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Abstract

The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction.
Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the
processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic
chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure
the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis
formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and
that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for
meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating
replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis
components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic
chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes
reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must
occur through superimposed regulatory mechanisms.
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Introduction

The meiotic cell division produces haploid gametes from diploid

progenitors by segregating the maternally- and paternally-derived

copies of each chromosome. The faithful distribution of homol-

ogous chromosomes in meiosis is facilitated in most organisms by

the crossovers formed during homologous recombination. Meiotic

recombination occurs through the carefully orchestrated repair of

programmed DNA double-strand breaks (DSBs) and takes place

shortly after DNA replication during an extended gap phase

referred to as meiotic prophase. Both the formation and faithful

repair of meiotic DSBs into crossover recombinants requires the

large-scale reorganization of each meiotic chromosome into a

series of chromatin loops emanating from a central, condensed

axis [1,2]. Pre-meiotic S phase (meiS) is longer than pre-mitotic S

phase (mitS) in many organisms [2,3,4], and it has been

hypothesized that the protracted DNA synthesis either contributes

to, or is affected by, the dramatic chromosome reorganization that

occurs during meiotic prophase.

The kinetics of genome duplication are determined by where

and when DNA replication begins. In eukaryotic genomes, DNA

replication initiates from many sites along each chromosome,

termed origins of replication, whose likelihood of utilization

modulates the length of S phase in different developmental

situations [5]. In yeast, potential replication origins are selected

during G1 phase by the loading of the Mcm2-7 replicative helicase

at specific sites along each chromosome [6,7]. Upon entry into S

phase, the activities of cyclin-dependent kinase (CDK) and Dbf4-

dependent Cdc7 kinase (DDK) trigger the initiation of DNA

replication from a subset of these potential origins [8,9]. The

remaining ‘‘inactive’’ origins are passively replicated by forks

derived from nearby origins. Studies of individual DNA molecules

revealed that the time at which each origin initiates DNA

replication during S phase varies substantially between cells, and

there is little correlation between distant loci, suggesting origin

activation is not coordinated [10,11]. Nevertheless, when the

population as a whole is considered, a robust and reproducible

replication timing program is seen, regardless of strain background

or method used to assess replication timing [8,9,11], suggesting

chromosomal DNA replication can be accurately described by a

probability function.

MeiS in budding yeast has been estimated to last between 1.5–3

times as long as mitS [3,12]. Theoretically, the longer duration of

meiS could be due to either reduced efficiency of the initiation of

DNA replication (from all or a subset of origins), reduced

replication fork rates or a combination of both. Previous studies

suggested that the extended length of meiS is not due to changes in

origin selection because the majority of the origins on chromo-

somes III and VI initiate DNA replication during both mitS and

meiS in budding yeast [13,14], and genome-wide analyses
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suggested that origin selection is also similar in both S phases in

fission yeast [15].

In budding yeast there is no clear separation of meiS and the

start of prophase; DNA synthesis occurs concurrently with the

loading of factors required for axis and DSB formation, and both

require the same cell-cycle kinase activities. The meiosis-specific

cohesin complex containing Rec8 is loaded onto chromosomes as

cells enter meiS, and subsequently the axial proteins Hop1 and

Red1 associate with the same axial core sites along each

chromosome [16,17]. As cells progress into prophase, chromo-

somes condense into a characteristic form, with a shortened axis

and intervening DNA loops emanating away from the central core

(reviewed in [2]). Association of both axial and DSB factors with

core sites is critical for the formation of DSBs on the adjacent loops

by the topoisomerase-like enzyme Spo11 [17,18], whose proper

association is dependent on Rec8 [16,19]. A possible link between

axis morphogenesis and S phase length was inferred from FACS

analysis of total DNA content in yeast strains lacking Rec8 and

Spo11 [12], and conversely, DNA replication timing has been

implicated as a determinant of the time of DSB formation [20].

To better understand how the early meiotic cell division is

coordinated, we characterized the kinetics and requirements of

meiS and axis formation genome-wide in budding yeast. We found

that origin firing was either delayed or less efficient at the majority

of origins in meiS. Consistent with a decreased replication

capacity, cells were more sensitive to nucleotide depletion during

meiS. However, preventing meiotic chromosome reorganization

had little effect on origin activation in meiS, suggesting that DNA

replication is not strongly regulated by or linked to axis structure.

Conversely, full DNA replication was not required for either axis

assembly or DSB formation. Together, these data indicate that

DNA replication and the initiation of homologous recombination

are separable events, which coordinately contribute to the

formation of meiotic recombinant chromosomes.

Results

Differential Mcm2-7 loading at a subset of pre-meiotic
origins
To determine whether the initial selection of potential replication

origins could explain the difference in S phase length between the

meiS and mitS, we performed genome-wide location analysis for the

Mcm2-7 helicase in pre-meiotic and pre-mitotic cells (Figure 1A and

Figure S1). In total from both experiments, we observed Mcm2-7

binding at 393 loci, of which 382 had been identified previously as

Author Summary

Sexually reproducing organisms rely on a specialized cell
division called meiosis to produce genetically distinct
gametes with half the chromosome number of the parent.
The first stage of the meiotic cell division is the duplication
of chromosomes, followed by the exchange of DNA
between homologous chromosomes inherited from both
parents. It has long been known that DNA replication occurs
more slowly in pre-meiotic cells than in mitotically dividing
cells, and it was postulated that this delay is due to the
chromosome structures or proteins required for homolo-
gous DNA exchange. We show here that the delay of DNA
replication in yeast is regulated separately from the
formation of recombinant chromosomes; preventing re-
combination structures from forming does not alleviate the
delays in pre-meiotic DNA replication, and cells lacking DNA
replication are able to initiate recombination. We propose
that these two processes are functionally separable and that
the delay in pre-meiotic DNA replication in yeast may be a
result of the starvation conditions required for the induction
of meiosis in this organism.

Figure 1. Transcription influences origin selection. (A) Mcm2-7
localization was performed for cln3D cells (A4224) prior to meiosis and a
wild-type strain (SB1505) prior to mitosis. Mcm2-7 enrichment was
plotted versus chromosome position for chromosome IX for meiotic
cells (red, enrichment is upwards) and mitotic cells (blue, enrichment is
downwards). Inverted red and blue triangles indicate significant Mcm2-
7 binding sites. Black arrowheads indicate the positions of ARS913 and
the SPO22 ARS. (B) As in (A), except a detailed view of ARS913 (left) and
the SPO22 ARS (right) as indicated by arrowheads. The schematic above
indicates the locations of coding regions. (C) Quantification of the
change in gene expression for genes next to meiosis-specific (red),
mitosis-specific (blue) and all other (white) Mcm2-7 binding sites. (D)
Histogram showing the distribution of the calculated distances
between Mcm2-7 binding sites prior to meiosis (red, left panel) and
mitosis (blue, right panel).
doi:10.1371/journal.pgen.1002643.g001
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potential replication origins in mitotic cells in multiple strain

backgrounds (Table S1). Comparison of the pre-meiotic and pre-

mitotic Mcm2-7 binding sites revealed that the majority of origins

loaded Mcm2-7 in both pre-meiotic and pre-mitotic cells (358/393,

Table S1), consistent with the hypothesis that the mechanism of

origin selection is the same in both cell cycles.

Although origin selection was conserved at most sites, we

observed differential Mcm2-7 binding at 35 sites; 22 mitosis-specific

and 13 meiosis-specific sites (Table S1 and Table S2). Sites where

Mcm2-7 binding differed between pre-meiotic and pre-mitotic cells

were more frequently located in coding regions or promoters than

sites with similar Mcm2-7 binding in both cell cycles (20/35 versus

87/358, Chi-squared p= 8.1E-5). Origins are generally under-

enriched in coding regions of the genome due to the incompatibility

between transcription and replication factor binding [21]. Consis-

tent with this incompatibility, mitosis-specific Mcm2-7 binding sites

were found in sporulation-induced genes SPO22 and ZIP1, and

meiosis-specific binding sites were associated with mitotic budding-

related genes SHE2 and BUD27 (Figure 1B and Table S2).

Moreover, we observed significantly increased gene expression

during meiS at mitosis-specific Mcm2-7 binding sites, compared to

sites that bind Mcm2-7 in both cell cycles (Figure 1C compare blue

and white boxes, t-test p= 1.7E-2), suggesting that differential

Mcm2-7 binding at many of these sites was driven by changes in

gene expression. Meiosis-specific Mcm2-7 binding sites did not

show as clear a change in gene expression, suggesting that other

mechanisms may also contribute to Mcm2-7 association. Never-

theless, the small number of changes in Mcm2-7 binding we

observed are unlikely to account for the extended length of meiS, as

we did not observe larger gaps between Mcm2-7 binding sites in

meiotic cells (Figure 1D). Indeed, the meiosis- and mitosis-specific

Mcm2-7 binding sites were consistently located close to other

origins; the next Mcm2-7 binding site was on average 14 kb away

with a maximum distance of 39 kb. In comparison, the average and

maximum inter-origin distance for all potential origins was 30 kb

and 95 kb, respectively (Figure 1D). These data indicate that the

reduced rate of meiS is not due to differential origin selection.

The same origins are active in the meiotic and mitotic cell
divisions
Another possible explanation for the extended timing of meiS is

that fewer sites with loaded Mcm2-7 complexes are used as origins

of replication in meiS. To determine which potential replication

origins were ‘‘active’’ during meiS, we measured the average

replication time of sites across the genome in sporulating cells. To

synchronize the cells as they passed through meiS, we used an

ATP-analog-sensitive allele of the Ime2 kinase, ime2-as1 [22]. Ime2

promotes meiotic cell cycle entry and pre-meiotic DNA replication

[22,23], so ime2-as1 cells inoculated into sporulation medium

containing the ATP-analog inhibitor for 4 hours did not initiate

DNA replication (Figure 2A, 0 minutes). When the inhibitor was

removed, cells progressed synchronously through meiS, as

measured by FACS (Figure 2A). To determine the relative time

of DNA replication, we pooled DNA samples that were collected

every 7.5 minutes from the start to the end of meiS. The resulting

samples were applied to a microarray together with a control (non-

replicating) G1 sample to determine the relative abundance of

DNA at 40,646 sites across the genome. Because the quantity of

the DNA doubles when a site is replicated, sites that replicate

Figure 2. Meiotic DNA replication profiles. (A) Ime2-as1-myc
homozygous diploid cells (KBY518) were synchronized in meiS. DNA
samples were collected every 7.5 minutes. Resulting samples were
pooled and co-hybridized with a G1 DNA sample to a tiled genomic
microarray. (B) Replication profiles for meiS (KBY518, red line), mitS
(SB1505, blue line) and control G1 vs. G1 (SB1505, grey line)
hybridizations were created by plotting the smoothed log2 ratio (see
Materials and Methods) versus chromosome VII position. Triangles
indicate the positions of Mcm2-7 binding sites prior to meiosis (red) and
mitosis (blue). (C) The distribution of relative replication time for all
origins (colored lines) and for the entire genome (black lines) is plotted
for meiS (left panel) and mitS phase (right panel). (D) The replication
time in meiS of Mcm2-7 binding sites that were present in both cell
cycles were plotted as a function of mitS replication time. Assuming
meiS is twice as long as mitS, the orange dashed line indicates the
predicted meiS replication time if origins replicated with the same

kinetics in meiS and mitS. The blue dashed line is the predicted
replication time trend line if scaling were linear with respect to S phase
length. The purple solid line is the second order polynomial best-fit
model.
doi:10.1371/journal.pgen.1002643.g002
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earlier in S phase are enriched in the pool compared to sites that

replicate later (Figure 2A) and the relative abundance of a given

site in the S phase pool is inversely proportional to its average

relative time of replication during S phase [9]. The results were

visualized by plotting the relative enrichment in the S phase

sample for all array features along a given chromosome, termed a

replication timing profile (Figure 2B and Figure S2, red line).

Peaks in the profile result from regions that replicated before

neighboring sequences, and therefore must contain pre-meiotic

origins of replication.

We next sought to compare the subset of origins that are active

during meiS and mitS. We created pre-mitotic replication profiles

for cells of the same genetic background (SK1) using alpha-factor

synchronized cultures (Figure 2B and Figure S2, blue line). The

mitS replication profiles were very similar to those obtained in

W303, another S. cerevisiae strain background (Figure S3),

indicating that our method works similarly to those previously

published and that the replication program is robust across

different strains. To measure the level of random noise inherent in

the copy number technique, we performed a control co-

hybridization of two G1 DNA samples (Figure 2B and Figure

S2, grey line). Because the smoothing algorithm used to create the

profiles is unable to accurately predict replication time at the end

of chromosomes, we excluded the 25 kb at each chromosome end

from our analyses. After this exclusion, the meiS and mitS

replication profiles showed a high degree of similarity (Pearson

correlation coefficient = 0.64). Importantly, the peaks in both

profiles were associated with sites of G1 Mcm2-7 binding

(Figure 2B, inverted triangles), indicating that we could identify

active origins of replication in both profiles. In general, the same

peaks were present in both the pre-meiotic and pre-mitotic

replication profiles, extending to all chromosomes the previous

observations that the same origins initiate DNA replication during

both meiS and mitS [13,14]. Although we observed several

instances in which meiosis- or mitosis-specific origins initiated

replication (Figure S2), the effect on the overall profile was

minimal, suggesting that these differences do not contribute

substantially to S-phase progression.

Replication initiation is delayed for many pre-meiotic
origins
Although the majority of origins were active in meiS and mitS,

examination of the replication profiles revealed that the relative

replication time was different at many sites. The observation that

many of the peak heights differed suggested that the timing or

efficiency of replication initiation is altered at some origins in the

meiotic cell cycle. When the distribution of replication timing for

potential origins (Mcm2-7 binding sites) was compared to the

whole genome in mitS, the majority of origins were replicated

before bulk genomic DNA (Figure 2C, compare blue and black

lines on right distribution). This finding is consistent with a model

of efficient DNA replication initiation from these sites as cells enter

mitS. Replication of potential origins was very limited at the end of

S phase, consistent with this replication being comprised of fork

progression and termination. In contrast, potential origin replica-

tion distributed more uniformly throughout meiS (Figure 2D,

compare red and black lines), indicating that all origins did not

initiate replication as efficiently upon entry into meiS.

To further investigate the delay in replication initiation in meiS,

we compared the relative time of replication of all Mcm2-7 sites in

mitS and meiS (Figure 2D). Given that there is no specific marker

for the start and end of S phase in individual cells, or even the

population as a whole, we used the FACS analysis to estimate the

minimum length of meiS was 45 minutes at 30uC (Figure 2A),

approximately twice as long as mitS [24]. If origins initiated

replication at a similar time during meiS and mitS, we would

expect the distribution of origin timing to resemble the orange

dashed line (Figure 2D). If the time of replication were scaled with

the length of S phase, but origins still fired in essentially the same

order, we would expect the data to cluster around the blue linear-

scaling prediction line (Figure 2D). We found that origins fired in a

similar order in meiS and mitS, but 71% of potential origins

replicated relatively later in meiS than mitS (Figure 2D, dots above

the blue line). Consistently, we observed that 74% of origins

replicated before the mean of the genome (mid-S phase) in mitS,

but this number was reduced to 58% in meiS. We created a best fit

model using linear regression (Figure 2D, solid purple line) [25],

and found that the earlier origins were most delayed and the

replication rate seemed to increase at the end of S phase, similar to

predictions from other eukaryotes [26]. These data indicate that

replication of many potential origins is delayed in meiS, either

because of later initiation or passive replication in late S phase.

Pre-meiotic cells have compromised replication capacity
To confirm the apparent differences in replication kinetics that

we observed in the meiS and mitS replication profiles, we sought

to identify all early replicating origins by delaying cells in early

meiS with hydroxyurea (HU), as previously described for mitotic

cells [9]. To begin, we tested a titration of HU concentrations to

determine the optimal conditions to use with sporulating cells. We

found that pre-meiotic cells were more sensitive to replication

inhibition than mitotically dividing cells. First, the nature of the

replication arrests differed. Pre-meiotic cells treated with 20–

200 mM HU exhibited little or no replication progression,

indicating that they had largely arrested replication in very early

S phase (Figure 3A, SPO samples). In contrast, the mitotic cells

inoculated into rich medium (YPD) containing 5–200 mM HU

did not fully arrest DNA replication. Consistent with previous

reports [27], even in the highest concentration of HU we observed

detectible DNA replication after 2 hours (Figure 3A,

YPD+200 mM HU). To further test the idea that cells are more

sensitive to HU exposure in meiS, we measured the autophos-

phorylation associated with activation of the intra-S phase

checkpoint kinase Rad53 by western blotting. Consistent with

the idea that pre-meiotic cells are more sensitive to replication

inhibition, Rad53 became hyper-phosphorylated at a much lower

concentration of HU in meiS than mitS (Figure 3B).

Because it has been reported that cells sporulated in the

presence of HU have reduced levels of early meiotic transcripts,

including IME2 [28], we were concerned that addition of HU may

generally inhibit meiotic entry independent of DNA replication

and S-phase checkpoint activation. To test whether cells had

entered meiS in each of our experiments, we measured the CDK-

dependent phosphorylation of Orc6 that occurs as cells enter S

phase. We were able to detect Orc6 phosphorylation consistent

with meiS entry in cells exposed to 5–200 mM HU, although the

kinetics of Orc6 phosphorylation were delayed in the presence of

high amounts of HU (Figure 3C). Addition of 200 mM urea, a

similarly nitrogen-rich compound, also slowed meiS DNA

replication and S-phase entry (Figure 3A, 3C). However, because

this treatment did not inhibit mitS DNA replication (Figure 3A) or

elicit a checkpoint response in meiS or mitS (Figure 3B), we

conclude that high concentrations of HU or urea inhibit meiotic

cell cycle entry independent of S-phase checkpoint activation.

When HU- or urea-treated cells were released into sporulation

medium without HU, they completed meiosis and formed viable

spores, indicating they were reversibly inhibited and remained

viable during the treatment (data not shown). Together, these data

Separating DNA Synthesis and Meiotic DSB Formation
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indicate that high concentrations of HU (or urea) can reversibly

delay meiS entry. Therefore, we chose to use 20 mM HU for all

further meiotic experiments, as this concentration of HU inhibited

meiS progression without significant delays in meiotic cell cycle

entry.

We used HU to determine the number and location of early-

replicating origins in meiS and mitS. To create as similar a

situation as possible, we synchronized cells in G1 in pre-

sporulation medium, and subsequently divided the cultures into

either sporulation medium (to induce meiosis) containing 20 mM

HU or rich medium (to induce mitosis) containing 200 mM HU.

After four hours, total DNA was collected and relative copy

number was measured genome-wide. We detected replication

initiation at a subset of sites in both pre-meiotic and pre-mitotic

HU-arrested cells (Figure 3D, Figure S4 and Figure S5). The

extent of replication in HU for each origin was similar to the time

of replication of that site in the corresponding S-phase replication

profile. The highest peaks in the HU profiles almost always

coincided with the highest peaks in the corresponding replication

timing curve (Figure S5). Thus, both the S phase and HU profiles

detected the locations of early replicating origins.

We compared the identity of origins replicated in meiotic and

mitotic cells exposed to HU. We considered all origins that showed

copy number enrichment greater than half the maximum

enrichment of the genome to be replicated in each HU experiment

(Figure 3D and Figure S5, inverted triangles). Although the

majority of these origins were associated with a clear peak in the

HU profiles, indicative of active initiation, some of these origins

also could have been passively replicated by the fork from a nearby

origin. Consistent with previous results from mitotically dividing

cells, we observed that all chromosomes contained multiple early-

replicating origins in mitS. Most chromosomes contained early-

replicating origins during meiS, although the sites on chromo-

somes VIII and XVI were just below the 50% cutoff in the meiS

HU profile. Comparing the number of origins replicated in the

meiS and mitS HU profiles revealed that many fewer origins

initiated replication in HU in pre-meiotic cells (47 versus 121,

Figure 3E and Table S1). All origins that were replicated in HU in

pre-meiotic cells were also replicated in HU in pre-mitotic cells

(Figure 3E), indicating that a subset of early mitotic origins also

function efficiently in meiS, but that others become inhibited by

HU during the sporulation program.

Figure 3. Reduced replication initiation in meiS. Pre-sporulation cultures of wild-type cells (H574) were inoculated into either SPO (top row) or
YPD (bottom row) in the absence or presence of the indicated concentrations of HU or urea. (A) Comparison of response to HU in meiS and mitS as
measured by FACS analysis. (B) Western blot analysis of Rad53 phosphorylation after 4 hours incubation in SPO (top panel) or YPD (bottom panel). (C)
Western blot analysis of Orc6 phosphorylation in cells from the SPO cultures to monitor activation of CDK at the time of S phase entry. (D) The relative
copy number enrichment of cells after 4 hours in 200 mM HU (mitS) or 20 mM HU (meiS) is plotted relative to chromosome VII position for wild-type
(H574, blue for mitS and red for meiS) and sml1D cells (H4898, purple). (E) The total number of origins replicated in each of the conditions in (D) is
represented as a Venn diagram.
doi:10.1371/journal.pgen.1002643.g003
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Given that meiotic cells were far more sensitive to inhibition of

DNA replication by HU treatment (Figure 3A), we asked whether

low nucleotide levels could explain the delayed replication

initiation in meiS. We increased nucleotide levels by removing

the ribonucleotide reductase (RNR) inhibitor SML1 [29]. When

we measured DNA replication in sml1D cells treated with HU, we

found that increasing nucleotide levels increased the number of

early origins to levels intermediate between meiS and mitS

conditions (total of 71, Figure 3E and Figure S4). SML1 deletion

did not result in defects in meiotic S phase entry, sporulation

efficiency or spore viability (data not shown). Given the sensitivity

of meiotic cells to HU treatment, and the increases in DNA

replication observed when nucleotide levels are increased, we

propose that the starvation conditions required to initiate meiotic

entry lead to low intra-cellular nucleotide levels that delay DNA

replication.

Centromeres are a strong determinant of early
replication in meiS
In an attempt to explain the changes in replication initiation

timing that occurred between meiS and mitS, we looked at the

relationship between chromosomal features and replication

timing. Because meiotic entry is associated with large changes in

the gene expression program, we first explored the connection

between replication timing and gene expression. Using published

datasets, we determined the expression of all genes within 500 bp

of meiS and mitS origins [30,31]. We found no relationship

between meiotic gene expression level and replication time in meiS

(Figure 4A). We also examined expression of genes surrounding

the 47 meiS early origins and the 74 mitS-only early origins that

do not initiate replication in HU in meiS. We found there was no

significant difference between the expression levels of genes

adjacent to these two classes of origins (Figure 4B, compare red

and blue boxes), again suggesting that the delay in meiS

replication initiation is not due to transcriptional changes proximal

to these origins. Similarly, we tested for a correlation between

changes in time of replication and changes in gene expression

between meiotic and mitotic cells, but found no relationship (data

not shown), indicating that the large-scale changes in replication

timing in meiS are independent of the meiotic gene expression

program. Finally, we explored the locations of meiotic unanno-

tated transcripts (MUTs) [32] and found no relationship between

their presence and Mcm2-7 binding and origin activation (Table

S2). For example, ECM23/MUT1498 is predicted to cover

ARS1621, yet we observed Mcm2-7 binding and a peak in the

replication profiles indicating origin activation at this site in both

meiS and mitS (Figure S2).

We next asked whether early replication of centromeres was

conserved in meiS, because centromere proximal regions of

chromosomes are replicated early during mitS in multiple yeasts

[33,34]. Indeed, we found that all centromeres replicated in the

first half of S phase in both mitS and meiS, with an average

replication time of 22% and 28% of S phase, respectively

(Figure 4C). Additionally, centromere-proximal origins were

highly enriched in the meiS HU profiles for every chromosome

(Figure S4). Plotting the replication time of all origins during meiS

as a function of distance from the centromere revealed that origins

close to centromeres were consistently replicated earlier in S phase

than origins farther from centromeres. Strikingly, meiS early

origins were on average 70 kb from a centromere, and the

majority (32 of 47) was within 50 kb of a centromere (Figure 4D

red dots, Figure 4E red distribution). Conversely, the set of origins

that are replicated early during mitS extended significantly further

(average of 176 kb) from centromeres (Figure 4D, blue dots,

Figure 4E, blue distribution, t-test p = 1.2E-4). The effect of

centromere proximity on replication time extended 50–100 kb

along the chromosomes, as the origins in this range replicated

significantly earlier than those farther away (Figure 4C, 4D). The

overall size of this 100–200 kb domain on each chromosome

could, at least in part, explain why the smallest chromosome have

a relatively high density of early origins and, on average, replicate

Figure 4. Centromeres replicate early in S phase. (A) The average
expression level of origin proximal genes is plotted versus the time of
replication in meiS. The red dotted lines indicate the population
average. (B) The expression level distributions for meiS (left) and mitS
(right) are plotted for the genes surrounding each origin for meiS early
origins (red boxes) and mitS-only early origins (blue boxes). (C) The
replication time for each centromere is indicated as a gray vertical bar
compared to the distribution of replication time for the whole genome
(black line) in meiS (left panel) and mitS (right panel). The mean
replication time of the genome is indicated by the black dotted lines for
each panel. (D) The replication time of each origin is plotted as a
function of the distance of the origin from the closest centromere. MeiS
early origins are indicated in red, mitS-only early origins are indicated in
blue and late origins are colored black. (E) The data from (D) are
summarized as box and whisker plots, with significance of the
difference between mei-S and mitS-only early origins indicated.
doi:10.1371/journal.pgen.1002643.g004
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early (Table S1 and Figure S2). These data reveal that, as in mitS,

centromeres are a strong determinant of early meiS replication

initiation, and the effect is more apparent during meiS due to

compromised DNA replication capacity.

MeiS timing does not correlate with meiotic
chromosome structure
Given that meiotic chromosomes undergo large structural

changes in preparation for recombination, and factors involved

in these processes have been implicated in the control of meiotic

replication, we investigated the relationship between pre-meiotic

DNA replication and DSB formation. To understand whether axis

or DSB formation delay meiS replication initiation, we measured

early DNA replication (in the presence of HU) in cells unable to

form meiotic axes (rec8D) or defective in DSB formation (spo11D).

We observed similar HU replication profiles in sporulating wild-

type, rec8D and spo11D cells: the vast majority of early meiS origins

were replicated in all three strains (44 of 47 in wild-type cells,

Figure 5A, 5B and Figure S4). These data indicate that Rec8 and

Spo11 are not primarily responsible for the changes in meiotic

replication origin timing that we observed.

We next determined the replication time of several chromo-

somal features during meiS, including DSB hotspots (HSs) and

axis-associated core regions. Analysis of 3434 HSs mapped by

Spo11-oligo accumulation [35] revealed that DSB sites were

replicated throughout S phase (Figure 5C, grey line). When the

HSs were ordered by rank, there was a slight trend that the

stronger HSs were replicated earlier in S phase than the weaker

sites, although the difference was not statistically significant (Figure

S6A). We also measured the replication time of the strong DSB

HSs mapped by either ssDNA enrichment in dmc1D cells or Spo11

genome-wide location analysis in rad50S cells [36] and found both

were replicated with timing mirroring the entire genome

(Figure 5C, brown and green lines, respectively, t-test p= 0.25

for dmc1D and p= 0.90 for Spo11 DSBs), indicating neither set of

HSs are preferentially enriched in early or late replicating regions.

Since many DSB factors associate with axis sites [17], we also

measured the replication time of these regions. We defined axis

association sites by overlapping localization of the axial proteins

Rec8, Hop1 and Red1, which occurred at 565 sites in the genome

(Figure S7, Table S3). As with HSs, axial sites were replicated

throughout S phase, with a distribution similar to the whole

genome (Figure 5D, t-test p = 0.97). Moreover, the change in

timing of DSB and axis sites showed no trend toward earlier or

later DNA replication (Figure S6B). The lack of detectable

relationships between replication timing and the presence of axis

and DSB sites suggests that meiotic chromosome structures do not

strongly influence the timing of meiotic replication.

DNA replication is not required for axial element
association or DSB formation
Since axis formation was not a critical determinant of meiS

replication timing, we wondered whether replication timing might

instead contribute to axis formation. Therefore, we monitored axis

formation by indirect immunofluorescence of the Hop1 and Red1

proteins on spread nuclei from cells lacking complete DNA

replication. We inhibited DNA replication in 3 ways; by arresting

cells in early S phase with HU, by depleting the Mcm2-7 loading

factor Cdc6 (cdc6-mn), which severely decreases DNA replication,

and by removing the cyclins Clb5 and Clb6, which prevents all

pre-meiotic DNA replication [37]. In each case we observed Hop1

and Red1 distributed along chromosomes (Figure 6A for Red1,

Hop1 data not shown), demonstrating that replication is not

required for meiotic axis association. We noted that the

chromosomes failed to condense and individualize in the clb5D

clb6D nuclei, indicating that CDK activity and/or DNA

replication are likely important for the full assembly of normal

meiotic chromosome structures. However, previous analysis of

Rec8 staining in cdc6-mn cells indicated that full DNA replication is

not required to form full axes [38,39]. To confirm that axis

formation occurs on the same sites in the presence and absence of

DNA replication, we localized Rec8, Hop1 and Red1 by whole-

genome location analysis. As previously described, Hop1

(Figure 6B and Figure S7) and Red1 (Figure S7) localized to

cohesin-associated regions (CARs) [17,40], similar to both Scc1 in

Figure 5. No relationship between DNA replication timing and
recombination sites. (A) Chromosome VII replication profiles for pre-
meiotic cells in the presence of 20 mM HU are shown for wild-type
(H574, red), rec8D (H5187, orange) and spo11D (H5184, green) cells.
Inverted triangles indicate the position of origins that are considered
replicated in each strain. (B) Venn diagram summary of the experiment
shown in (A), with the same color coding. (C) The distributions of
replication timing in meiS are shown for the entire genome (black line),
DSBs hotspots mapped by Spo11-oligo recovery (gray line), ssDNA
enrichment in a dmc1D strain (brown line) and Spo11 binding in rad50S
cells (green line). (D) The distributions of replication timing in meiS are
shown for the entire genome (black line) and for axis association sites
(blue line).
doi:10.1371/journal.pgen.1002643.g005
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mitotic cells and Rec8 in meiotic cells [41]. Although the overall

levels of binding varied, we found consistent patterns of Hop1,

Red1 and Rec8 at CARs in all situations lacking DNA replication

examined, indicating that axis formation occurs independently of

DNA replication (Figure S7).

To determine whether the axes formed in these situations were

functional, we measured genome-wide DSB formation by ssDNA

enrichment in a cdc6-mn strain (a dmc1D mutation was used to

prevent repair of DSBs). We were able to detect DSBs across all

chromosomes after 5 hours in sporulation medium (Figure 6C and

Figure S8), despite the fact that the genome remained largely

unreplicated at this time (Figure 6D). These DSB HSs occurred at

the same sites in both dmc1D and cdc6-mn dmc1D cells, although the

intensity of DSB formation differed at many sites. Because the

FACS analysis indicated that there is some DNA replication

occurring in the cdc6-mn strains (Figure 6D, see tailing towards 4C

at 5 hours), we were concerned that the ssDNA at DNA

replication forks might interfere with the quantitative measure-

ment of DSBs in the cdc6-mn cells. Therefore, we measured DSB

formation by pulsed-field gel electrophoresis, revealing high levels

of DSBs in the cdc6-mn strains (Figure 6E, note that the total signal

is lower in the cdc6-mn samples because we normalized for cell

number and the chromosomes do not replicate). We conclude that

the formation of DSB-competent meiotic chromosomes does not

require bulk meiotic DNA replication. Together, our results

indicate that pre-meiotic DNA replication and meiotic chromo-

some axis assembly are functionally separable processes, and that

the formation of a fully DSB-competent chromosome configura-

tion can occur in a chromosome-autonomous fashion without the

need for a sister chromatid.

Discussion

We investigated the coordination between pre-meiotic DNA

replication and the formation of meiotic chromosome axes.

Comparison of replication profiles from meiotic and mitotic cells

revealed substantial differences in the regulation of initiation of

DNA replication at many origins. Because the majority of

replication origins initiated replication later in pre-meiotic cells,

we propose that the slower meiS is primarily due to delayed

replication initiation. We did not observe a direct link between the

formation of DSB-competent chromosome structures and the

DNA replication program, indicating that these processes can be

functionally separated.

Transcription regulates Mcm2-7 loading at a subset of
origins
Although the Mcm2-7 binding sites were largely the same in

both the mitotic and meiotic cell cycles, approximately 9% of sites

showed differential Mcm2-7 loading. These sites were much more

frequently located within promoters or coding regions of genes,

and Mcm2-7 loading appeared to be prevented by gene

expression. Previous reports indicated that transcription through

an origin is deleterious to replication complex assembly and

replication initiation [21,42]. Similar to the situation described

here, it has been reported that ARS605 is inactivated by meiosis-

specific transcription of the overlapping gene MSH4, which caused

the loss of ORC-DNA association [14]. We did not identify

ARS605 as a mitosis-specific origin in this study (Figure S1),

possibly because we collected samples for Mcm2-7 analysis

relatively early in the meiotic cell cycle, when MSH4 transcription

was not yet fully activated and residual amounts of Mcm2-7 were

still bound to the DNA. Alternatively, the low levels of Mcm2-7 we

detected at ARS605 are insufficient for initiation. However, we

Figure 6. DNA replication is not required for axis association or
DSB formation. (A) Indirect immunofluorescence for Red1 (green) and
DAPI staining for total DNA (blue) on spread nuclei from cells at 3 hours
after inoculation into SPO for wild-type cells (H119) with and without HU,
cdc6-mn cells (H154) and clb5D clb6D cells (H2017). (B) Hop1 localization
analysis was performed for wild-type cells with (H4471) and without HU
(H119, [67]), cdc6-mn cells (H154) and clb5D clb6D cells (H2017). The
enrichment of Hop1 over input DNA is plotted for chromosome III. (C)
ssDNA enrichment in dmc1D cells (H118, [67]), and dmc1D cdc6-mn cells
(H1584) was plotted with respect to position on chromosome VII. (D)
FACS analysis was performed for dmc1D (H118) and dmc1D cdc6-mn cells
(H1584). (E) CHEF gel analysis of chromosome VIII during a meiotic time
course using dmc1D (H118) and dmc1D cdc6-mn cells (H4534).
doi:10.1371/journal.pgen.1002643.g006
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identified additional origins, at which Mcm2-7 association was

similarly regulated by transcription of the locus. We note that none

of the meiosis-specific origins identified in this study were novel;

either ARS activity or Mcm2-7 binding was detected in previous

studies using mitotically dividing cells (http://www.oridb.org).

However, none of them were shown to initiate DNA replication in

genome-wide mitotic studies, suggesting they do not function in

their chromosomal context. Because these transcriptionally-

regulated origins were located close to other origins, their

inactivation is unlikely to have a substantial effect on the

completion of DNA replication.

Delayed DNA replication during meiS
Given that origin selection and activation were highly similar in

meiS and mitS, the reduced rate of meiS must be due to delayed

replication initiation or slow fork progression rates. The presence

of a greater amount of noise in the meiS replication profiles made

it impossible to measure relative fork rates in meiS and mitS, as we

could not create an algorithm to specifically locate and measure all

fork progression regions. Despite this difficulty, we noted that in

some regions of the genome the scaled meiS and mitS profiles had

similar slopes (Figure S2). Because the time of meiS is

approximately twice the length of mitS and the profiles are scaled

to S phase length, a similar slope indicates that the meiotic fork

rates are approximately half the rate of the mitotic forks. On the

other hand, we found strong evidence for a delay in replication

initiation, as the majority of origins replicated later in meiS than

mitS. This replication delay could be due to later or reduced

efficiency of initiation, which the CGH method does not

distinguish. In support of delayed initiation, a much smaller

number of meiS origins initiated replication in HU. Although

previous studies observed a similar efficiency of origin usage in

meiS and mitS [13,14], we found that the small chromosomes

monitored previously showed smaller delays in meiS replication

than larger chromosomes (Figure S2), leaving open the possibility

that many origins exhibit a reduced efficiency of initiation in meiS.

Recent studies suggest that timing and efficiency are linked

[43,44], so it is possible that both contribute to the delayed

replication in meiS.

We postulate that the reduced replication initiation in meiS is

caused by a limiting initiation factor. One candidate is the level of

CDK activity, which is required for replication initiation. Removal

of the cyclin Clb5 in mitotic cells causes a reduction in late origin

activation, but the presence of Clb6/CDK substitutes to drive

mitS [45,46]. In meiotic cells, CLB5 deletion has an even more

severe phenotype, with very delayed and inefficient replication

[37], suggesting residual Clb6/CDK activity is lower in meiotic

cells. It seems less likely that DDK activity is limiting in meiS, as

the use of an analog-sensitive allele of Cdc7 revealed that pre-

meiotic DNA replication is virtually unaffected in the presence of

the inhibitor [47]. It has been proposed that DDK must act at

each individual origin at the time of initiation of DNA replication

[48,49], and it is possible that because replication initiation is

spread out over a much longer time period in meiS, less DDK

activity is required to support these lower initiation rates. A second

and non-exclusive model is that slow pre-meiotic DNA replication

is caused by the reduced dNTP levels in meiS [50], which

presumably occur because of the starvation conditions used to

induce sporulation. Lowered nucleotide levels could account for a

decrease in both initiation and fork progression rates. This

hypothesis is reminiscent of studies of mitotic growth in the

presence of HU, which also causes both a delay in origin activation

and slower fork rates, resulting in a protracted S phase [27]. The

observation that meiotic cells arrest more tightly in response to

HU is also consistent with a model of reduced dNTP levels.

Why is replication initiation delayed in meiS? The generalized

delay in replication initiation observed in meiS is very similar to

the scaling of S phase observed in other mutants that slow DNA

replication [25], suggesting that cells respond to S phase challenges

by decreasing the number of active forks. Although a slow S phase

would be detrimental in competitive mitotic cultures because it

would decrease growth rate, the meiotic program is a form of

terminal differentiation and cells are not prepared to divide again

immediately following meiotic exit. In sporulating cells, it may be

advantageous to proceed slowly but accurately through the cell

cycle. It has recently been shown that excessive replication

initiation leads to genome instability [43], and meiotic errors

would be propagated by the progeny. In higher eukaryotes,

meiosis takes place only in germ cells, which differentiate within

special organs in response to specific developmental cues.

Although these germ cells are not limited by nutrient availability,

they may also be optimized for fidelity.

Early replication of centromere-proximal origins
It is interesting to note that not all origins were equally delayed

during meiS; centromere-proximal origins initiated replication

efficiently during both meiS (This study and [13]). The

conservation of early replication timing of centromeres in meiS

and mitS (reviewed in [33], as well as in distantly related yeast

species [34], suggests that these sites play a critical role in

determining the replication timing program. Consistent with this

idea, it has been observed that moving a centromere was sufficient

to change replication timing of adjacent origin sequences [51].

One hypothesis for early centromere replication is that it is

important for kinetochore function, because mutants that change

replication timing were shown to interfere with chromosome

segregation [52]. Given that every chromosome has a centromere,

it is also possible that linking early replication to centromeres helps

to guarantee that every chromosome initiates replication in S

phase, even when replication is compromised.

Separation of pre-meiotic DNA replication from the
assembly of break-competent meiotic chromosomes
Although it was previously observed that Rec8 and Spo11

regulate the length of meiS [12], our findings indicated that the

activation of the earliest replicating origins is not directly regulated

by these proteins. Deletion of either Rec8 or Spo11 did not

significantly alter the profile of early pre-meiotic replication in

HU. Similarly, DSB sites and chromosome core sites were

distributed at random with respect to replication time in meiS,

indicating no direct link between replication delays and either axis

assembly or DSB formation. Therefore, we suggest that meiosis-

specific cohesion and the Spo11 protein are not responsible for the

altered replication timing program that we observed in meiS.

Similarly, full DNA replication is not required for the formation

of break-competent meiotic chromosomes. The association of the

axial proteins Hop1 and Red1 can be detected in HU-treated,

cdc6-mn and clb5Dclb6D cells, all of which fail to duplicate their

genomes, indicating that the formation of chromosome axes does

not require either DNA replication or the presence of a connected

sister chromatid. Association of Hop1 and Red1 occurs at cohesin-

associated regions on chromosomes and is regulated by Rec8. It

has been shown that mitotic and meiotic cohesin complexes

load onto chromosomes independent of DNA replication

[19,38,39,53], and we propose that axial proteins are similarly

able to load onto unreplicated chromosomes. We have also shown

that DNA replication is not required for DSB formation, as full
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levels of DSBs form in cdc6-mn cells, which complete very little

DNA replication (Figure 6), extending our previous finding that

cdc6-mn cells form DSBs at the engineered his4-LEU2 hotspot [54].

It has been observed that Spo11 is first loaded onto centromeres in

meiS, before it becomes redistributed to sites along chromosome

arms [19], and it is possible that the early replication of

centromeres drives Spo11 association. However, we were unable

to detect the specific replication of centromeres in cdc6-mn cells by

CGH analysis (data not shown), yet they were able to form full

levels of DSBs, indicating that Spo11 loading does not require

early centromere replication.

Although the wild-type kinetics of DSB formation in cdc6-mn

cells indicates that chromosome axis assembly and DSB formation

proceed on a timer that does not require DNA replication, it is

clear that locally delaying DNA replication by eliminating origins

on one chromosome arm retards proximal DSB formation

[20,55]. The data presented here indicate that DSB formation is

not intrinsically dependent on replication fork passage. The

apparent discrepancy of these results could be explained if the

single, severely delayed replication fork on the origin-less

chromosome arm were to locally disrupt the loading or

phosphorylation of DSB factors, delaying the initiation of DSB

formation. In this case, the depletion of replication forks in the

cdc6-mn cells would allow DSB formation. Alternatively, the

processes could be coupled through a checkpoint mechanism

triggered by the single delayed replication fork. In mitotic cells, the

intra-S phase checkpoint down-regulates the activity of DDK

[56,57]. As it was demonstrated that DSB formation requires

higher levels of DDK activity than DNA replication [47], the

intra-S phase checkpoint could prevent DSB formation in wild-

type meiotic cells, but may be lacking in cdc6-mn cells due to the

severe decrease in DNA replication, similar to results obtained in

S. pombe [58,59]. In either model, DNA replication is not a

prerequisite for DSB formation, but rather the processes would be

coordinated by superimposed regulatory mechanisms.

Whereas much effort has been made to understand the events of

meiotic prophase, relatively little is known about the regulation of

meiS and the assembly of specialized chromosome structures

necessary for meiotic recombination. In many organisms, the

signals that initiate meiosis are unclear, and meiotic cell cycle entry

cannot be determined by molecular or cytological markers until

after the initiation of recombination. Studies in S. pombe revealed

that pre-meiotic DNA replication initiates from the same sites as

mitotic DNA replication, but replication is delayed or less efficient

for a significant number of origins [15]. Our results indicate that

this delay is due to limiting replication capacity, and reveal that

centromeres are a strong determinant of early replication timing.

Additionally, in S. pombe DNA replication is also not required for

DSB formation, as multiple mutants that decrease DNA

replication form DSBs across all chromosomes [58]. Therefore,

the modular regulation of DNA replication and meiotic chromo-

some formation is conserved across distantly related yeast species,

and could extend to other organisms as well.

Materials and Methods

Strains and growth conditions
Strains used in this study are isogenic to SK1 and are listed in

Table S4. Gene disruptions were carried out using a PCR-based

protocol [60]. FLO8 was deleted in SB1505 to reduce flocculation.

Cells lacking CLN3 were used for Mcm2-7 Genome-wide location

analysis experiments to increase efficiency of meiotic entry. To

induce synchronous meiosis, strains were pre-inoculated at

OD600=0.2 in YPA (1% yeast extract, 2% bactopeptone, 1%

potassium acetate, Figure 1 and Figure 2), or BYTA medium (1%

yeast extract, 2% tryptone, 1% potassium acetate, 50 mM

potassium phthalate, Figure 3, Figure 4, Figure 5, Figure 6),

grown for 16 hours at 30uC, washed twice with water, and

resuspended at OD600=1.9 in SPO medium (0.3% potassium

acetate, pH 7.0) at 30uC. For G1 control DNA, mitotic Mcm2-7

chromatin immunoprecipitation and mitS phase profiles, cells

were inoculated into fresh YPD medium containing 5 mg/ml

alpha-factor for 3 hours. For mitS profiles, cells were released into

S phase by washing with 2 volumes of sterile water and

resuspended in YPD at 30uC. MeiS cells containing the ime2-as1

allele were synchronized by incubation in SPO+20 mM 1-NA-PP1

(Toronto Research Chemicals) for 4 hours, the cells were washed

with 2 volumes of sterile water and resuspended in SPO medium.

Samples of 1.5 mls were removed every 5 minutes for mitS

profiles and every 7.5 minutes for meiS profiles. All DNA samples

inclusive of S phase (those which showed cells in S phase in the

FACS profiles, as well as two time points before and after) were

pooled for processing. For hydroxyurea (HU) experiments, cells

were inoculated into YPD containing 200 mM HU or SPO

containing 20 mM HU for 4 hours at 30uC.

Chromatin immunoprecipitation
25 mls of cells were harvested after 1 hour (Mcm2-7) or 3 hours

(Rec8, Hop1, Red1) in SPO. For pre-mitotic Mcm2-7 analysis,

50 mls of culture at OD600=0.8 were collected from alpha-factor

arrested cultures. Chromatin immunoprecipitation (ChIP) was

performed as described [61]. One tenth of the lysate was removed

as an input sample. Samples were immunoprecipitated for

16 hours at 4 degrees with UM185 (Rabbit polyclonal anti-

Mcm2-7, 2 ml serum used per immunoprecipitation), 3F10 (Rec8-

3HA, Roche, used 2 mg per immunoprecipitation), anti-Hop1 or

anti-Red1 (N. Hollingsworth, 2 ml each serum used per immuno-

precipitation).

FACS analysis
Cell pellets from 100 ml of sporulation culture were fixed in 70%

ethanol overnight at 4uC. Ethanol was removed and cells were

resuspended in 500 ml of 50 mM sodium citrate (pH 7.0)

containing 20 mg RNaseA for 16 hours at 50uC. Subsequently,

100 mg of Proteinase K were added and samples were incubated

an additional 24 hours. 500 ml of 50 mM sodium citrate (pH 7.0)

containing 2 mM Sytox green (Invitrogen) were added. Cells were

sonicated briefly on lowest power and scanned using a FACSCa-

libur (BD Biosciences).

DNA extractions for CGH
Cells were lysed by bead beating in 500 ml phenol/chloroform

and 500 ml of breakage buffer (10 mM TRIS, pH 8.0, 1 mM

EDTA, 100 mM NaCl, 2% Triton X-100, 1% SDS). After

centrifugation, the aqueous phase was precipitated with ethanol

and resuspended in 500 ml TE7.6 (10 mM TRIS, pH 7.6, 1 mM

EDTA) with 30 mg RNase. DNA was resuspended and samples

were incubated at 50uC for 3 hours. DNA was sheared by

sonicating at 100% output and lowest power for 10 seconds using

a Branson sonicator. DNA was extracted with 500 ml phenol/

chloroform, precipitated with ethanol and resuspended in 100 ml

of TE7.6

Fluorescent labeling and microarray hybridization
For ChIP experiments, one half of the immunoprecipitated

DNA and one tenth of the input DNA were labeled. For pooled

S-phase and HU replication profiles, ,5 mg of DNA from
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replicating or G1-arrested cells were labeled. Samples were labeled

with Cy3-dUTP and Cy5-dUTP by random priming using 4 mg

random nonamer oligo (IDT) and 10 units of Klenow (New

England Biolabs, Beverly, MA). Unincorporated dye was removed

using microcon columns (30-kDa MW cutoff, Millipore, Bedford,

MA), and samples were co-hybridized to custom Agilent arrays

(Wilmington, DE) using a standard protocol.

Microarray data analysis
For each co-hybridization, Cy3 and Cy5 levels were calculated

using Agilent Feature Extractor CGH software. Background

normalization, log2 ratios for each experiment and scale

normalizations across each set of triplicate experiments were

calculated using the sma package [62] in R, a computer language

and environment for statistical computing (v2.1.0, http://www.r-

project.org). The raw data and log ratios analyzed in this study are

available from the NCBI Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo/), accession number GSE35667.

Mcm2-7 binding sites were defined as sites that were

significantly enriched (P,0.05) in 3 independent experiments.

Array features within 500 bp of each other on the chromosome

were merged into a single binding site. Mcm2-7 binding sites were

assigned to a previously characterized origin if they overlapped the

defined region (http://www.oridb.org). Clear Mcm2-7 peaks were

detected at some sites that did not make the statistical cutoff. They

were manually included in the list of binding sites if they

corresponded to a known origin and an Mcm2-7 binding site

was called in the other data set (meiotic or mitotic). For analysis of

replication timing, Mcm2-7 sites were defined as the ACS, when

one was predicted [63] or previously defined (http://www.oridb.

org), or else as the midpoint of the minimally defined origin region.

The replication time of each Mcm2-7 binding site was determined

for each experiment by assigning it to the time of the closest point

on the smoothed and predicted replication timing curve. Points

,25 kb from chromosome ends were excluded from timing

analysis due to the inability to accurately predict timing at

chromosome ends.

For pooled S-phase and HU DNA samples, DNA replication

profiles were smoothed and predicted every 50 bp using the loess

smoothing spline with a span= 0.025 and a spar = 0.45 (Table S5).

Mcm2-7 binding sites were considered replicated in HU if their

value was greater than half of the maximum value in the genome

(excluding points ,25 kb from chromosome ends).

Axis association sites were defined as those with overlapping

Rec8, Hop1 and Red1 binding at more that one adjacent

chromosomal feature, defined similarly to Mcm2-7 binding sites,

except with P,0.15. The positions of axis association sites were

taken to be the midpoint of the intersection of the binding peaks of

all three proteins.

Analysis of the replication time for axis association sites, Spo11

binding sites and ssDNA-enriched sites was performed as for the

Mcm2-7 binding sites.

Gene expression analysis
To measure gene expression, we analyzed the average of

expression values at 15 and 20 minutes post alpha-factor from the

mitotic data set of Granovskaia at al. [30] and the average of the 2-

and 3-hour expression data for wild-type cells from Borde et al.

[31]. The expression data sets were scale-normalized to a mean log

value of 0 and a standard deviation of 1 over the 4987 genes for

which data were available in both sets. Origin-proximal transcripts

are those within 500 base pairs of the Mcm2-7 binding site. We

repeated all analyses using the dataset of Primig et al. [64] and

Friedlander, et al. [65], and obtained highly similar results (data

not shown).

Indirect immunofluorescence on spread nuclei
Meiotic nuclear spreads were performed as described [66]. In

brief, the nuclei of spheroplasted cells were spread on a glass slide

in the presence of paraformaldehyde fixative and 1% lipsol. After

drying, the slides were blocked in blocking buffer (0.2% gelatin,

0.5% BSA in PBS) and stained with anti-Red1 (N. Hollingsworth,

1:250 dilution).

Analysis of ssDNA enrichment
The genome-wide analysis of DSBs in the cdc6-mn strain using

ssDNA enrichment was conducted as described [36].

CHEF and Southern analysis
Clamped-homogeneous electric field (CHEF) gel electrophoresis

and Southern blotting were performed as described [36].

Supporting Information

Figure S1 Mcm2-7 localization. Mcm2-7 enrichment was

plotted versus chromosome position for all 16 chromosomes for

meiotic cells (red, enrichment is upwards) and mitotic cells (blue,

enrichment is downwards). Inverted triangles represent the

significant binding sites we identified. White dots indicate the

position of the centromere on each chromosome.

(TIF)

Figure S2 MeiS and mitS replication profiles. The smoothed,

predicted replication timing profiles are shown for each of the 16

chromosomes for meiS (red lines), mitS (blue lines) and G1 vs. G1

control hybridization (grey lines). Mcm2-7 binding sites are

indicated by inverted triangles for meiotic (red) and mitotic (blue)

cells. Black dots indicate the positions of centromeres.

(TIF)

Figure S3 Comparison of mitS replication profiles for 2 yeast

strains. MitS replication profiles for all chromosomes are shown

for the current study in SK1 (blue lines) and for W303 (green lines)

from Yabuki and colleagues [9]. Black dots indicate the positions

of centromeres.

(TIF)

Figure S4 HU replication profiles. The extent of replication

after 4 hours in HU is plotted for all 16 chromosomes for wild-

type cells (H574) in YPD+200 mM HU (blue lines), SPO+20 mM

HU for wild-type cells (H574, red lines), sml1D cells (H4898,

purple lines), rec8D (H5187, orange lines) and spo11D (H5184,

green lines). Inverted arrowheads denote origins that are

replicated in each strain of the corresponding color. Black dots

indicate the positions of centromeres.

(TIF)

Figure S5 Comparison of timing and HU profiles. The extent of

replication after 4 hours in HU is plotted for all 16 chromosomes

for wild-type cells (H574) in YPD+200 mM HU (blue histogram)

and SPO+20 mM HU for wild-type cells (H574, red histogram).

Above each histogram the corresponding S phase replication

timing profile is plotted in blue for mitS and red for meiS. Black

dots indicate the positions of centromeres.

(TIF)

Figure S6 DSB hotspot replication time. (A) The distribution of

relative replication time for HSs mapped by Spo11-oligo recovery

are shown for all 3434 non-telomeric HSs (grey box), and the 3434

HSs ranked in quintiles from lowest break number (purple) to
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highest break number (red). The timing distribution for the whole

genome is shown as a white box. (B) The meiS replication time of

DSB HSs mapped by ssDNA enrichment (left panel) or Spo11

genome-wide location analysis (center panel), or axis association

sites (right panel) are plotted as a function of their time of

replication in mitS. Red line indicates the predicted trend if

relative replication time were identical in meiS and mitS.

(TIF)

Figure S7 Axis sites. Genome-wide localization analysis was

performed for Rec8 (shown in purple), in wild-type cells with and

without HU (H4471) cdc6-mn cells (H5491) and clb5D clb6D cells

(H6495). Hop1 localization analysis is shown in green for wild-type

cells without HU (H119, [67]), with HU (H4471), cdc6-mn cells

(H154) and clb5D clb6D cells (H2017). Red1 localization analysis is

shown in red for wild-type cells without HU (H119), with HU

(H4471), cdc6-mn cells (H154) and clb5D clb6D cells (H2017). The

enrichment of immunoprecipitated over input DNA is plotted for

chromosome III. Sites that showed significant coincident binding

for Rec8, Hop1 and Red1 are indicated by inverted black triangles

above the plots. Black dots indicate the positions of the centromere.

(TIF)

Figure S8 ssDNA enrichment profiles. The ssDNA enrichment

profiles for dmc1D cells (blue, [67]), and dmc1D cdc6-mn cells

(H1584, orange, enrichment downwards) were plotted with respect

to position for all 16 yeast chromosomes. Black dots indicate the

positions of centromeres.

(TIF)

Table S1 Mcm2-7 binding sites identified in this study.

(XLS)

Table S2 Mitosis- and meiosis-specific Mcm2-7 binding sites.

(XLS)

Table S3 Axis sites identified in this study.

(XLS)

Table S4 Strains used in this study.

(DOC)

Table S5 Smoothed predicted profiles used in this study.

(XLS)
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