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A vibrational transition frequency can couple to its environment through a directional vector

interaction. In such cases, reorientation of the vibrational transition dipole (molecular orientational

relaxation) and its frequency fluctuations can be strongly coupled. It was recently shown [Kramer

et al., J. Chem. Phys. 142, 184505 (2015)] that differing frequency-frequency correlation function

(FFCF) decays, due to reorientation-induced spectral diffusion (RISD), are observed with different

two-dimensional infrared polarization configurations when such strong coupling is present. The

FFC functional forms were derived for the situation in which all spectral diffusion is due to

reorientational motion. We extend the previous theory to include vibrational frequency evolution

(spectral diffusion) caused by structural fluctuations of the medium. Model systems with diffusive

reorientation and several regimes of structural spectral diffusion rates are analyzed for first or-

der Stark effect interactions. Additionally, the transition dipole reorientational motion in complex

environments is frequently not completely diffusive. Several periods of restricted angular motion

(wobbling-in-a-cone) may precede the final diffusive orientational randomization. The polarization-

weighted FFCF decays are presented in this case of restricted transition dipole wobbling. With

these extensions to the polarization-dependent FFCF expressions, the structural spectral diffusion

dynamics of methanol in the room temperature ionic liquid 1-hexyl-3-methylimidazolium hexaflu-

orophosphate can be separated quantitatively from RISD using the experimental center line slope

data. In addition, prior results on the spectral diffusion of water, methanol, and ethanol in 1-ethyl-

3-methylimidazolium bis(trifluoromethylsulfonyl)imide are re-examined to elucidate the influence

of reorientation on the data, which were interpreted in terms of structural fluctuations. C 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4931402]

I. INTRODUCTION

Measurement of spectral fluctuations by two-dimensional

infrared (2D IR) vibrational echo spectroscopy provides a use-

ful window into the structural dynamics of complex condensed

phase media.1–9 The inhomogeneous broadening of a vibra-

tional transition reports on the range of environments and inter-

actions experienced by a probe molecule of interest. Spectral

diffusion within this inhomogeneous line shape is caused by

various molecular motions in the medium that alter the probe’s

local environment and interactions, and therefore change its

instantaneous vibrational frequency. The rates and fluctuation

amplitudes of spectral diffusion processes are quantified by the

frequency-frequency correlation function (FFCF), defined by

C (t) = ⟨δω (0) δω (t)⟩, (1)

where δω (t) = ω (t) − ⟨ω⟩ is the instantaneous frequency fluc-

tuation. The angle brackets ⟨· · · ⟩ are most commonly used to

refer to an isotropic ensemble average, in which all frequency

fluctuations are weighted equally.

A FFCF determines the waiting-time-dependent two-

dimensional line shape observed in 2D IR spectroscopy,1,10 but

it need not be the isotropically averaged function in Eq. (1).

a)P. L. Kramer and J. Nishida contributed equally to this work.
b)Author to whom correspondence should be addressed. Electronic mail:

fayer@stanford.edu

The experiments are conducted using polarized laser pulses,

which we will take to be linearly polarized. Each pulse interacts

with a subset of the vibrational probe transition dipoles in

the excitation volume. The probability of each field-dipole

interaction is proportional to ε̂ · µ̂, with ε̂ and µ̂ the unit

vectors of the laser electric field and molecular transition

dipole, respectively. Thus, a general 2D IR pulse sequence,

with three incident pulses that overlap in the sample and a local

oscillator pulse for heterodyne detection (which must match

the polarization of the emitted signal field),2 interrogates an

ensemble of molecular transition dipoles weighted by their

overlap with the laser fields at the various interaction times

of the pulse sequence.

Through techniques such as the center line slope (CLS)

method,3,4,11 the FFCF of the ensemble responsible for the third

order nonlinear signal may be extracted from experimental

2D IR spectra. In principle, the ensembles observed when

using two different combinations of excitation beam and detec-

tion polarizations (referred to as a polarization configuration)

may display somewhat different spectral diffusion dynamics.

Indeed, recently it was found that the CLS decays of the

hydrogen bonded solute methanol-d4 in a room temperature

ionic liquid (RTIL), 1-hexyl-3-methylimidazolium hexafluo-

rophosphate (HmimPF6), varied significantly depending on the

polarization configurations examined, ⟨XXXX⟩, ⟨XXYY⟩, and

⟨XYXY⟩.12 Here, the ⟨ABCD⟩ tensor element refers to nonlinear
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signal detected at A polarization after time ordered interactions

with pulses 1–3 polarized at D, C, and B, respectively.

It was found that, if the interaction of the vibrational

transition dipole with its surroundings transforms as a vector

with dipole rotation, rather than a scalar, then reorientation-

induced spectral diffusion (RISD) can contribute to the total

CLS decay and cause different recorded dynamics with each

polarization configuration.12,13 The first order Stark effect was

used as a model for such vector interactions, and, by assuming

diffusive reorientation of the vibrational transition dipole, the

polarization-weighted frequency-frequency correlation func-

tion (PW-FFCF) was calculated for both the ⟨XXXX⟩ (parallel

polarized) and ⟨XXYY⟩ (perpendicular polarized) configura-

tions. In agreement with experiment, the ⟨XXYY⟩ FFCF was

predicted to decay more rapidly than that for ⟨XXXX⟩.

Qualitatively, the influence of reorientation on spectral

diffusion can be understood as follows. Consider a vibrational

transition of a molecular probe molecule that has its frequency

at least in part determined by its interaction with electric fields

internal to the sample through the Stark effect,14,15 with a non-

negligible electric field component that is static on the time

scale of the orientational relaxation (see Figure 1). The Stark

coupling depends on the difference in dipole moment between

the vibrational excited state and ground state, which is taken

to be parallel to the transition dipole. Then, as the molecule

rotates, the transition dipole direction changes relative to the

long lived electric field component, altering the vibrational

frequency. For the parallel configuration, molecules will tend

to be excited with the same polarization that gives rise to the

signal. As they rotate, their frequencies will change, but they

will rotate into directions that contribute less to the signal,

as shown in Figure 1. Therefore, the RISD will be somewhat

mitigated by the reduction in the contribution of the reoriented

molecules to the detected 2D IR signal. For the perpendicular

configuration ⟨XXYY⟩, molecules will be initially excited with

their transition dipoles in directions that tend to have large

components perpendicular to the signal polarization. As they

rotate, their frequencies change and their transition dipoles

will tend to move toward the signal polarization. Therefore, as

rotation changes their frequency, they also contribute more to

FIG. 1. Illustration of the RISD process, reorientation induced spectral diffu-

sion, for one methanol-d4 molecule in solution. The molecule experiences a

long-lived electric field that, through the Stark effect, is in part responsible for

inhomogeneous broadening. Rotation of the molecule changes the projection

of the static electric field on the transition dipole (µ), changing the frequency.

But the contribution of the frequency change to ⟨XXXX⟩ is reduced while the

contribution to ⟨XXYY⟩ is increased.

the 2D IR signal, amplifying their contribution to RISD. The

result is that RISD in ⟨XXYY⟩ makes a greater contribution,

resulting in faster spectral diffusion than in ⟨XXXX⟩.

The theory and model system considered previously12

are not sufficient to quantitatively interpret experimental data

because two major characteristics of many real condensed-

phase systems were neglected. First, structural fluctuations in

the vibrational probe’s surroundings can modulate the coupl-

ing of the environment to the transition. The resulting struc-

tural spectral diffusion (SSD) does not depend on the polar-

ization configuration and can increase the decay rate of all

polarization-weighted FFCFs considerably.12 Second, the re-

orientation dynamics are frequently more complex than free

diffusion.16,17 For example, in room temperature ionic liquids,

the reorientation of a hydroxyl on dilute water and alcohol

solutes has been observed to proceed by a hierarchy of progres-

sively slower motions: a near-instantaneous inertial orienta-

tional jump, at least one period of restricted angular diffu-

sion (wobbling-in-a-cone),16,17 and finally complete diffusive

orientational randomization.18

In the present work, structural spectral diffusion and

restricted angular motion are incorporated into the first order

Stark effect model of RISD.12 In Section II, we prove that

the FFCF decay can be factorized into a RISD part and a

SSD part. Based on the derivation, the effect of reorientational

frequency sampling on the observation of short and long

time scale components of the structural degrees of freedom is

examined, both for a freely diffusing transition dipole (Section

III A) and for a dipole with an initial period of wobbling-

in-a-cone followed by free diffusion (Sections III B and III

C). It will be shown that when the SSD decay occurs on a

much faster time scale than RISD, the structural contribution

is barely affected, yielding similar FFCFs for the parallel

and perpendicular polarizations. As the RISD time scale be-

comes faster relative to the SSD components, the FFCF is

significantly accelerated by RISD, and the different polariza-

tion schemes become clearly distinguishable as well. These

model cases will help characterize the potential appearance

of RISD in experimental data. In Section IV A, using the

complete model of the FFCF, SSD with RISD, the paral-

lel and perpendicular CLS decays of methanol in HmimPF6

can be separated into their distinct reorientational compo-

nents and the structural dynamics which are purely a prop-

erty of the system. Previously published spectral diffusion

results18 on water, methanol, and ethanol in the RTIL 1-

ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

(EmimNTf2) are also re-examined in Section IV B to determine

the extent of possible RISD influence. Concluding remarks

appear in Section V. An orthogonality condition necessary for

the factorization of the FFCF is proved in Appendix A. The

method of obtaining decay time constants for the wobbling-

in-a-cone orientational correlation functions is summarized in

Appendix B.

II. FFCF FACTORIZATION INTO SSD
AND RISD COMPONENTS

We assume the vibrational transition dipole is engaged in

a directional interaction, whose form is equal to that of the first
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order Stark effect. Assignment of the fluctuating frequency to a

time-varying Stark effect has been successful in the interpreta-

tion of spectral diffusion for a variety of vibrational probes.14,19

Even if the vibrational frequency is not strictly determined by a

Stark effect, a strongly directional interaction can be modeled

using the electric field along the dipole as a surrogate for the

generally more complex intermolecular interactions, with a

suitably chosen effective Stark tuning rate (often referred to

as a frequency map).20–23

In this case, the frequency fluctuation will transform as a

vector as the dipole reorients relative to the lab frame (in which

the laser field polarizations are fixed). We can write the vector

frequency fluctuation as12

δωv (t) = λE⃗ (t) · µ̂ (t) , (2)

where µ̂ is the unit vector parallel to the transition dipole and

dipole difference for the transition, E⃗ is the internal sample

electric field at the position of the molecular dipole, and λ is

the Stark tuning rate. If E is the field amplitude and ê is the

unit vector specifying its direction, Eq. (2) then becomes

δωv (t) = λE (t) ê (t) · µ̂ (t) = λE (t) cos (θF (t)) , (3)

with θF the angle between the electric field and the transition

dipole.12 In general, both the field amplitude and direction can

vary due to the fluctuations of the medium surrounding the

vibrational probe. However, we assume that these structural

fluctuations are uncorrelated with the transition dipole direc-

tion.

All spectral diffusion dynamics which depend on the tran-

sition dipole direction are contained in the vector frequency

fluctuation δωv. Isotropic structural dynamics such as density

fluctuations may also cause the frequency to fluctuate without

affecting the vector coupling.24 We represent such dynamics

by the scalar frequency fluctuation, δωs. Therefore, the total

time-dependent frequency fluctuation is

δω (t) = δωv (t) + δωs (t) . (4)

As discussed in Section I, the nature of laser pulse spectroscopy

with polarized beams implies that ensemble averages involving

the vector frequency fluctuation will depend on the polariza-

tion configuration. If p denotes the polarization configuration,

we define ⟨· · · ⟩p as an ensemble average with weighting ac-

cording to p and the transition dipole orientational dynamics.

The p-configuration polarization-weighted FFCF is, therefore,

Cp (t) = ⟨δω (t) δω (0)⟩p = ⟨δωv (t) δωv (0)⟩p

+ ⟨δωs (t) δωs (0)⟩p + 2⟨δωv (t) δωs (0)⟩p. (5)

We consider the final term, and note that

⟨δωv (t) δωs (0)⟩p = λ⟨δωs (0) E (t) ê (t)⟩p · ⟨µ̂ (t)⟩p = 0 (6)

because ⟨µ̂ (t)⟩p = 0, that is, the transition dipole direction is

random with respect to both the local E-fields and lab frame.

Note that while certain dipole orientations are preferred due to

the polarization weighting, the reversed directions are equally

likely and hence the average must be zero. Additionally,

because δωs is a scalar, the polarization-weighted correlation

function of this term is identical to an isotropically averaged

correlation function. Thus, we write

Cp (t) = ⟨δωv (t) δωv (0)⟩p + ⟨δωs (t) δωs (0)⟩

= C
p
v (t) + Cs (t) . (7)

The overall PW-FFCF Cp (t) is therefore a sum of a vector

FFCF C
p
v (t), which is dependent on the polarization config-

uration p, and a scalar FFCF Cs (t), which is always given

by an isotropic ensemble average. The scalar FFCF will be

discussed later (Section IV A); the main focus of this paper

will be on the vector FFCF, because it is this term that reports

on reorientation-induced spectral diffusion.

The first order Stark model treated previously involved an

internal sample electric field that is static in both amplitude

and orientation during the rotational dynamics of the transition

dipole being studied.12 The field amplitude was assumed to

be equal at each dipole position, but the initial orientations of

the field and transition dipole unit vectors were randomized

in the polarization-weighted ensemble averaging procedure.

Only vector coupling was considered, so the frequency fluc-

tuation was

δω (t) = λEê · µ̂ (t) = ∆ê · µ̂ (t) , (8)

defining the frequency fluctuation amplitude as ∆ = λE. With

angular free diffusion of the transition dipole being the

sole source of spectral diffusion, the normalized frequency-

frequency correlation functions obtained with the Stark model

were12

Rpara (t) =
⟨δω (t) δω (0)⟩para

∆2/3
=

3

25


11C1 (t) + 4C3 (t)

1 + 0.8C2 (t)


(9a)

for the ⟨XXXX⟩ case,

Rperp (t) =
⟨δω (t) δω (0)⟩perp

∆2/3
=

3

25


7C1 (t) − 2C3 (t)

1 − 0.4C2 (t)


(9b)

for the ⟨XXYY⟩ case, and

Riso (t) = ⟨δω (t) δω (0)⟩ × 3/∆2 = C1 (t) (9c)

for the overall isotropic average. Here, Cl (t) = ⟨Pl(µ̂ (t) ·
µ̂ (0))⟩ is the lth order Legendre polynomial orientational

correlation function of the transition dipole unit vector.

To incorporate structural spectral diffusion into the previ-

ous results,12 we now allow the field amplitude E (t) and unit

vector ê (t) to be fluctuating quantities, which, in general, can

be correlated. The vector frequency fluctuations are then given

by Eq. (3), where the t dependence in θF is both due to the

molecular probe transition dipole reorientation and the internal

field directional fluctuations. The total frequency fluctuations

also include electric field amplitude fluctuations. Therefore,

the vector FFCF is

C
p
v (t) = λ2⟨E (t) E (0) cos (θF (t)) cos (θF (0))⟩p. (10)

Following the original derivation of the Rp (t) expressions in

Eq. (9),12 we begin from a frame in which ê is directed along

the z axis. In this “field frame,” the transition dipole direction

is specified by the coordinates µ̂ (t) ≡ ΩF (t) = (θF (t) , φF (t))

and hence,

cos (θF (t)) =



4π

3
Y 0

1 (ΩF (t)) . (11)
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The orientation of the field frame relative to the lab frame is specified by the Euler angles (α0, β0, γ0) at time zero and (α1, β1, γ1)

at time t. At time zero, suppose the orientation of the transition dipole in the lab frame is Ω0. Then,

cos (θF (0)) =



4π

3



m

D1
m0 (α0, β0, γ0)Ym

1 (Ω0) , (12)

with Dl
mn a rotation matrix.25 An analogous equation holds at time t, with dipole orientation Ω1 in the lab frame. Returning to

Eq. (10), we find

⟨E (t) E (0) cos (θF (t)) cos (θF (0))⟩p =
4π

3



E (t) E (0)


n,m

D1
n0 (α0, β0, γ0)Y n

1 (Ω0) D1
m0 (α1, β1, γ1)Ym

1 (Ω1)



p

=
4π

3



n,m



E (t) D1

m0 (α1, β1, γ1) E (0) D1
n0 (α0, β0, γ0)

� 

Ym

1 (Ω1)Y n
1 (Ω0)

�
p

=
4π

3



m



E (t) D1

m0 (α1, β1, γ1) E (0) D1
−m0 (α0, β0, γ0)

� 

Ym

1 (Ω1)Y−m1 (Ω0)
�
p

=
4π

3



m



E (t) D1

m0 (α1, β1, γ1) E (0) D1 ∗
m0 (α0, β0, γ0)

� 

Ym

1 (Ω1)Ym∗
1 (Ω0)

�
p
, (13)

making use of Eq. (A1) from Appendix A.

The electric field amplitude and direction correlation function appearing in Eq. (13) is an isotropic average because the

vibrational transition dipole does not appear. Because every axis system is equivalent in an isotropic medium, the correlation

function is independent of m.26 This material correlation function can therefore be factored out of the sum, giving us

⟨E (t) E (0) cos (θF (t)) cos (θF (0))⟩p =


E (t) D1

m0 (α1, β1, γ1) E (0) D1 ∗
m0 (α0, β0, γ0)

� 4π

3



m



Ym

1 (Ω1)Ym∗
1 (Ω0)

�
p

=


E (t) D1

m0 (α1, β1, γ1) E (0) D1 ∗
m0 (α0, β0, γ0)

�
× Rp (t) . (14)

The sum of polarization weighted spherical harmonic averages

is precisely an intermediate expression which appeared in the

calculation of the Rp factors in Eq. (9) originally.12 We define

the structural spectral diffusion vector coupling modulation as

F (t) = λ2


E (t) D1

m0 (α1, β1, γ1) E (0) D1 ∗
m0 (α0, β0, γ0)

�
. (15)

From Eqs. (10), (14), and (15), the vector PW-FFCF is thus

the product of an isotropic SSD factor and a polarization-

dependent RISD factor,

C
p
v (t) = F (t) Rp (t) . (16)

Note that the decays of both F (t) and Cs (t) may be referred to

as structural spectral diffusion, because both functions decay

due to structural fluctuations with rates independent of polari-

zation. Where confusion may arise, these can be referred to as

the vector modulation SSD and scalar SSD, respectively.

III. DECOMPOSITION OF THE FFCF
FOR MODEL SYSTEMS

The analysis of 2D IR spectral diffusion data often focuses

on inferring the dynamics of structural fluctuations from the

FFCF. In the vector coupling case, it is the SSD factor F that

reports on these dynamics. In this section, we examine the

possible forms of the vector PW-FFCF by constructing several

models of the structural modulation, Eq. (15), and the RISD

correlation functions, Eq. (9).

A. Diffusive reorientation

In the simplest case, the orientational motion of the transi-

tion dipole can be taken to be diffusive. For this case, as treated

previously,12 the lth order Legendre polynomial orientational

correlation function is

Cl (t) = exp (−l (l + 1) Dmt) , (17)

where Dm is the orientational diffusion constant. Then, the

orientational correlation functions appearing in Eqs. (9) are

simple exponentials. However, aside from the special case of

isotropic weighting, (9c), the overall RISD correlation func-

tions Rp themselves are, in general, non-exponential.

To examine the effects of structural spectral diffusion

and reorientation-induced spectral diffusion operating simulta-

neously, we consider a normalized frequency-frequency corre-

lation function of form (16). The inhomogeneous broadening

is due to a vector interaction which can be modified both

by structural changes (decay of F (t)) and transition dipole

reorientation (decay of Rp (t)) to cause spectral diffusion. We

model the SSD factor by the biexponential decay

F (t) = A1 exp (−t/τ1) + A2 exp (−t/τ2) . (18)

The strength and directionality of the strong vector interaction

between the dipole and its surroundings lose correlation with

increasing waiting time on two characteristic times, τ1 and τ2.

We let the second order orientational correlation time,

which would be measured in a polarization-selective pump-

probe (PP) experiment,10,12,27–29 be fixed at τm = 1/ (6Dm)
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TABLE I. FFCF structural spectral diffusion (Ai, τi) parameters. The biex-

ponential fit (Bi, ti) parameters that would be obtained when the effects of

freely diffusive reorientation are included (data in Fig. 2).a

Case A1 τ1 (ps) A2 τ2 (ps) Expt. typeb B1 t1 B2 t2

A 0.5 5 0.5 2000
∥ 0.50 4.55 0.50 114.0

⊥ 0.51 4.96 0.49 75.3

B 0.5 5 0.5 150
∥ 0.50 4.61 0.50 67.6

⊥ 0.51 4.91 0.49 51.2

C 0.5 5 0.5 50
∥ 0.51 4.69 0.49 35.9

⊥ 0.50 4.84 0.49 30.2

D 0.5 5 0.5 20
∥ 0.51 4.75 0.49 17.4

⊥ 0.50 4.79 0.50 15.8

aThe free diffusion time constant (second order) is τm = 1/(6Dm)= 30 ps.
bFitting results are given for the parallel (∥) and perpendicular (⊥) experiments.

= 30 ps. The first SSD time constant, τ1, will be fixed to be

much faster than the reorientation rate at 5 ps. We will vary

the second time τ2 from much longer than the experimental

window to just faster than the reorientation time. The param-

eters chosen for F (t) in Eq. (18) are given in Table I. De-

cays of the polarization-weighted FFCF for a realistic waiting

time range between zero and 100 ps were calculated using

these parameters for both the ⟨XXXX⟩ (parallel) and ⟨XXYY⟩

(perpendicular) polarization configurations and are displayed

in Figure 2 (points).

Though the RISD factors in Eq. (9) underlying the curves

in Figure 2 are not multiexponential decays, the resulting prod-

ucts of structural and reorientational functions appear essen-

tially indistinguishable from biexponential decays. If RISD

influence (indicated by the faster decay of the perpendicular

FFCF relative to parallel) was not anticipated by the exper-

imenter, and only one of the data sets was obtained, typi-

cally ⟨XXXX⟩ (parallel), then analysis of this FFCF in terms

of a biexponential decay would be the most straightforward

approach. Biexponential fits to both data sets (parallel and

perpendicular) appearing in Fig. 2 were performed and are

displayed as solid lines. The agreement with the model data

points is essentially perfect. The fit parameters (amplitudes, Bi,

and time constants, ti) are given in Table I.

For each case, A, B, C, and D, of structural spectral diffu-

sion (the parameters are given in the left four columns of

Table I), the results of the bi-exponential fits are given in the

right four columns for both parallel and perpendicular exper-

iments. In each case, a fast time constant t1 between 4.5 and

5 ps and a slower time constant t2, which depends strongly

on the choice of τ2, are observed. The amplitudes of both

components, set to equal 0.5 in the biexponential SSD function

in Eq. (18), are recovered almost without change caused by the

RISD factor. Because the τ1 = 5 ps rate is several times faster

than the reorientation rate, the fast SSD component is detected

in both the parallel and perpendicular PW-FFCF decays almost

unchanged. This is a key point — structural fluctuation rates

sufficiently fast compared to any reorientation time scales are

not accelerated by RISD in the observed FFCF and will appear

almost identically in any polarization configuration.12

The slower component of the biexponential fit is where the

majority of RISD’s influence appears. The parallel and perpen-

dicular Rp functions ((9a) and (9b)) decay somewhat slower

and somewhat faster than C1 (t) (9c), respectively, which de-

cays at an easily determined rate of 3 × τm = 90 ps. In Figure

2(a), in the absence of RISD, the 2 ns slow decay would appear

as a constant offset (horizontal line). The offset would reflect

structural inhomogeneity that appears static on the 100 ps

maximum time scale we are considering because the exper-

imental time range is limited by the vibrational lifetime. As

can be seen in Table I, case A, the slower t2 rate obtained

from the fit is entirely due to the reorientation of the transition

dipole sampling this very slowly evolving structural inhomo-

geneity. At intermediate rates of the slower SSD component,

FIG. 2. Simulated parallel (black

squares) and perpendicular (red circles)

polarization-weighted FFCF data for

various structural spectral diffusion

rates, with a fixed orientational

diffusion constant (τm = 30 ps). (a)

The slow time SSD (τ2= 2 ns) is

much slower than can be observed

in the experimental window. RISD

results in a significant difference in

the parallel and perpendicular decays,

which are greatly accelerated relative

to the pure structural dynamics. For

SSD time scales not substantially

slower than the reorientation time

(150 ps in (b) and 50 ps in (c)), the

increase in decay rate and difference

between polarization configurations is

noticeable but lessened relative to (a).

In (d), a SSD time of 20 ps (faster than

τm) is nearly unaffected by the RISD

contribution. Biexponential fits (solid

lines) are displayed for each data set;

the agreement with the data points is

excellent.
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as in Figs. 2(b) and 2(c), the rate constants for the structural

fluctuations and frequency sampling due to reorientation (9)

are combined to yield a slow component of the biexponential

fit that is significantly faster than either contributing decay

time (Table I). Finally, if the structural time scale is faster

(even marginally) than the second order reorientation time

(Fig. 2(d)), the addition of the RISD rate constant has a non-

negligible but relatively small effect on the measured FFCF.

For case D, the slow biexponential time scales given in Table I

are a few picoseconds faster than the pure structural FFCF

decay rate of 20 ps. Additionally, the parallel and perpendicular

decays in Fig. 2(d) are barely discernible even in the absence of

experimental noise. The coalescing of the ⟨XXXX⟩ and ⟨XXYY⟩

PW-FFCF decays corresponds well with the point at which the

structural fluctuation time becomes faster than the reorienta-

tional time; therefore, the RISD has only a small effect.

For an analysis of experimental data, the CLS/FFCF from

at least two polarization configurations should be obtained to

confirm the presence or absence of reorientation-induced spec-

tral diffusion on the observed decay. Suppose both the parallel

and perpendicular PW-FFCFs have been determined. Under

the assumption of free diffusion, the use of Eqs. (9), (16), and

(18) implies 5 free parameters which can be determined simul-

taneously for both data sets. However, because of the complex

form of RISD decay functions (9) and the versatility of multi-

exponential decays in producing many decay shapes, it is likely

that several combinations of structural decay rates/amplitudes

and reorientation times could fit the data equally well.

To avoid such indeterminacies, the second order orien-

tational correlation time can be directly determined from

polarization-selective pump-probe experiments, which are

frequently helpful in interpreting the spectral diffusion rates.18

Therefore, the form of the RISD contribution can be inde-

pendently constructed for any polarization configuration.12

Determining SSD component (16), which is equal for all

polarizations and modeled by a sum of exponentials, is then

a much simpler task. A single polarization configuration can

be fit with this model if the presence of RISD is already

known. When more configurations are available, the single

SSD function can be globally fit across all of the polarization-

selective CLS/FFCF decays. These procedures will be illus-

trated through application to experimental CLS and anisotropy

decays in Section IV.

Using this method, and assuming the reorientation time

is independently known, the polarization-selective FFCF de-

cays in Fig. 2 could be decomposed to recover the structural

fluctuation time used in constructing the data sets. Recovering

the longer structural time τ2 from experimental data with these

parameters would not be difficult for cases B, C, and D (Fig.

2 and Table I), because the structural part of the FFCF still

contributes to the overall decay on the 100 ps time scale. The

2 ns decay of the SSD factor in case A could only be determined

as an offset, i.e., an exponential term with effectively infinite

time constant, because there is essentially no structural spectral

diffusion caused by this term on the 100 ps time scale.

If the orientational relaxation (anisotropy decay) is

measured with a pump-probe experiment and found to be

a single exponential, there is a simple test to determine if

RISD can be neglected. The pump-probe anisotropy decay is

proportional to C2, the second Legendre polynomial orienta-

tional correlation function.30 RISD is dominated by C1, the first

Legendre polynomial orientational correlation function, which

decays a factor of 3 times slower than C2. If all of the decay

components of the measured FFCF decay are fast compared to

3 times the second order orientational relation time from the

pump-probe measurement, then RISD will make a negligible

contribution to the FFCF. In this case, the measured FFCF

directly yields the structural spectral diffusion dynamics.

B. Restricted orientational diffusion
(wobbling-in-a-cone)

Frequently, orientational relaxation does not occur by free

diffusion (single exponential decay for all orders of the orien-

tational correlation function, Eq. (17)) because there are con-

straints on the regions of angular space that can be sampled

by the vibrational probe molecule.16,17,31 When orientational

relaxation has time ranges in which restrictions prevent free

diffusion, the orientational correlation function does not take

the simple, single exponential, form of Eq. (17). However,

for any (well determined) manner of orientational motion,

the Legendre polynomial orientational correlation functions

can still be calculated, and thus, Eqs. (9) remain applicable

to describe the reorientation-induced contribution to spectral

diffusion.12

Model-independent information appears in the orienta-

tional correlation functions in the form of a generalized order

parameter, Sl.
17 In the long time limit, the lth order orienta-

tional correlation function will decay to the value S2
l
, assuming

that both the absorption and emission transition dipole are

parallel.17 This is usually the case for vibrational transitions

such as the hydroxyl stretch of methanol or the OH or OD

stretch of HOD, for which the transition dipole is essentially

the O–H or O–D bond.21 The order parameter is defined by

Sl = ⟨Pl (cos θ)⟩ =


dΩPl (cos θ) peq (θ) , (19)

with peq (θ) the equilibrium probability distribution of tran-

sition dipole polar angles. The order parameter is intimately

related to structural properties of the medium, i.e., how

restricted the orientational motion is. The exact relationship

between the order parameter and the structural information

requires a model of the orientational motion. Furthermore, a

model is necessary for any analysis of the time constant(s) of

the orientational correlation decay.

A particularly straightforward model of restricted orien-

tation relaxation is wobbling-in-a-cone.16,17,31 In this model,

the unique symmetry axis of the probe (i.e., the vibrational

transition dipole direction) undergoes free diffusion within a

cone of half angle θ0. There is zero probability of finding

the transition dipole direction outside of this cone. The order

parameter within the wobbling-in-a-cone model is straightfor-

ward to calculate using Eq. (19) and the results for l = 1–4 are

given in Table II.17

The exact time-dependent lth order orientational corre-

lation function decays, however, are infinite sums of expo-

nentials, with rate constants that cannot be obtained in closed

form.16,17,32 A simpler, single exponential, approximation to
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the orientational correlation function can be constructed as17,32

Cl (t) = S2
l +

�
1 − S2

l

�
exp

(

−t/τ
(l)

eff

)

. (20)

Lipari and Szabo showed that the decay time constant τ
(l)

eff
can

be calculated, in closed form as a function of the cone angle

θ0 and diffusion constant Dw, such that the time integral of

Cl (t) − S2
l

is exact.17 This integral defines the correlation time

of either Eq. (20) or the complete orientational correlation

function. As a result, Eq. (20) is an excellent approximation

to the exact correlation function because it decays to the same

offset with the same integrated time constant.

Lipari and Szabo originally derived τ
(2)

eff
and S2 to pro-

vide the second Legendre polynomial orientational correlation

function.17 This wobbling-in-a-cone orientational correlation

function is extremely useful for the analysis of dipole reori-

entation observed in NMR Overhauser enhancement data,17,33

fluorescence17,31,32,34 and pump-probe18,35,36 anisotropy de-

cays, and time-domain optical heterodyne detected optical

Kerr effect decays.37–40 Our extension of the derivation is

detailed in Appendix B, and the resulting expressions for τ
(l)

eff
as

a function of Dw and x0 = cos θ0 for l = 1–4 appear in Table II.

As θ0 approaches 180◦, or x0→ −1, we find the appropriate

limit τ
(l)

eff
→ 1/ (l (l + 1) Dw) for free diffusion. Small angle

approximations to τ
(l)

eff
, which are in error of less than 10% from

the full expression for θ0 < 50◦, are provided in Table II as well

(see Appendix B).

Within the wobbling-in-a-cone model, therefore, the

various Legendre polynomial orientational correlation func-

tions can be directly related to one another. Once, for example,

C2 (t) is measured via the pump-probe anisotropy decay,12,18

the wobbling-in-a-cone analysis yields θ0 and Dw. Given these

two constants, the order parameter and decay time constant

are readily obtained for any other orientational correlation

function (Table II). Thus, as in Section III A, measurement

of C2 (t) using polarization-selective pump-probe experiments

allows the RISD contribution, in Eq. (9), to the overall spectral

diffusion to be completely determined.

Within the first order Stark effect model considered so

far, the orientational correlation functions for l = 1, 2, 3 are

required (see Eq. (9)). Frequency fluctuations due to higher

order Stark couplings are possible, in principle, and PW-FFCFs

for these cases may be calculated using the same formalism

detailed previously.12 If a model related to the second or-

der Stark effect is constructed, then C4 (t) is required. For

completeness, we have included the wobbling-in-a-cone order

parameter and time constant for this correlation function in

Table II.

A model is always necessary to relate a measured (or

otherwise specified) orientational correlation function of a

particular order to correlation functions of different orders.

The two models discussed so far are free diffusion, as in

Eq. (17), and the hard-cone formulation of the wobbling-in-

a-cone model, as in Eq. (20). Other, possibly more realistic,

models of restricted orientational motion have been discussed.

One example is the harmonic cone model, which gives a

Gaussian probability distribution of transition dipole orien-

tations around a most probable direction.31,41 Kinosita et al.

showed that, particularly for smaller cone angles, the
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hard-cone model and a harmonic cone with effective width

equal to that of the hard-cone potential result in very similar

correlation times for a given diffusion constant.31 It appears

that different models which capture the restriction of angular

range (of the same magnitude) in some sense will yield similar

correlation functions.31 Therefore, even if the true orientational

motion is not exactly described by the hard-cone model, we

may still use this model to accurately relate orientational

correlation functions of different orders.

The discussion so far assumes the wobbling anisotropy

decay is well characterized by a single exponential to an offset,

indicating relaxation within a single cone and no further orien-

tational relaxation. In general, the observed anisotropy might

be better described by a multi-exponential decay, indicating

that there are multiple forms of independent reorientational

motions. In this case, the total orientational correlation func-

tion can be regarded as the product of the correlation function

for each independent contributor.17,18,36 For instance, when

a probe molecule is tethered to a much larger macromol-

ecule, the probe’s fast restricted wobbling motion is inde-

pendent of the large particle’s slow diffusive reorientational

motion in the solvent. For such situations, Lipari and Szabo

showed that the complete orientational correlation function

obtained from the anisotropy decay (l = 2) is the biexponential

function17

C2 (t) =
(

S2
2 +

�
1 − S2

2

�
exp

(

−t/τ
(2)

eff

))

exp (−t/τm) , (21)

with τm the overall diffusive reorientation time. Similarly, for

any number of independent cones of restricted rotational mo-

tion,18,36 and any overall slower rate of free diffusion, the total

orientational correlation function of a particular order will be

the product of one factor of Eq. (20) with appropriate order

parameter and correlation time for each cone, and a factor of

Eq. (17) for the final diffusive motion, which is the extension

of Eq. (21) to multiple cones and arbitrary order.18,36

Model data were constructed to illustrate the effect of

wobbling-in-a-cone orientational relaxation on the observed

⟨XXXX⟩ and ⟨XXYY⟩ PW-FFCF decays in the same manner

as in Section III A. We fix the structural spectral diffusion

parameters in Eq. (18) at A1 = 0.6, A2 = 0.4, τ1 = 10 ps, and

τ2 = 200 ps. A component of the orientational relaxation is free

diffusion with time constant (second order) of τm = 80 ps. The

free diffusion component in the RISD functions in Eq. (9) will

serve to considerably accelerate the slow structural dynamics,

but will have very little effect on the shorter time scale dy-

namics occurring in 10 ps. Several combinations of wobbling-

in-a-cone parameters were chosen for illustration, particularly

for their effect on the observed short time scale dynamics.

The cone half angle θ0 is varied between relatively small,

15◦, and moderate, 30◦. Additionally, the wobbling correlation

time τc (second order, as could be determined from the pump-

probe anisotropy in Eq. (21)) is varied from equaling the fast

structural time scale, 10 ps, to being considerably faster at

1 ps.

The model data are displayed in Figure 3 (points) and the

parameters used for these plots are collected in Table III. For

the smaller 15◦ cone angle (Figs. 3(a) and 3(b)), it is only imme-

diately apparent that the long time scale decay is influenced

by RISD. There is nearly no observable difference between

the parallel and perpendicular PW-FFCFs for waiting times

below 20 ps. The biexponential fits (solid lines) describe the

data very well. For the slower wobbling motion, Fig. 3(a), the

amplitudes and time constants (Table III) are almost the same

as those that would occur for solely diffusive reorientation with

an 80 ps time constant. As the wobbling motion becomes faster

to τc = 1 ps (Fig. 3(b)), the biexponential fit amplitudes still

closely match the input parameters for the structural spectral

diffusion, but the short time constants in the fits are mildly

decreased (∼10%) by the fast wobbling motion.

When the cone angle is increased to 30◦ (Figs. 3(c) and

3(d)), it becomes more evident that the observed short time

FIG. 3. Simulated parallel (black

squares) and perpendicular (red circles)

polarization-weighted FFCF data

for fixed SSD parameters (A1= 0.6,

τ1= 10 ps, A2= 0.4, τ2= 200 ps) and

free diffusion time constant (τm = 80

ps), with varying wobbling-in-a-cone

half angles θ0 and correlation times

τc. The solid lines are biexponential

fits. For smaller cone angles ((a) and

(b)) and even relatively larger cones

with slow orientational diffusion (c),

the fits to the data points are essentially

perfect. As the cone angle increases

and the correlation time becomes short

(d), biexponential decays show small

discrepancies with the data at short to

intermediate waiting times.
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TABLE III. Free and restricted orientational diffusion (τm, τc, θ0) parame-

ters. The biexponential fit (Bi, ti) parameters that would be obtained when

the effects of the wobbling-in-a-cone reorientation are included (data in

Fig. 3).a

Case τm (ps) θ0 (deg.) τc (ps) Expt. typeb B1 t1 (ps) B2 t2 (ps)

A 80 15 10
∥ 0.62 9.45 0.38 128.6

⊥ 0.61 9.36 0.39 97.8

B 80 15 1
∥ 0.60 9.13 0.39 124.5

⊥ 0.58 8.91 0.40 94.6

C 80 30 10
∥ 0.64 8.86 0.36 125.2

⊥ 0.65 8.72 0.35 96.0

D 80 30 1
∥ 0.56 7.52 0.39 111.2

⊥ 0.55 6.82 0.39 83.5

aThe fast and slow structural correlation decay times are τ1= 10 ps and τ2= 200 ps,

respectively, and the corresponding SSD amplitudes are A1= 0.6 and A2= 0.4.
bFitting results are given for the parallel (∥) and perpendicular (⊥) experiments.

dynamics are influenced by RISD because there is a difference

between the parallel and perpendicular decays on the 10-20

ps time scale. The effect is most noticeable for the faster

correlation time of 1 ps in Fig. 3(d). For the longer wobbling

correlation time of τc = 10 ps (Fig. 3(c)), the biexponential fits

still describe the model data points very well. The amplitudes

are changed considerably, and the short time constant is sped

up from the pure structural dynamics (Table III). Finally, for the

shorter wobbling time constant of 1 ps (Fig. 3(d)), the curvature

of the PW-FFCF decays at early times has increased to the

point that biexponential fits can no longer capture the shape

perfectly. The best fit curves for both ⟨XXXX⟩ and ⟨XXYY⟩miss

the points at both very short and intermediate time delays. In

Table III, we observe that the short time amplitude is consid-

erably decreased from the pure structural value (as opposed

to the 10 ps case, which increased the amplitude) and both

the long and short time constants are decreased substantially.

Clearly, as the wobbling motion becomes both fast and larger

in angular extent, the effect of RISD on the overall PW-FFCF

decays increases to the point that multi-exponential fits no

longer accurately yield the pure structural dynamics on the

wobbling time scales.

C. Correlation time approach to wobbling dynamics

As in the free diffusion case considered in Section III A,

the data constructed using a model containing both wobbling-

in-a-cone and free diffusion dynamics, in Section III B, can

be rigorously partitioned into their reorientation-induced and

structural components. Given the wobbling parameters and

free diffusion time from pump-probe measurements of C2(t),

the correlation functions C1(t) and C3(t) and RISD factors

Rp are readily constructed using Table II and Eqs. (9) to

completely describe the RISD contribution. Fitting the data

(either individually or globally over multiple polarization

configurations) to the form of Eq. (16) is then straightforward.

In some cases, it may be desirable or necessary to describe

the overall orientational correlation function in a simplified

manner. For example, if wobbling dynamics and free diffusion

contribute to the anisotropy decay as in Eq. (21) but the signal

to noise ratio is not high enough to accurately resolve a bi-

exponential decay (and fit the data as such), one would then

describe the decay as a single exponential, corresponding to

free diffusion as in Eq. (17). The correlation time is then a

mixture of the wobbling and diffusive correlation times, with

weighting between the two depending on the cone angle. We

can integrate Eq. (21) to obtain the overall correlation time,

τor =

 ∞

0

C2 (t) dt =
1 − S2

2

1/τ
(2)

eff
+ 1/τm

+ S2
2τm. (22)

The PW-FFCF data can be analyzed using this approximately

diffusive correlation time to extract the structural spectral diffu-

sion times and amplitudes with reasonable accuracy.

This method was applied to the PW-FFCF model data

presented in Section III B. Orientational correlation functions

of orders 1 and 3 were constructed using the overall corre-

lation time with Eq. (17), and the parallel and perpendicular

PW-FFCF data points were simultaneously fit including the

biexponential SSD factor in Eq. (18). The results of the analysis

are given in Table IV (labeling by case is the same as in Table III

and Fig. 3). Representative fits using the single exponential

orientational correlation approximation for fast wobbling dy-

namics (τc = 1 ps) with both the small and medium sized cones

followed by complete orientational randomization are shown

in Figure 4. For slow wobbling dynamics, small cone angles,

or both, the fitting results are in excellent agreement with the

data points (small cone and fast dynamics case shown in the

top panel of Fig. 4). In the case of θ0 = 15◦ (cases A and B

in Table IV), the extracted structural dynamics are acceptably

close to the parameters used to construct the data (Table III).

The amplitudes are recovered almost exactly and the short SSD

time constant is less than 1 ps off from the true value of 10 ps.

As the cone angle increases to θ0 = 30◦, the recovered SSD

amplitudes have greater errors (cases C and D in Table IV). For

the slower wobbling time (case C), the short structural time is

recovered without large error, but the longer time dynamics are

estimated as being considerably slower than the real value. In

the case of both a moderate cone and fast wobbling dynamics

(case D), the fit to the data points disagrees on the very short

and intermediate time scales (Fig. 4, bottom). In this case, the

extracted short time structural dynamics are much too rapid,

though the long time dynamics were more correctly captured in

the fit than in the case of a longer wobbling time scale (case C).

Overall, larger cone angles are more detrimental to the quality

of this analysis than faster correlation times, though both have

a noticeable effect.

TABLE IV. Biexponential structural fluctuation (SSD) parameters (ai, ti)

obtained in the wobbling case using the integrated orientational correlation

time τor.
a

Case τor (ps) a1
b t1 (ps) a2

b t2 (ps)

A 73.0 0.61 9.76 ± 0.02 0.39 212 ± 1

B 72.2 0.59 9.34 ± 0.08 0.40 202 ± 4

C 55.3 0.64 9.20 ± 0.09 0.36 275 ± 10

D 52.6 0.55 7.4 ± 0.2 0.40 217 ± 16

aExact orientational correlation function parameters are given in Table III.
bError in extracted amplitudes is at most on the order of 10−3.
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FIG. 4. Representative fits to the parallel and perpendicular PW-FFCFs gen-

erated with wobbling-in-a-cone reorientation dynamics (Figure 3 and Table

III), assuming an average correlation time giving effective single exponential

diffusive orientational motion. Top, smaller cone: 15◦. Bottom, larger cone:

30◦. Both have a wobbling time constant τc = 1 ps, corresponding to (b)

and (d) of Fig. 3. As the cone angle increases, the simplified model cannot

accurately fit the two datasets except at long waiting times.

With relatively small cone half angles and slow wobbling

dynamics, the fit results shown in Table IV and Fig. 4 are

acceptable. When these limits can be argued for on physical

grounds, the overall correlation time analysis detailed above

can be safely applied. However, given detailed knowledge of

the complete C2 orientational correlation function, the full

wobbling-in-a-cone analysis using Table II enables extraction

of accurate structural spectral diffusion times and amplitudes

for any combination of orientational diffusion parameters.

IV. ANALYSIS OF H-BONDED HYDROXYLS IN RTILs

A. Methanol in HmimPF6

Polarization-selective CLS decay rates were previously

reported for the hydroxyl (O–D) stretching mode of dilute

methanol-d4 (simply methanol henceforth) in the room

temperature ionic liquid HmimPF6 (structure shown in

Figure 5).12 Comparison of the parallel and perpendicular

polarized CLS decays and the anisotropy decay, which was

measured with pump-probe experiments, showed clearly that

both reorientation-induced and structural spectral diffusions

contribute to the frequency sampling of the inhomogeneously

broadened absorption spectrum. The exact partitioning of the

two effects can now be determined using the results in Sections

II and III.

The PP anisotropy decay was shown previously at a single

representative detection frequency, the peak of the PP spectrum

FIG. 5. Structures of the room temperature ionic liquids. 1-hexyl-3-

methylimidazolium (Hmim+) hexafluorophosphate (PF−
6
) (top), and 1-ethyl-

3-methylimidazolium (Emim+) bis(trifluoromethylsulfonyl)imide (NTf−
2
)

(bottom).

at 2667 cm−1.12 Because methanol’s hydroxyl stretch band has

a FWHM of 23 cm−1 that is much smaller than the anharmonic-

ity of about 90 cm−1, the anisotropy can be analyzed across

the entire 0-1 line shape. Six detection frequencies between

2646.8 and 2680.6 cm−1 span the 0-1 band, with high enough

signal to noise ratio for reliable fitting. Similarly to the previ-

ous experiments on the hydroxyl stretch of dilute alcohols in

RTILs,18 the anisotropy decays at all frequencies were simul-

taneously fit to triexponential functions, with the amplitudes

allowed to vary freely but the time constants constrained to

be equal at all frequencies. Essentially, quantitative agreement

with the data was found, similar to the fit displayed previously

at 2667 cm−1.12

The resulting triexponential fits were analyzed further in

terms of the wobbling-in-a-cone model, with a single inertial

cone, whose correlation time is too short to detect, two cones

with observed diffusive wobbling dynamics, and a final period

of free orientational diffusion that completely randomizes the

orientations.18 The cone angles are displayed in Figure 6(a).

Each individual cone corresponds to an l = 2 order parameter

(Table II). The product of these order parameters is the total

order parameter for the restricted angular motion, and the cone

angle corresponding to the total order parameter is that of the

total cone, which captures the overall angular range which is

sampled prior to free diffusion. The second order correlation

times that emerge from the analysis are τc1 = 1.0 ± 0.4 ps for

the first cone, τc2 = 9 ± 2 ps for the second cone, and a free

diffusion time constant, τm = 101 ± 13 ps.

To fit the CLS decay data (Figure 6(b)), the cone an-

gles and correlation times can be used to construct the C1 (t)

and C3 (t) orientational correlation functions, in addition to

the known C2 (t). The present theory assumes frequency-

independent reorientation dynamics. While the second order

wobbling correlation times are indeed frequency-independent,

there is some variation in the cone angles (Figure 6(a)) with

frequency, because redder frequencies report on hydroxyls

engaged in stronger hydrogen bonds, which more tightly

restrict angular motion.18,21,22 The CLS data were obtained

from the 2D IR line shapes around the center of the band.12

Therefore, the cone angles at the center frequency of

the PP spectrum at 2667 cm−1 are used for the CLS analysis.
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FIG. 6. Analysis of pump-probe anisotropy and polarization-selective CLS

of the O–D stretch of methanol-d4 in HmimPF6. (a) Results of wobbling-in-a-

cone analysis from global fit of the anisotropy decay. The total cone expresses

the overall angular range in which the transition dipole is initially confined

(see text). (b) Simultaneous fit (lines) to the parallel and perpendicular polar-

ization configuration CLS data (points) with the RISD contribution fixed by

the wobbling-in-a-cone decomposition of the measured anisotropy. The cone

angles from line center (2667 cm−1), which are most representative of the

entire band, are used in this analysis.

Additionally, because the center of the band has the greatest

population, the parameters obtained here, rather than at the

edges, are most representative of the majority of methanol

molecules contributing to the nonlinear signal. The values

are θin = 23◦ ± 3◦, θc1 = 17◦ ± 2◦, and θc2 = 28◦ ± 1◦ for the

inertial, first wobbling, and second wobbling cone, respec-

tively, at detection frequency 2667 cm−1 (Fig. 6(a)). Note

that because the total cone angle is not small, assuming an

average correlation time for orientational diffusion will not be

appropriate (see Section III C and Fig. 4).

To extract the SSD part from the two CLS decays, we fit

the parallel and perpendicular CLS data (Figure 6(b)) using

Eq. (16), i.e., a product of a SSD factor F (t) and a RISD factor

Rp (t). The polarization-dependent RISD factor Rp (t) is fixed

by the wobbling-in-a-cone analysis of the measured anisot-

ropy (see Section III B), and the polarization-independent

SSD factor F (t) is obtained by simultaneously fitting both

polarization-selective CLS decays. The solid lines in Figure

6(b) are from the triexponential SSD and RISD simultaneous

fit. Fit curves for a biexponential model of the SSD appear

quite similar, though the triexponential model describes the

data somewhat better. Both biexponential and triexponential

fitting parameters are listed in Table V (bottom portion). For

comparison, the biexponential fits to the CLS decays in the

⟨XXXX⟩, ⟨XXYY⟩, and ⟨XYXY⟩ polarization configurations are

included in Table V (top portion) as well.12

The fit curves using the SSD with RISD formalism are

in excellent agreement with both CLS datasets in Figure 6(b)

at short and long times. At intermediate waiting times, the fit

underestimates the CLS slightly for parallel and overestimates

similarly for perpendicular. The disagreement is minor, how-

ever, and overall the simultaneous fit gives a good descrip-

tion of both datasets over the entire experimentally acces-

sible waiting time (Tw) range. The fitting results for F (t),

the structural spectral diffusion correlation function, are given

in Table V. With the triexponential model, there is a small

amplitude, very fast component with sub-picosecond duration

which is expected for hydrogen bonded hydroxyls in ionic

liquids,18 an intermediate component with time constant 5 ps

(slightly slower than the ∼3 ps time constant in the ⟨XXXX⟩

and ⟨XXYY⟩ biexponential fits), and a much larger and slower

component than the final decay of the direct biexponential fits

(Table V).12

In a previous publication, in addition to the parallel and

perpendicular polarization configurations discussed in depth

in this paper, 2D IR spectra were acquired with the “polariza-

tion grating” configuration, ⟨XYXY⟩. The polarization grating

configuration CLS decay rate was much slower than the other

TABLE V. Results of direct CLS fits and structural spectral diffusion (SSD) parameters obtained when RISD is

properly included for methanol-d4 in HmimPF6.

Experiment/fit type A1 τ1 (ps) A2 τ2 (ps) A3 τ3 (ps)

Direct CLS fitsa

⟨XXYY⟩ . . . . . . 0.23 ± 0.01 2.2 ± 0.4 0.32 ± 0.01 63 ± 6

⟨XXXX⟩ . . . . . . 0.20 ± 0.01 3.2 ± 0.4 0.34 ± 0.01 76 ± 7

⟨XYXY⟩ . . . . . . 0.14 ± 0.01 3.3 ± 0.6 0.41 ± 0.01 149 ± 19

SSD with RISD results from global fits

Biexponential SSD . . . . . . 0.19 ± 0.01 2.7 ± 0.3 0.41 ± 0.01 98 ± 9

Triexponential SSD 0.07 ± 0.02 0.6 ± 0.3 0.16 ± 0.02 5 ± 1 0.38 ± 0.02 119 ± 20

aValues reported previously as complete FFCFs.12 CLS fit results here are for the normalized Tw-dependent part of the total

FFCF.3,4

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:



124505-12 Kramer, Nishida, and Fayer J. Chem. Phys. 143, 124505 (2015)

two configurations. The slow decay time constant obtained

from the ⟨XYXY⟩ polarization CLS, 149 ± 19 ps,12 interest-

ingly agrees well (the error bars overlap) with the slowest tri-

exponential time constant of the SSD component, 119 ± 20 ps,

which we extracted from the parallel and perpendicular polar-

ization configurations here (see Table V). The ratio of the slow

component amplitude to the fast component amplitude for the

⟨XYXY⟩ CLS, A3/A2 = 2.9, is also most similar to A3/A2 = 2.4

for the triexponential model obtained here for SSD component.

It appears that the CLS decay in the ⟨XYXY⟩ configuration

gives the best estimate of the pure structural spectral diffusion

contribution to the overall spectral diffusion, as obtained from

the analysis explicitly treating the RISD contribution.

The biexponential SSD model (Table V) allows us to more

easily examine the effects of reorientation-induced spectral

diffusion on the amplitudes of structural dynamics that were

originally determined from the data (direct CLS biexponential

fits at the top of Table V). The short time constant extracted us-

ing the full RISD analysis does not differ from that obtained by

straightforward biexponential fits of the CLS data.12 However,

the relative amplitude of the slower component to the faster

one is underestimated in the simple biexponential fits for the

⟨XXXX⟩ and ⟨XXYY⟩ configurations. Furthermore, the slower

time constant (around 70 ps for parallel or perpendicular12) is

underestimated from 119 ps in the SSD and RISD analysis

as well (see Table V). These observations are precisely what

is anticipated based on the model calculations presented in

Section III.

As discussed in Section II, an additive FFCF term, which

is independent of the polarization configuration being consid-

ered, can possibly exist if there are frequency fluctuations that

do not originate from vector interactions. The experimental

results on methanol in HmimPF6 discussed above are readily

analyzed without inclusion of such a term; thus, we believe

that for this system such an additive term’s contribution is

minor.

One situation (yet to be observed in experimental spec-

tral diffusion data) in which an additive term may be clearly

required is if two different polarization-selective CLS curves

converge to the same final decay, which begins considerably

above a CLS value of zero. It is typically the slowest structural

dynamics (which couple as a vector to the transition dipole)

that will be most perturbed by RISD. Therefore, the greatest

difference between two polarization configurations, parallel

and perpendicular, will occur on this longest time scale. It

is evident from the model curves presented with the orig-

inal theory of RISD12 and in Figure 2, with the inclusion of

SSD, that the parallel and perpendicular PW-FFCF decays only

become equal as they approach zero frequency correlation.

If the polarization-selective CLS decays converge before this

point, then accurate fitting of the two (or more) decays may

require a polarization-independent additive term that should be

simultaneously fit for all configurations.

With the structural part of the (normalized) vector FFCF

having been determined from the data (Table V), in principle,

the polarization-weighted FFCF or CLS decay for any ⟨AABB⟩

polarization configuration can be calculated using Eqs. (9) or

similar ones derived within the same formalism.12 One situ-

ation in which this may be useful is in comparison to MD

simulations. Often the 2D IR experiments are done in the

⟨XXXX⟩ configuration, but the FFCF calculated directly from

a MD trajectory is isotropically averaged.20–22 Once the SSD

factor F (t) is obtained, it is straightforward to calculate the

isotropically averaged FFCF using Eqs. (16) and (9c).

B. Water, methanol, and ethanol in EmimNTf2

Prior to investigations of reorientation-induced spectral

diffusion in 2D IR spectroscopy, the structural and orienta-

tional dynamics of dilute water (partially deuterated to HOD),

methanol-d4, and ethanol-d6 in the RTIL EmimNTf2 (Fig. 5)

were examined with 2D IR and polarization-selective pump-

probe spectroscopy, respectively.18 Only the ⟨XXXX⟩ CLS

was obtained because this is the standard configuration which

maximizes the nonlinear signal.30 The orientational dynamics

were readily analyzed using the wobbling-in-a-cone model,

so we may construct the orientational correlation functions

for l = 1 and l = 3 to perform a similar analysis to that in

Section IV B for the RTIL HmimPF6. Because RISD had a

considerable effect on an alcohol in a different ionic liquid, it

is possible that these data contain RISD influence as well.

Orientational correlation function parameters (i.e., cone

angles) corresponding to the peak frequency of the PP spec-

trum were used for each vibrational probe. The CLS data were

originally described extremely well by triexponential decays.18

We re-fit the data using Eq. (16) with the RISD contribution

for ⟨XXXX⟩ configuration fixed by the known orientational

correlation functions and a triexponential model for the struc-

tural dynamics. The resulting short and intermediate SSD time

constants were equal to the triexponential CLS fit values within

the error bars. The amplitude for the longest time scale struc-

tural dynamics was found to be somewhat larger than would

be inferred from the direct CLS fit. In this case, the effect of

RISD was to reduce the amplitude observed for the slowest

component by between 10% and 15%. While the amplitude

of the slowest frequency fluctuations is underestimated, it is a

relatively minor effect.

The most noticeable difference, however, is in the slowest

spectral diffusion time constant. While the times from the

direct CLS fit with no consideration of RISD were 23 ± 3 ps,

28 ± 1 ps, and 34 ± 3 ps for water, methanol, and ethanol,

respectively,18 the time constants for the slowest SSD compo-

nent extracted from the SSD and RISD fit are 30 ± 5 ps, 33

± 2 ps, and 37 ± 3 ps. While the decay times for the slowest

component have become somewhat slower, the trend is the

same. There is still a mild slowing of this time constant with

alkyl chain length, although these three values have over-

lapping error bars. For alcohols in the EmimNTf2 system, it

appears that the overall effect of RISD is much less dramatic

than in the HmimPF6 system.

EmimNTf2 is much less viscous than HmimPF6; the room-

temperature viscosities are 31 cP and 497 cP, respectively.42,43

For all the water/alcohol probes in EmimNTf2, the slowest

SSD component is much faster than for methanol in HmimPF6.

Considering water, methanol, and ethanol, respectively, in

EmimNTf2, the slowest components of orientational relaxation

(by free diffusion) measured by the PP anisotropy were 25.1 ±
0.7 ps, 42 ± 1 ps, and 88 ± 10 ps.18 The corresponding ratios
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of these reorientation times to the slowest SSD relaxation

time scales (above) are 0.84, 1.3, and 2.4. For methanol in

HmimPF6, the ratio of the slowest orientational to the slowest

SSD time is 0.84. With the larger methanol and ethanol probes

in EmimNTf2, the reorientation time is longer than the struc-

tural fluctuation time scale, unlike for methanol in HmimPF6.

The result is that RISD has a non-negligible influence on

the experimentally determined structural spectral diffusion

dynamics, but the RISD corrected values have overlapping

error bars with direct fit values.

Water exhibits particularly fast orientational motions in

EmimNTf2, and similarly to methanol in HmimPF6, there was

a significant acceleration of the long time scale spectral diffu-

sion by RISD. As the probe size is increased, to methanol and

ethanol, this RISD effect becomes progressively smaller due

to the slowing of the reorientation dynamics.18 The relatively

large acceleration of water’s slowest structural spectral diffu-

sion rate through RISD is 23%. For the ⟨XXXX⟩ configura-

tion, a multi-exponential fit for methanol in HmimPF6 gives

a slowest decay constant that is faster by 36% relative to the

true SSD rate obtained using the full analysis including RISD

(Table V).

V. CONCLUDING REMARKS

By considering electric fields internal to the sample which

can evolve both in amplitude and direction, independently

of the reorientation of the vibrational probe molecule, the

first order Stark effect model of reorientation-induced spectral

diffusion12 was successfully extended to include the effects of

structural spectral diffusion. To further capture the complex

dynamics expected in real condensed phase systems, restricted

orientational motion of the vibrational probe’s transition dipole

was addressed using the wobbling-in-a-cone model. Within

this model, the orientational correlation function measured

using the pump-probe anisotropy decay, C2 (t), directly yields

the other orientational correlation functions, C1 (t) and C3 (t),

necessary for calculating RISD’s influence on the polarization-

weighted FFCF.

Through model calculations using biexponential SSD

dynamics, we found that simple biexponential decay fits to

the parallel or perpendicular configuration CLS cease to accu-

rately extract the structural dynamics of the medium and

instead are substantially influenced by reorientation of the

vibrational transition dipole, as the reorientation dynamics

become faster. In particular, fast orientational dynamics means

that 3 × τm, the characteristic time scale of the first order

orientational correlation function, is less than or comparable

to the structural spectral diffusion time scale of interest. In the

restricted angular diffusion case, small cone angles and longer

correlation times influenced the faster components of structural

spectral diffusion relatively little. In these cases, treating the

overall reorientation dynamics as diffusive using a single

correlation time within the RISD model was acceptable. When

the cone angles become large and the wobbling becomes fast,

however, the orientational correlation functions must explicitly

include the wobbling dynamics to adequately separate the

SSD and RISD contributions to the polarization-selective CLS

decays.

The complete wobbling-in-a-cone formalism allowed us

to use the measured anisotropy decays to fit the CLS including

SSD and RISD for alcohol probes in two ionic liquid systems,

HmimPF6 and EmimNTf2.
12,18 For the HmimPF6 system, the

slow component amplitude and time obtained from fitting the

CLS directly with a biexponential decay were found to be

considerably smaller and shorter, respectively, than the true

structural spectral diffusion FFCF decay. Only by fitting with

inclusion of the RISD factor could the actual SSD time con-

stants be obtained without significant error. For the EmimNTf2

system, a more mild slowing of the slowest structural spectral

diffusion time constants was found for the water, methanol, and

ethanol solutes, compared to the values originally reported, but

the trend was the same. The longest time component of the SSD

dynamics progressively slows as the size of the probe molecule

increases.

When can RISD be neglected? First, if the orientational

relaxation measured by a pump-probe experiment is slow

compared to all time scales of the 2D IR measured FFCF,

RISD will not influence the observed decay. As a rule of

thumb, if three times the orientational relaxation time is large

compared to the slowest component of the measured FFCF,

RISD analysis is unnecessary. If the orientational relaxation

contains wobbling-in-a-cone dynamics, but the cone angles are

small and the final complete orientational relaxation time is

slow as discussed above, only a small error in the fast SSD

decay times and amplitudes will be introduced by neglect

of RISD. If orientational relaxation is not slow compared

to the measured 2D IR FFCF decay, but the FFCFs of two

clearly distinct polarization configurations such as ⟨XXXX⟩

and ⟨XXYY⟩ are the same, then RISD is not playing a role in

the spectral diffusion. That is, the coupling of the vibrational

transition to its surroundings is a scalar, not a vector, and

the experimentally determined FFCF gives the pure structural

dynamics.

Finally, it is important to discuss situations in which vibra-

tional probe reorientation contributes to spectral diffusion but

is not RISD. Water is a useful example. There is a key differ-

ence between the correlation of orientational and spectral fluc-

tuations that is well-established for the bulk water system

(HOD in H2O or D2O), and the strong vector dependence

of the frequency fluctuation on probe orientation observed

in recent experiments on methanol in the RTIL HmimPF6.
12

Methanol reorientation in the ionic liquid occurs without com-

plete randomization of the liquid structure. On methanol orien-

tational time scales, a component of the structure that contrib-

utes to the overall inhomogeneous broadening of the absorp-

tion line shape can, therefore, be considered static. Spectral

diffusion is, to a large degree, the result of the time evolution

of the probe’s interaction with this slow structural component

through the transition dipole’s angular motions. The structure

itself changes only on longer time scales. Reorientation of

methanol in HmimPF6 does not change all the aspects of

the liquid structure; only the coupling of the methanol by a

vector interaction with this structure is modified by reorien-

tation.

The situation in the methanol/HmimPF6 system is very

different from bulk water.12 No component of the structure in

bulk water is slow on the time scale of reorientation because
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reorientation is a major component of the structural

reorganization mechanism.8,9,22,23,35 The hydroxyl (O–D

stretch of HOD or O–H of HOD) interacts through hydrogen

bonds with its surroundings. Rearrangement of the hydrogen

bonding network involves reorientation of the water molecules,

so reorientation is involved in changes of the vibrational

frequency. However, the structure is evolving fast enough

through structural changes, including reorientation of other

water molecules, that only structural spectral diffusion deter-

mines the overall FFCF decay. Therefore, RISD can be ignored

for bulk water, because reorientation (three times the orien-

tational relaxation rate) is slow on structural evolution time

scales.
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APPENDIX A: DERIVATION OF ROTATION MATRIX
ORTHOGONALITY WITH AMPLITUDE FACTORS
IN CORRELATION FUNCTION AVERAGES

We derive the result

E1Dl

nm (α1, β1, γ1) E0Dk
n′m′ (α0, β0, γ0)

�
∝ δn,−n′δm,−m′, (A1)

which was used in Section II to separate the vector FFCF into

SSD and RISD factors. This derivation is closely related to

the one used by Nishida and Fayer to show that the spherical

harmonics Ym
2

(θ,φ) are orthogonal with respect to m inside of

correlation function averages, even in uniaxial systems.44 The

generality of the proof is useful in the present investigation

because we do not need to make any assumptions about the

correlation between the amplitude and orientational factors.

To begin, we recall

Dl
nm (α, β,γ) = e−inαdl

nm (β) e−imγ, (A2)

where dl
nm is Wigner’s small d-matrix.25 The Euler angles and

amplitudes, respectively, evolve from Ω0 = (α0, β0, γ0) and E0

at time zero toΩ1 = (α1, β1, γ1) and E1 at time t according to the

probability evolution Green’s function, G (t;Ω1,Ω0,E1,E0).

In an isotropic system, the initial probability distribution is

P (Ω0) = 1/8π2. The amplitude initial probability distribution

is given by P (E0). The correlation function average can be

written as



E1Dl

nm (α1, β1, γ1) E0Dk
n′m′ (α0, β0, γ0)

�
=


dΩ1


dΩ0


dE1


dE0E1Dl

nm (Ω1)G (t;Ω1,Ω0,E1,E0) E0Dk
n′m′ (Ω0) P (E0) P (Ω0)

=
1

8π2

 π

0

sin β1dβ1

 π

0

sin β0dβ0dl
nm (β1) dk

n′m′ (β0)

 ∞

−∞
dE1

 ∞

−∞
dE0P (E0) E1E0

×
 2π

0

dα1

 2π

0

dα0

 2π

0

dγ1

 2π

0

dγ0e−inα1e−imγ1e−in
′α0e−im

′γ0G (t;Ω1,Ω0,E1,E0) . (A3)

In the final expression, the second factor, referred to as I, contains an integral over the α and γ angles, which depends on n, n′, m,

and m′. The I part will give us the orthogonality properties we seek to prove. The variables β1, β0, E1, and E0 are held constant

in evaluating the four integrals contained in this factor.

We have assumed the system is isotropic, so only the differences α1 − α0 and γ1 − γ0 are relevant in the Green’s function.

The remaining parameters are summarized by Θ = (β1, β0,E1,E0, t) and do not affect the I integral values. We may then cast the

Green’s function in the form

G (t;Ω1,Ω0,E1,E0) = gΘ (α1 − α0, γ1 − γ0) (A4)

noting that gΘ (φ, χ) is 2π-periodic in both φ and χ.44 Define

hΘ,n′,m′ (α1 − α0, γ1 − γ0) = ein
′(α1−α0)+im

′(γ1−γ0)gΘ (α1 − α0, γ1 − γ0) ; (A5)

clearly, hΘ (φ, χ) maintains the periodicity of gΘ. We may then write

I =


d (α1,α0, γ1, γ0) e−inα1e−imγ1e−in

′α0e−im
′γ0gΘ (α1 − α0, γ1 − γ0)

=


d (α1,α0, γ1, γ0) e−i(n+n

′)α1e−i(m+m
′)γ1hΘ,n′,m′ (α1 − α0, γ1 − γ0) ,

(A6)

where the integration variables and limits have been abbreviated from (A3). Observe that hΘ,n′,m′ can be expanded in a two-

dimensional Fourier series, because of its 2π-periodicity,

hΘ,n′,m′ (φ, χ) =


r,s

cΘ,n
′,m′

r s e−irφe−isχ. (A7)
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We may now evaluate I using this expansion as follows:

I =


r,s

cΘ,n
′,m′

r s


d (α1,α0, γ1, γ0) e−i(n+n

′)α1e−i(m+m
′)γ1e−ir (α1−α0)e−is(γ1−γ0)

=


r,s

cΘ,n
′,m′

r s


d (α0, γ0) e−irα0e−isγ0


d (α1, γ1) e−i(n+n

′−r )α1e−i(m+m
′−s)γ1

= 4π2c
Θ,n′,m′

00


d (α1, γ1) e−i(n+n

′)α1e−i(m+m
′)γ1 = 16π4c

Θ,n′,m′

00
δn,−n′δm,−m′. (A8)

Result (A1) follows immediately from (A3) and (A8).

APPENDIX B: LEGENDRE POLYNOMIAL
ORIENTATIONAL CORRELATION TIMES
FOR RESTRICTED ANGULAR DIFFUSION

The lth order orientational correlation time, τ
(l)

eff
, is defined

by

τ
(l)

eff

�
1 − S2

l

�
=

 ∞

0

�
Cl (t) − S2

l

�
dt . (B1)

The correlation time is a fundamental quantity which can be

compared for any fit or model of the correlation function.

Lipari and Szabo exactly determined τ
(2)

eff

�
1 − S2

2

�
(correspond-

ing to the fluorescence or pump-probe anisotropy decay) for

the model of diffusion in a hard cone potential, without direct

calculation of the correlation function.17 Their method is gen-

eral and can be immediately applied to all l; we summarize our

adaptation of the procedure in the following.

Let

Flm (Ω) = Clm (Ω) − δm0Sl, (B2)

with Sl the order parameter and Clm (Ω) the modified spher-

ical harmonics.25,45 The derivation of Lipari and Szabo easily

provides17

Dwτ
(l)

eff

�
1 − S2

l

�
=

l


m=−l
τ
(l)
m , (B3)

with Dw the wobbling diffusion constant, and the 2l + 1 terms

in the sum given by

τ
(l)
m =


dΩF∗lm (Ω)Tlm (Ω) peq (θ) . (B4)

Tlm is the solution to the simple differential equation

∇2
Ω
Tlm (Ω) = −Flm (Ω) , (B5)

with ∇2
Ω

the angular part of the Laplacian operator, and Tlm

satisfies the boundary condition

∂

∂θ
Tlm (Ω)

�����θ=θ0

= 0, (B6)

with θ0 the cone half angle. Furthermore, because τ
(l)
m = τ

(l)
−m,

we need to only obtain Tlm for m = 0,1, . . . , l.17

First, we address the m = 0 case. Henceforth, we

shall make use of the angular coordinates Ω defined by

(x = cos θ,φ), with x0 = cos θ0. Equation (B5) becomes

∂

∂x

�
1 − x2

� ∂

∂x
Tl0 (x) = −Pl (x) + Sl . (B7)

This is easily solved by direct integration, with boundary conditions (B6) and that the solution is well-behaved at x = 1. The

overall constant term after the second integration is arbitrary as it does not affect (B4); we can choose it such that Tl0 (x = 1) = 0

for definitiveness. It is easy to show that peq (x) = 1/ (2π (1 − x0)) for x > x0, and peq (x) = 0 otherwise.17 Therefore,

τ
(l)

0
=


dΩF∗l0 (Ω)Tl0 (Ω) peq (x) =

1

1 − x0

 1

x0

dxF∗l0 (x)Tl0 (x) =
1

1 − x0

 1

x0

dx (Pl (x) − Sl)Tl0 (x) , (B8)

following directly from the φ invariance of the integrand.

The remaining case is 0 < m ≤ l. We define

Tlm (Ω) = (−1)m
eimφ

l (l + 1)


(l − m)!

(l + m)!

1/2

Klm (x) , (B9)

which, upon substitution into (B5), gives

∂

∂x

�
1 − x2

� ∂

∂x
Klm (x) −

m2

1 − x2
Klm (x) = −l (l + 1) Pm

l (x) ,

(B10)

with Pm
l

an associated Legendre function. Clearly, Klm (x)

must satisfy the same boundary conditions as Tlm (Ω). We

substitute (B9) into (B4) and, recalling that Flm = Clm for m

> 0, we can trivially perform the φ integration to obtain

τ
(l)
m =

(l − m)!

l (l + 1) (l + m)! (1 − x0)

 1

x0

dxPm
l (x) Klm (x) . (B11)

All that remains is the determination of Klm. The particular

solution Klm (x) = Pm
l
(x) clearly holds, because then (B10)
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is simply the associated Legendre differential equation. The

complete solution will consist of the sum of this particular

solution and any factor of the general solution to the associated

homogeneous equation of (B10). The general solution to the

homogeneous equation, which is well-behaved at x = 1, is17

Klm (x) =
1

2m

(

1 − x

1 + x

)m/2

. (B12)

The particular linear combination of Pm
l

and (B12) is chosen to

ensure that Klm satisfies boundary condition (B6). The results

of these calculations for l = 1, . . . ,4 appear in Table II in the

main text.

We point out that in the original derivation of the l = 2

wobbling correlation time in Appendix A in Ref. 17 two of

the intermediate results, Eqs. (A25) and (A26), are incorrect.

However, the final result, Eq. (24) of Lipari and Szabo in the

main text (reproduced in Table II), is indeed recovered by

following either their procedure17 or the adaptation presented

in this appendix. Corresponding to Eq. (A25) in Ref. 17, we

obtain for l = 2 and m = 1 the intermediate expression

K21 (x) = −3x
√

1 − x2

+
3
(

1−x0

1+x0

)1/2
(1 + x0)

2
�
2x2

0
− 1

� �
1−x
1+x

�1/2



1 − x2
0

, (B13)

which is well behaved at x = 1 and satisfies boundary condi-

tion (B6). Similarly, corresponding to Eq. (A26) of Lipari and

Szabo,17 our intermediate expression for l = 2 and m = 2 is

K22 (x) = 3
�
1 − x2

�
− 3x0(1 + x0)

2

(

1 − x

1 + x

)

, (B14)

again satisfying the boundary conditions.

Small θ0 approximations to τ
(l)

eff
were constructed from

the first two non-zero terms in the power series expansion

around θ0 = 0. The cone half angles for which the approximate

correlation time is in error by 10% compared to the exact

time are 96◦ for l = 1, 77◦ for l = 2, 63◦ for l = 3, and 52.5◦

for l = 4.
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