDe [13]. They allow some separation of
orthogonal concerns, mostly communication and computa-
tion, but they lack features that are necessary to orthogonal-
ize functionality and architecture, such as the mapping be-
tween functional and architectural networks, and the ability
to represent constraints explicitly. Instead, they all include
the notion of refinement, where architectural details are in-
crementally added into a functional specification. To refine
a functional specification to a level where performance may
be evaluated is expensive, and very little of it can be re-used

for building an alternative refinement. On the positive side,
all of these systems allow efficient simulation.

More similar to our approach are Spade [10] and Sesame [11],

both developed within the Artemis project [12]. Both Spade
and Sesame start with functional specifications in the form
of Kahn process networks [7]. The functional specification
is simulated. The trace generated by this simulation is then
used to drive the simulation of the architecture model, which
annotates the trace with time and other the performance
parameters. The main differences with our approach are
the use of models of computation for the representation and
manipulation of the design. It is well known that Kahn pro-
cess networks are insensitive to timing of actions, as long as
data dependency are respected. This strong property sig-
nificantly simplifies the problem since there is no need, be-
cause of this property of Kahn process networks, of modeling
the interaction from function to architecture, but the price
to be paid is the limited expressive power. Indeed, while
Kahn process networks express data flow very well, they
have severe limitations in expressing control flow. Spade
and Sesame are targeted to multi-media systems, which are
data flow dominated. Metropolis is built to support gen-
eral system designs and it cannot ignore the control flow, so
we have opted for more elaborate, bi-directional interactions
between functional and architectural specifications.

Bi-directional interaction between function and architec-
ture is also considered by VCC [14], a commercial example
of a system-level design environment. However, architec-
ture can be modeled in VCC as a network built only with
elements from a small, predefined set of components. Again
this restriction simplifies the problem, as it limits the kind of
interactions between two models, but it also limits expres-
siveness. In addition, VCC lacks the ability of separating
services provided by the architecture from their costs, and
the ability to deal with declarative constraints.

3. METROPOLIS APPROACH: SEPARATE
AND RELATE MODELS

Metropolis pushes orthogonalization to the limit. It uti-
lizes three mechanisms to model separately orthogonal de-
sign aspects presented in Section 1 and then to relate them
to specify the entire design:

e imperative sequential programs,
e annotation to events with quantities, and

e constraint specification for coordinating sequential pro-
grams.

3.1 Process Execution and Quantity Annota-
tion

Metropolis models a design with a network of processes.
Each process executes an imperative sequential program.
Our execution semantics defines a program to consist of
events, and models an execution of a process as a sequence
of instances of events in the executed program. Examples of
events include the beginning/end of a statement, the begin-
ning/end of an assignment, or the beginning/end of calling
a function !. The execution of multiple processes is defined

!The reference [2] provides more details about the execution
semantics.

46

as a sequence of event vectors, where each vector includes at
most one event instance from each process.

An instance of an event may be annotated with a value
of a quantity. Metropolis provides building blocks to de-
fine quantities. Quantities may model physical quantities
such as time or temperature, or logical quantities such as
local counters. Using this annotation mechanism, one can
decorate the behavior described by the imperative programs
with quantities that characterize effects observed in the be-
havior. A typical example is performance annotation, where
values of a time quantity are attached to instances of events.
For example, suppose that a program defines a function for
modeling a single instruction implemented by a CPU and we
want to model the latency of the instruction when executed
by this CPU in terms of its local time (e.g., clock cycles).
This is done by first defining a quantity for the local time
and by annotating values of this quantity to the events for
the beginning and the end of the function. The annotation
is made so that the value for an instance of the end event
is greater than that of the latest instance of the event for
the beginning of the function by the corresponding latency.
Here, one can first specify a name to refer to an event, and
then specify which quantities are annotated to instances of
the event, as well as properties of the annotated values in
terms of relations to values of quantities annotated to other
event instances.

We use this mechanism in describing architecture. Recall
that we model architecture in terms of its capability and
cost, as described in Section 1. The capability is modeled
by imperative programs while the cost it bears is specified
by defining appropriate quantities and specifying annotation
to relevant events. In this way, one can separate the two
aspects of the architecture descriptions while maintaining
their correspondence unambiguously. In general, we find
this mechanism is very useful to realize modular descriptions
of individual components in a re-usable manner. Section 4.3
will explain more details about quantity annotation.

3.2 Specification of Coordination

The constraint specification for coordination is particu-
larly important because our execution semantics assumes no
coordination among processes a priori; an event vector may
include instances of the same event for different processes.
This is because a part of the program may be shared by
multiple processes, which could lead to data collision 2. Tt is
therefore the responsibility of the user to specify appropriate
coordination explicitly.

In this mechanism, as in the case of quantity annotation,
one can provide names to refer to events, and can specify
constraints in terms of the named events that any execu-
tion of the processes must respect. These constraints can be
specified either declaratively or imperatively. The declara-
tive specification imposes coordination among the processes
with no modification of the sequential programs. The spec-
ification can be anywhere in the code, e.g., in separate files,
as long as the named events used in the constraints can be
referenced unambiguously. This is convenient when the de-
scriptions of processes may be used in various designs with
different coordination policy. Using our approach, the un-

2We use a programming style similar to SystemC [6], such
as access to shared programs allowed only for interface func-
tions specified through ports, in order to isolate portions of
programs that can cause data collision [2].

derlying sequential programs for the individual processes can
be reused unmodified.

We use this mechanism for specifying a mapping of the
system behavior to the system architecture. In Metropolis,
we model a system architecture using the same constructs
that we use for system behavior. The set of possible execu-
tions of the architectural network specifies the set of behav-
iors that this architecture can implement. For example, an
architecture made of a simple model of a CPU running a sin-
gle task can be described as a network of a single process that
successively but non-deterministically calls functions, each
of which specifies an instruction of the CPU. A mapping of
the system behavior to this architecture represents a particu-
lar implementation of the behavior using the CPU’s instruc-
tions. Therefore, one can realize the mapping by restricting
the process in the architectural network so that the order
of calls to the functions reflects the sequence of instructions
realized in the implementation. Each instruction is called
to implement a piece of program executed by a process in
the description of the system behavior. This can be mod-
eled by specifying a simultaneity constraint so that when the
process in the behavioral network executes the piece of the
program, the process in the architectural network executes
the function for the instruction. This mechanism allows one
to model an implementation of the behavior only by declar-
atively specifying constraints, without changing the actual
programs specified for the behavior or architecture. In our
experience, this makes it easy to specify many different map-
pings for evaluating effective partitioning of the behavioral
descriptions with respect to the architecture.

We observe that in certain situations, specifying coordi-
nation constraints imperatively as a part of sequential pro-
grams seems more appropriate than declaratively. For exam-
ple specifying a particular coordination policy as a property
of a program imperatively ensures that this coordination
policy is asserted no matter how the program is used. We
often see this in descriptions of communication semantics,
where exclusion constraints are specified for controlling ac-
cesses to shared resources. For this reason, our syntax pro-
vides a special keyword await for imperatively specifying
exclusion constraints, in addition to the declarative specifi-
cation mechanism.

We would like to stress here the difference between the
execution semantics used in Metropolis and in SystemC.
Our execution semantics is based on true concurrency, where
multiple processes make progress altogether. This is in con-
trast with the interleaving concurrency semantics employed
in SystemC [6], where there is at most one process at a time
that can make progress. We use true concurrency because,
if the interleaving concurrency were assumed implicitly in
a language, the designer would be required to ensure that
semantic in the implementation as well, otherwise certain
properties that hold in the description of the behavior may
not hold in the implementation that may cause unexpected
malfunctions in the implementation. For example, suppose
there is a variable in the behavioral description that is ac-
cessed by multiple processes. When a process attempts as-
signing a value to the variable, it is in general necessary
checking whether other processes are also accessing the vari-
able or to block them from accessing it, to avoid potential
data collision. Under the semantics of interleaving concur-
rency, however, this scheme of check-and-block is not always
necessary because the fact that only one process makes a

47

progress guarantees that no other process is accessing the
variable 3. However, if the descriptions of these processes are
implemented by concurrent components in the architecture
that does not guarantee interleaving concurrency by default,
one may suddenly encounter data collision because multi-
ple processes can indeed access the variable simultaneously.
This is problematic because it requires the designer either
to analyze potential data collision in the behavioral descrip-
tion, which is hard especially when the simulation does not
reveal it due to the language semantics, or to enforce inter-
leaving concurrency globally in the entire implementation as
is done in the behavioral description, which could cause un-
necessary overhead. Or even worse, we observe that this re-
quirement is often ignored, resulting in specifying one thing
in the behavioral description while implementing another.

Under the true concurrency semantics, access control over
multiple processes must be explicitly specified in the descrip-
tion, thus requiring additional exclusion constraints. Note
that when the description is transformed into a language
that uses interleaving concurrency, e.g., for simulation pur-
pose, some of these constraints may become irrelevant, be-
cause they are always satisfied under the interleaving con-
currency semantics. This implies:

e some execution that is perfectly legal in the original
Metropolis design may never be observed using this
language;

e the constraints that become irrelevant may cause un-
necessary overhead in simulation with this language,
as it evaluates constraints that are always true.

For the first point, Metropolis includes tools that trans-
form the design descriptions into various other languages or
mathematical models [3], so that different kinds of analysis
can be carried out on the design. For the second point, we
in fact effectively identify constraints in a tool that gener-
ates SystemC code from Metropolis, to increase simulation
efficiency. Section 4.2.3 and Section 5 present respectively a
condition under which this optimization is possible and ex-
periments on the simulation speed achieved by the generated
code.

4. EFFICIENT SIMULATION FOR ORTHOG-

ONALIZED DESIGN

In this section, we consider the run-time overhead intro-
duced in simulation because of the mechanisms used for sep-
arating orthogonal design aspects, and present techniques to
overcome this problem. In general, these techniques are ap-
plicable to any frameworks that includes simultaneity and
exclusion constraints, and for which the simulator ensures
more atomicity than required by the semantics. To make
our discussion more concrete, we use Metropolis as a ref-
erence environment since its principles are deeply rooted in
the separation of constraints philosophy. The proposed tech-
niques can be applied when a design described in Metropolis
is translated into a language that supports multi-threaded
execution.

3To be precise, this guarantee holds when a variable access
is an atomic action in the language, which is the case for
SystemC.

4.1 Simultaneity Constraints

In Metropolis, a legal execution of a given network of pro-
cesses is given by a sequence of event vectors, where each
vector includes at most one event instance from each pro-
cess in the network. A simultaneity constraint is specified
for a pair of events of distinct processes, and mandates that
for any legal execution, if an event vector of the execution
includes an instance of one event of the pair, then it must
include an instance of the other event as well.

This mechanism can be used for specifying a mapping be-
tween the system behavior and architecture, as described in
Section 3.2. Suppose that the execution of a piece of the se-
quential program associated with a process b in the network
for the system behavior is given by a sequence of instances
of the events of b, say (bo, b1, ...,br). Suppose further that
we wish to model that this piece of code of the process b is
implemented by (mapped to) a process a in the architecture
network, for which the execution of a results in a sequence
of instances of the events of a given by (ao, a1, ...,a;). This
fact can be specified with two simultaneity constraints for
the beginning and end of the sequences, i.e. {bo,ao} and
{bk,a;}. Metropolis provides a special keyword synch that
takes the two events as its argument. Typically, these events
correspond to block boundaries defined by the syntax of the
sequential programs, such as the beginning/end of a func-
tion or a basic block. Then, the designers can refer to
those events easily using the syntactical constructs of the
programs.

This mechanism introduces a synchronization layer on top
of the two networks of processes. Without this layer, the two
networks independently specify their own sets of legal execu-
tions, one representing the system behavior while the other
is for the set of behaviors that can be implemented by the
architecture. With the synchronization layer, the product
of the two sets of legal executions is constrained with re-
spect to the simultaneity constraints specified in the layer.
With this mechanism, the designers can easily specify vari-
ous behavior-architecture mappings, without modifying the
individual networks. For example, using the same architec-
ture, designers can map the behavior to different parts of
the architecture, such as software components versus hard-
ware components. Alternatively, the designers can easily
selects another architecture and map the behavior onto it
to explore different architectures. The cost we need to pay
for the mapping convenience is the handling of the extra
mapping layer.

In simulating this design description, one needs to en-
sure the satisfaction of the constraints, so that even if bg
is enabled, it is not executed unless ag is also enabled, and
vice versa. In general, there is no limitation on the number
of events in behavior and architecture that are related by
mapping. During run time, quickly identifying events that
need to be synchronized with other events, and deciding
whether those events are enabled or not become a perfor-
mance critical task. In a naive implementation, one needs
to check all the simultaneity constraints every time an event
becomes enabled, resulting in a number of checks that grows
quadratically with the number of events.

We manage this complexity by using a combination of
static and dynamic techniques. In the static phase, we parse
all the simultaneity constraints specified by the keyword
synch. By definition, these constraints form a set of equiva-
lence classes over the specified events, so that two events are

48

in the same class if they are constrained by this keyword.
Let us denote this set by {S;}. We compute this set stati-
cally, and annotate each of the events with the identifier of
the equivalence class it belongs to.

In the dynamic phase (during simulation), we use a counter
C; associated with each equivalence class S;, which keeps
track of the number of events e in S; such that the program
counter of the process for e is positioned at e. Note that
the program counter being positioned at an event does not
mean that the event can be issued, because various coor-
dination constraints may be specified at the event. When
we check the simultaneity constraints, we first compare C;
with the cardinality of the equivalence class S;. If they are
not equal, at least one of the events is not enabled, which
allows us to disable quickly all the events in this class. This
mechanism reduces the number of events for which we need
to check coordination constraints,resulting in a very signifi-
cant reduction of simulation time.

4.2 Exclusion Constraints

In Metropolis, processes communicate with each other by
calling functions implemented in separate objects that can
be accessed by these processes. Specifically, a process is de-
fined with ports, where the type of a port is an interface
that declares prototypes of functions. For example, the pro-
cesses in Figure 1 define two ports, with types being Writer
and Reader, respectively. We refer to the type of objects
that implement interfaces as medium, and an object of this
type can be connected to a port if it implements the inter-
face specified as the type of the port. The communication
is then modeled by calling a member function of an inter-
face through a port of that type. As shown in Figure 1,
media can be connected from multiple processes in general.
Thus it is often necessary to impose exclusion constraints
among these processes. For example, in Figure 1, variables
defined in the medium are accessed by both of the processes
in their write and read functions, and the mutual exclusion
in accessing the variables are necessary to avoid data colli-
sion. Although the mutual exclusion can be specified either
declaratively or imperatively in Metropolis, we consider the
imperative specification mode to discuss the potential over-
head in simulation and techniques to cope with it.

The imperative keyword used in Metropolis for specifying
mutual exclusion is called await. Its syntax is
await(guard; test list; set list) { critical section }.

Each await statement consists of four pieces of informa-
tion. guard is a boolean expression; test list and set list
are port.interface pairs like in Producer and Consumer pro-
cesses; critical section is the guarded operation. The ex-
ecution semantics of await is that if guard is true and no
interface function defined in test list are being executed by
other processes, the critical section is enabled. Then, an
enabled critical section can start running, while preventing
other processes from running any interface functions defined
in set list until the critical section finishes. In evaluating
the guard, the semantics does not call for the need of check-
ing whether the variables being accessed are simultaneously
accessed by other processes, and thus it is the designers’
responsibility to avoid potential data collision, possibly by
scoping of the variables or additional exclusion constraints.

To ensure the semantics of await, processes need to be
coordinated. Whenever a process is about to execute an
interface function, it must check with other processes to

Producer Consumer
T A\
I wrerenaenads ERERLRLRR A SAD AR -\
) :interface Writer { sinterface Reader { : \
) + void write(int i); int read(); . \
/1 intspace(); int num(); \
/ 3} } :
I feetttnccnttannnsrrd feeeecerrerrerrrrond \
) \
L \

process Producer {
port Writer portw;
port Reader portr;
void thread() {
intw = 0;
while (w < 30) {
await (portw.space() > 0;
portr.Reader;
portr.Reader) {
portw.write(w);
w=w+1;
} }
} }
} }
}

process Consumer {
port Writer portw;
port Reader portr;
void thread() {
intr=0;
while (r < 30) {
await (portr.num() > 0;
portw.Writer;
portw.Writer) {
r = portr.read();

}

Figure 1: Producer-Consumer Example

see whether the interface function is being prevented by
the set list of other processes. If indeed some other pro-
cess prevents the function, the process must stop and wait,
otherwise, it can start executing the function and then at
the end of the execution, it can record the interface usage
information. A process trying to execute an await should
check the guard condition and the test list by evaluating
the interface usage information stored in other processes.
If the result of the check is positive, it can execute the
critical section while setting the set list information. Upon
finishing the critical section, it should update the set list
information. This approach relies on the information up-
dated by the processes, and requires each process to check
the status of the other processes, resulting in quadratic com-
plexity in the number of the processes. We call this approach
process-centric approach.

4.2.1 The Medium-Centric Approach

The basic idea of this approach is that, since communi-
cation media are the critical region of mutual exclusion, we
can store all the interface usage information there and let
all processes update the information during interface func-
tion calls or await’s. When interface function calls enter
the functions, they need to register to the media that their
interfaces are being used; after they finish, they retract the
registration. For await’s, when entering a critical section,
they need to raise a flag indicating that all interfaces in the
corresponding set list are prohibited; after they finish, they
put the flag down. Having these interface status informa-
tion, a process has to compare its need of using an interface
with the status of the medium implementing it only once.
Thus, the time complexity is reduced from quadratic to lin-
ear in the number of the processes.

4.2.2 Named Event Reduction

A named event is an event that can be referred to ei-
ther in an await statement, or in declarative coordination
constraints such as simultaneity constraints. For instance,

49

the beginning of an interface function call is a named event
because it can be referred to in an await statement. The ex-
ecution of a named event incurs an overhead when checking
whether the event is disabled by other processes, as well as
of updating the bookkeeping information.

Note that although in general named events should be
treated in a special and potentially costly way, under some
circumstances they can be safely ignored without violat-
ing the execution semantics. Named event reduction is a
technique we propose to recognize such events. One such
case is the events for an interface function implemented
by a medium that do not appear in any of the test list
and set list in the processes connected to it or inside the
medium itself. In this case, these events are no longer dealt
as named events, thus there is no simulation overhead for
the additional checks. Note that this analysis depends not
only on the sequential program associated with the medium,
but also on how the medium is instantiated in the current de-
sign, i.e. the connections with other objects and constraints
specified with the design. Therefore, we make this analysis
statically after the construction of all the networks of the
processes, and keep track of only the named events that are
indeed referred to in the design description.

4.2.3 Interleaving Concurrency

In this section we present optimization techniques appli-
cable when the target simulation language uses interleaving
concurrency semantics, such as SystemC. Under this exe-
cution semantics, a process continues to run until it lets
others execute, assuming that this is the only process that
is currently running. The “release” points are typically
statements which block the process until certain conditions
become true. This “single-running-process feature” allows
to simplify the checking of mutual exclusion constraints in
some cases, and possibly to eliminate simulation overhead
associated with some await statements. To be more precise
in this analysis, let us first present the following definitions.

Definition:

1. In a sequence of events, if no named event exists, then
the sequence of events are called interleaving concur-
rent atomic or IC-atomic.

2. If the sequence of events in a critical section of an
await statement is IC-atomic, then the critical section
is called IC-atomic.

3. If the sequence of events in a function (exclude the
beginning and end event of the function call) is IC-
atomic, then the function is called IC-atomic.

The notion of IC-atomic means that there is no point dur-
ing the execution of an IC-atomic section of the code, where
one needs to check coordination constraints. Interestingly,
when the execution is carried out under the interleaving con-
currency semantics, this property can be transitively prop-
agated to make a section IC-atomic even though this was
not the case originally.

Lemma 1: In await(guard; test list; set list) {critical
section}, if critical section is IC-atomic, then the await
statement can be simplified to

await(guard; test list;) {critical section}

The proof follows from the observation that because critical
section is I1C-atomic, once started, no other process will ex-
ecute before it finishes. Therefore, no processes will ever
get a chance to check the set list, and removing it makes no
difference.

Note that the elimination of the set list can further reduce
the list of named events we keep track of. In fact, if an event
was from an interface function that was included only in this
set list, this event will be no longer subject to constraints.
This further reduction of the named events can in turn make
more sections of the programs /C-atomic, which may further
lead to the elimination of set list’s of other await statements.
A similar observation can be made for test list.

Lemma 2: In await(guard; test list; set list) { critical
section }, if all interface functions in test list are IC-atomic,
then the await statement could be simplified to

await(guard; ; set list) { critical section }

The proof once more is simple observing that because all
the functions in test list are IC-atomic, any process that
runs any of these functions will finish the functions without
interruptions. Since when a process executes, (hence it also
checks the test list), all other processes must be at a point
where they were blocked, it follows that no other process
can be in the midst of execution of some function in the
test list. Therefore, there is no need to check test list.
Combining the two lemmas, we can state:

Theorem 1: For an await(guard; test list; set list)
{ critical section } if critical section is IC-atomic, and all
interface functions in test list are IC-atomic, then the await
statement can be simplified to

await(guard; ;) { critical section }

A simplification of await statements can transitively re-
duce the named events to be kept, and wice versa. Static
analysis is used to implement this simplification and named-
event reduction recursively, until no further simplification is
possible.

The simplification of await improves the efficiency of sim-
ulation in two aspects. First, it is no longer necessary to
check the usage of interface functions by the other processes
because the test list and set list are gone. Second, if the
guard condition is true, the execution can simply continue
to the critical section, and thus can decrease the number
of context switches, which otherwise could be a source of
significant simulation time for a large number of processes.

The following theorem is about simplifying the execution
of interface functions.

Theorem 2: For a given interface function, and for all
await statements whose set list’s include the interface func-
tion, if the critical sections of the await statements are all
IC-atomic, then the interface function can always be exe-
cuted without violating any exclusion constraints.

Indeed, Lemmal implies that all set list’s which the func-
tion belongs to can be removed. After this transformation,
the function does not belong to any set list, and thus it is
not subject to any exclusion constraints.

50

Process 1

Quantity Manager

2a. resolve until stable
2b. post processing

Process N

Figure 2: Quantity Resolution

Designer’s System Simulation Manager

—

Architectural
Netlist

Functional
Netlist

Mapping

Figure 3: Simulation Flow

Mapped Events Check

Quantity Resolution

i

-

Exclusion Constr. Check

4.3 Quantity Annotation

The primary purpose of quantities is to model perfor-
mance costs, but to do so properly they also need to enforce
some coordination between events. For example, to model
that a certain architectural service takes A time units, the
architecture requests the difference between the time anno-
tations of the start and the finish of the service to be exactly
A. These requests are forwarded to objects called quantity
managers. There is one quantity manager for each quan-
tity in the system. An enabled event for which there is an
annotation request, cannot be executed before the quantity
managers grants the annotation. A quantity manager may
not be able to grant all requests. For example, if there are
many requests for timing annotation, the time manager can
grant only the one asking for the lowest time, enforcing the
increasing nature of time. This request-annotation scheme
is summarized in Figure 2.

When all the processes become blocked because the re-
quests they made have not been granted yet, the control of
the simulation is turned to the simulation manager. The
simulation manager is responsible for deciding which pro-
cesses are ready to run, and then actually running them.
To do so, the simulation manager needs to consider map-
ping constraints, await statements, and quantity requests,
as shown in Figure 3.

The simulation manager resolves annotation requests by
calling resolve functions of all the quantity managers itera-
tively, until they all agree on a set of annotations. To impose
an order on calls to quantity managers’ resolve’s, every net-
work also has a resolve function. The default behavior of
this function is to call resolve functions of all the quantity
managers defined at that level, and also of all the networks
at the lower levels of hierarchy. This default behavior can
be modified by the user. The simulation manager then calls
only resolve of the top-level network. This simple scheme has
a disadvantage of many function calls whose sole purpose is
to traverse the network hierarchy. To improve simulation

PIP [USRCONTROL j

,»[TS_DEM UX HPES_PA RSER

g37199NC

Figure 4: Block Diagram of PiP Design

efficiency, the first time quantities are resolved, we record
quantity managers called and their order in a list. After
that, the quantity managers are called according to this list,
eliminating unnecessary network hierarchy traversals.

5. CASE STUDIES

We developed a tool that generates SystemC code from a
design description specified in Metropolis, where the tech-

niques presented in the previous section were all implemented.

The design models described in Metropolis can be trans-
formed into many other models including executable lan-
guages or mathematical models [3], and therefore it is pos-
sible to conduct simulation with a variety of languages. We
developed the tool for SystemC simulation since there are
many design models and IPs that are described in this lan-
guage, and using this tool we can co-simulate models cap-
tured in Metropolis with third-party IPs written in Sys-
temC.

The design description we used for the experiments is a
picture-in-picture (PiP) set-top box application. The sys-
tem behavior was originally described in C+4 [9] as a set
of concurrent programs communicating with FIFO channels
under the semantics of the Kahn process network [7], exe-
cuted using the FIFO communication library given in Sys-
temC 2.0. Figure 4 shows the block diagram of the system
behavior. It takes a transport stream as input, and then
demultiplexes it into two MPEG streams and sends them
to two separate MPEG decoders. The inner MPEG video
is resized and merged with the other MPEG stream to pro-
duce a PiP video stream at the output. The size of the inner
window and the video quality can be dynamically changed
by the control signals from USRCONTROL. The rectangles
in the figure represent a hierarchical network of processes,
made of approximately 60 processes with 200 communica-
tion channels. We re-modeled it in the Metropolis design
environment, where we developed a library for a medium
that implements the FIFO semantics and used it for the
channel implementation. For the imperative program for
each process in Metropolis, we copied the one associated
with the corresponding process in the original description,
where we made minor syntactic changes such as the names
of the interface functions. The overall description of this
behavior consists of approximately 19,000 lines of code. We
notice that this specification style and the kind of algorithms
described in the specification are commonly used in many
other applications in multi-media system design. The obser-
vation made on experimental results shown in this section
are applicable in general for this class of system designs.

51

5.1 PiP Behavior Simulation

When the original description was simulated in SystemC,
it took 22.7 seconds to complete the job for the testbench
we used. We then applied our tool to the Metropolis design
description, generated SystemC code from this description,
and compared the speed of simulating this code to the origi-
nal case, simulating both with the same SystemC simulation
kernel. Note that this SystemC code was generated auto-
matically from the Metropolis description, and therefore the
code for the FIFO channels came from the Metropolis library
rather than from the native SystemC library implementing
the FIFO semantics. We applied our tool so that the tech-
niques presented in Section 4.2 are used one by one, so that
the simulation efficiency can be allocated to each technique.
All the tests were done on a Dell Precision 650 with 4Gb
memory and two 3.06Ghz CPUs running RedHat Linux 8.0.
The benchmark input, a transport stream, plays for 1/3 sec-
ond in wall clock time (10 frames for each MPEG video).

Table 1 shows the simulation results. The first column
lists the optimization techniques we implemented in the sim-
ulators; the second column shows the total simulation time;
the third column reports another way to measure simula-
tion efficiency, i.e., how many clock cycles can be simu-
lated in one second. Suppose the clock frequency of PiP is
200MHz, then this number is derived by 200M Hz x (1/3) +
(Simulation Time). The fourth column shows the speedup
compared with the baseline simulation. The last column
gives the speedup that individual optimization technique
yields. As shown in the table, named event reduction gives
the largest improvement. It speeds up simulation by 20
times. This is because our technique finds that a great
amount of interface function calls in communication media
do not need to be treated as named events. Each of other
two techniques, medium centric optimization and interleav-
ing concurrent specific optimization, yields about a 4 times
speed up.

5.2 Mapped Behavior Simulation

In conducting experiments for simulating a design descrip-
tion that specifies a mapping of the PiP behavior to an ar-
chitecture, we developed a model for an architecture shown
in Figure 5(a). Figure 5(b) shows a closer view of the ar-
chitecture. In figure 5(b), the architecture is divided into
two parts. In the left part, there are models of tasks that
run on the CPU (71 to T,), CpuRtos, bus and memory.
The CpuRtos, bus, and the memory are of type “medium”,
which implement interface functions modeling primitive ser-
vices provided by the components, such as read and write
for the bus, or coarse models of the instructions supported
by the CPU. Each task T; is a process whose sequential
program non-deterministically calls the interface functions
implemented in the CpuRtos.

The right-hand side of the figure models four quantities:
Time models the global time that is used for annotating the
performance of the architecture; the others model scheduling
policies for the OS, bus, and the memory. The mechanism of
quantity resolution described in Section 3.1 is essentially the
same as what is necessary for modeling scheduling or arbi-
tration algorithms, because in both cases, one applies some
algorithms over a set of requests to decide which of the re-
quests can be accepted. At a level of abstraction where it
is not necessary to model detailed protocols between sched-
uled objects and arbiters, we find it very convenient to use

Table 1: PiP Behavior Simulation

Optimization Techniques | Simulation Time (sec) | Cycle/Second** | Overall Speedup | Speedup by
Baseline* 7276 9.16K 1 -
MC 1797 37.1K 4 MC: 4
MC/NER 89.26 7TATK 80 NER: 20
MC/NER/ICSO 20.29 3.29M 359 1CSO: 4.5

MC:Medium Centric Optimization

NER: Named Event Reduction

ICSO: Interleaving Concurrent Specific Optimization
*. Baseline simulator with no optimization techniques
%. Based on 200MHz clock frequency

Table 2: Mapped Events Group Handling Overhead

Mapped Events Groups | Mapping Handling Overhead
8 2.9%
16 2.9%
32 3.4%
64 4.0%

the quantity resolution mechanism to model arbiters in the
architecture, because we only need to write the core schedul-
ing policies of the arbiters and none of the interfaces. This
simplifies the task of re-using or replacing the scheduling
policies in the architecture.

We first simulated this architectural model by itself with
two tasks where each task finishes 1000 services calls. This
model involves three levels of hierarchical networks. We per-
formed the run-time analysis on the hierarchy to eliminate
unnecessary hierarchy traversals for calling the quantity res-
olution functions, thus improving simulation efficiency. In
the simulation of a round-robin scheduling policy for the
CpuScheduler, quantity resolution (including postprocess-
ing), time reduces from 8.0% to 5.7% of the total simulation
time. The 2.3% saving comes from the reduction of hierar-
chy traversals by 67% from 71181 times to 23729 times.

We then specified a mapping between the PiP behavioral
model and this architectural model. Since there were more
service needed, we created 130 tasks in the architecture.
However, the unmapped architecture tasks do not have neg-
ative effects on the simulation result and performance. Ta-
ble 2 shows the number of mapped events groups and the
percentage of simulation overhead in dealing with mapping.
The overhead increases very slightly while the number of
synchronization groups increases exponentially.

6. CONCLUSIONS

In this paper, we argued that orthogonalizing concerns in
system design is essential to deal with increasingly complex
system design. It not only maximizes design reuse but also
enables deep design space exploration quickly.

Though design orthogonalization is helpful in many as-
pects, it does introduce overhead for analysis tools, for ex-
ample, simulation. In this paper, we proposed several tech-
niques to minimize this overhead, including efficient syn-
chronization handling by cardinality checking, named event
reduction, medium centric constraint resolution, and inter-
leaving concurrent specific optimization.

52

We implemented and tested these techniques in the Metropo-

lis environment that is based on orthogonalization of con-
cerns, but they are not limited to Metropolis, and could be
applied in any system that makes separation of concerns a
pillar of the design methodology it supports.

Experimental results show simulation efficiency improve-
ment from 4X up to 20X for each of the individual tech-
niques. We also demonstrate that the simulation overhead
to handle synchronization constraints is small. Our results
demonstrate that by developing proper optimization tech-
niques for analysis tools, orthogonalizing design concerns
can be handled quite well with very little overhead.

While we are quite satisfied with the gains in verification
efficiency brought about by our techniques, we believe there
still exists space for further optimization. A few examples
are:

o take advantage of the fact that state independent quan-
tity requests can be made only once rather than re-
peatedly until they are granted;

e explore other thread management platforms to elimi-
nate overhead introduced by SystemC.

e for interleaving concurrent platforms, explore the pos-
sibility of allowing processes to schedule themselves
independently of the simulation manager.

Acknowledgement

We would like to thank Daniele Gasperini for his help on de-
veloping part of the simulator in its early stage. We thank
Trevor Meyerowitz for providing the analysis on simulation
performance. We thank Haibo Zeng, Abhijit Davare, Dou-
glous Densmore and other Metropolis team members for
their valuable feedback on features and performance on the
simulator.

7. REFERENCES

[1] P. Alexander and C. Kong. Rosetta: semantic support
for model-centered systems-level design. Computer,
34(11):64-70, November 2001.

F. Balarin, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, M. Sgroi, and

Y. Watanabe. Modeling and designing heterogenous
systems. In Jordi Cortadella, Alex Yakovlev, and
Grzegorz Rozenberg, editors, Concurrency and
Hardware Design, pages 228-273. Springer, 2002.
LNCS2549.

2]

8]

[4]

[5]

[6]

[7]

8]

[9]

OS+CPU
Master
Bus | a R
Arbitrator
v
Slave
Mem ScheduledNetlist

MemScheduler

SchedulingNetlist

(a) Block Diagram
Figure 5:

Felice Balarin, Yosinori Watanabe, and et al.
Metropolis: An integrated environment for electronic
system design. IEEE Computer Society, April 2003.
J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt.
Ptolemy: a framework for simulating and prototyping
heterogeneous systems. International Journal of
Computer Simulation, special issue on Simulation
Software Development, January 1990.

D.D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao. SpecC: specification language and
methodology. Kluwer Academic Publishers, 2000.

T. Grotker, S. Liao, G. Martin, and S. Swan. System
design with SystemC. Kluwer Academic Publishers,
2002.

G. Kahn. The semantics of a simple language for
parallel programming. In Proceedings of the IFIP
Congress 74, pages 471-475. North-Holland, 1974.

K. Keutzer, A.R. Newton, J.M. Rabaey, and

A. Sangiovanni-Vincentelli. System-level design:
orthogonalization of concerns and platform-based
design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 19(12):1523-1543,
December 2000.

E.A. de Kock, G. Essink, W.J.M. Smits, P. van der
Wolf, J.Y. Brunel, W.M. Kruijtzer, P. Lieverse, and
K.A. Vissers. Yapi: application modeling for signal
processing systems. In Proceedings of the 37" Design
Automation Conference, June 2000.

53

(10]

(11]

(b) Detailed View

CPUOS-Bus-Memory Architecture

P. Lieverse, P. van der Wolf, E.E. Deprettere, and

K. Vissers. A methodology for architecture
exploration of heterogeneous signal processing
systems. In Proceedings of the IEEE Workshop on
Signal Processing Systems, SiPS 99, pages 181-190.
IEEE Press, 1999.

A.D. Pimentel and C. Erbas. An IDF-based trace
transformation method for communication refinement.
In Proceedings of the 40th conference on Design
automation conference, Anaheim, CA, USA, pages
402-407. ACM Press, June 2003.

A.D. Pimentel, L.O. Hertzbetger, P. Lieverse,

P. van der Wolf, and E.E. Deprettere. Exploring
embedded-systems architectures with Artemis.
Computer, 34(11):57-63, November 2001.

I. Sander and A. Jantsch. System modeling and
transformational design refinement in ForSyDe. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(1):17-32, January 2004.
Sherry Solden. Architectural services modeling for
performance in HW-SW co-design. In Proceedings of
the Workshop on Synthesis And System Integration of
MIlzed Technologies SASIMI2001, Nara, Japan,
October 18-19, 2001, pages 72-77, 2001.

