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Separation of Non-negative Mixture of
Non-negative Sources using a Bayesian Approach

and MCMC Sampling
Säıd Moussaoui, David Brie, Ali Mohammad-Djafari, Cédric Carteret

Abstract— This paper considers the problem of blind source
separation in the case where both the source signals and the
mixing coefficients are non-negatives. The problem is referred to
as non-negative source separation and the analysis is achieved
in a Bayesian framework by taking the non-negativity of source
signals and mixing coefficients as prior information. Since the
main application concerns the analysis of spectral signals, to
encode jointly non-negativity, sparsity and possible background
in the sources, Gamma densities are used as priors. The source
signals and the mixing coefficients are estimated by implementing
a Monte Carlo Markov Chain (MCMC) for sampling their joint
posterior density. Synthetic and experimental results motivate
the problem of non-negative source separation and illustrate the
effectiveness of the proposed method.

Index Terms— Bayesian estimation, Source separation, Non-
negativity, Gamma distribution, Monte Carlo Markov Chains
(MCMC), Spectroscopy.

I. I NTRODUCTION

In analytical chemistry, it is often needed to process mix-
ture data obtained by spectroscopy and/or chromatography
analysis of multicomponent materials [1]–[3]. The processing
aims at identifying the pure components of the materials
and estimating the concentration of each component. These
objectives are formalized as a source separation problem,
where the linear instantaneous mixture model holds. In the
case of optical spectroscopy, this model is validated according
to Beer-Lambert law [4] (also termed as Beer’s law or Beer-
Lambert-Bouguer law [5]). The pure component spectra are
identified as the estimated sources and the concentrations as
the mixing coefficients. The main constraint in this application
is the non-negativity of both the source signals and the
mixing coefficients. So, the problem is referred to as non-
negative (positive) source separation. More generally, this non-
negative source separation problem arises when one has to deal
with non-negative mixtures of non-negative signals (spectra,
images, hyperspectral data, etc.). In this paper, the case of
spectral data is considered.
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The linear instantaneous mixing model is expressed as

xt = A st + et, for t = 1, ..., N, (1)

where st denotes then × 1 vector of the source signals
{

s(j,t)

}n

j=1
, xt the m × 1 vector of the measured signals

{

x(i,t)

}m

i=1
, et a m × 1 vector of an additive noise (mea-

surement errors and model uncertainties),A is the m × n

unknown mixing matrix containing the mixing coefficients
{

a(i,j)

}m,n

i=1,j=1
, and t is an observation variable. Having all

the observations and using matrix notations, the mixing model
is written as

X = A S + E, (2)

where the matricesX ∈ R
m×N , S ∈ R

n×N
+ andE ∈ R

m×N ,
contain respectively observations, source signals and noise
sequences. The problem of blind source separation is then
stated as follows: knowing the number of sources and having
all the observations, estimate the sources signals and the
mixing coefficients.

To achieve the separation, any prior knowledge and assump-
tion about the mixing process and the source signals should be
taken into account since this inverse problem is ill-posed,in
the sense that the solution is not unique. Principal component
analysis [6] (PCA), which is the most popular approach for
the analysis of multivariate data, assumes that the signalsto
reconstruct are mutually uncorrelated, but this orthogonality
constraint does not ensure neither the uniqueness nor the non-
negativity of the solution. A more constraining assumption
used for source separation is the mutual independence of the
sources leading to the independent component analysis (ICA)
concept [7], for which many algorithms has been developed
(see the books [8]–[10] and the references therein). Assuming
the mutual independence of the sources yields a solution which
is unique (up to order and scale indeterminacies) but it does
not ensure explicitly the non-negativity of both sources and
mixing coefficients. Clearly, if the non-negative source signals
are mutually statistically independent, they can be separated
successfully by ICA methods and their non-negativity will be
ensured implicitly (at least only few negative values appear
in the estimates) as reported in [11], where a second order
blind identification (SOBI) algorithm [12] was applied to the
analysis of nuclear magnetic resonance (NMR) data. But when
the source signals are not mutually independent or when
their mutual independence is not observed due to the finite
number of samples, the non-negativity information should be
considered. It is possible to incorporate jointly non-negativity
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and mutual independence of the sources, as proposed in [13],
by using a nonlinear PCA method that optimizes a criterion
that takes into account the source non-negativity, under the
condition ofwell groundedsources. Unfortunately, since ICA
methods produce an unmixing matrix, which is the (pseudo)
inverse of the mixing matrix, the non-negativity of the mixing
coefficients is not considered during the separation.

A second class of methods consists in minimizing a mean
squares criterion under a non-negativity constraint, leading to
algorithms differing on the way how this prior information
is incorporated. In particular, the method presented in [14]
performs an alternating least squares (ALS) estimation where
the non-negativity is hardly imposed between successive iter-
ations by setting to zero the negative values of source signals
and mixing coefficients or by performing a non-negative least
squares estimation [15]. The ALS method is the method which
is widely used in the chemometrics community [16] where
the problem is termed by multivariate curve resolution [17].
The non-negative matrix factorization (NMF) algorithm [18]
is a second alternative of such approaches which achieves the
decomposition by constructing a gradient descent algorithm
over the objective function and updates iteratively sources and
mixing coefficients by considering a particular multiplicative
learning rule that ensures the estimates to be non-negatives.
This method has also been applied to the case of noisy
mixture signals as well as to the recovery of constituent spectra
in chemical shift imaging [19]. Non-negative sparse coding
(NNSC) method [20] also treats that type of problems by as-
suming non-negative sparse sources through the minimization
of a penalized least square criterion while the non-negativity
of the mixing coefficients is introduced in a similar way as
in ALS method. Finally, positive matrix factorization (PMF)
[21] is a more general method since it minimizes a compound
regularized criterion that enforces positivity and sparseness
of both source signals and mixing coefficients. However, its
related optimization algorithm is numerically very expensive.

This paper addresses the problem of non-negative source
separation in a Bayesian framework for an application to the
analysis of mixtures in spectroscopy. The use of Bayesian the-
ory to source separation is not new since it has been addressed
in many papers [22]–[28] but, to our knowledge, its application
to the separation of non-negative sources has only receivedfew
attention [29]–[31]. There are two main reasons that make
Bayesian estimation approach very well suited to such an
application. Firstly, Bayesian inference offers a very powerful
theoretical framework to encode non-negativity information
and, more generally, any additional prior knowledge on the
mixing coefficients and the source signals. Secondly, due tothe
recent developments in Monte Carlo Markov chain (MCMC)
methods [32]–[34] that enables to generate samples from
the posterior density, various Bayesian estimators requiring
integration or optimization can be used, even if the posterior
law is not analytically tractable.

This paper is organized as follows: section II recalls the
main idea of a Bayesian inference for source separation
and presents the proposed probabilistic modeling for the
analysis of spectral mixtures which consists in assigning
Gamma density priors to both source signals and mixing

coefficient profiles. In section III, the Gibbs sampler [35] and a
Metropolis-Hastings algorithm [36] are used to build a Markov
chain which samples the joint posterior density from which
source signals and mixing coefficients are estimated from the
marginal distributions using the conditional mean estimator.
All the Gibbs sampler steps and the required posterior condi-
tional distributions are detailed. Finally, in section IV,some
results, obtained with synthetic and experimental mixtures,
states the problem of non-negative source separation and
illustrate the usefulness of the proposed method.

II. BAYESIAN MODELING

The main idea of the Bayesian approach to source separation
is to use not only the likelihoodp(X|S,A), but also any
prior information on the source signals and the mixing process
through the assignment of prior distributions,p(S) andp(A).
According to the Bayes’s theorem, the joint posterior density
is expressed as

p(S,A|X) =
p(X|S,A) · p(S) · p(A)

p(X)
, (3)

where the independence betweenA andS is assumed. Since
p(X) is a normalisation constant, one can write

p(S,A|X) ∝ p(X|S,A) · p(S) · p(A). (4)

From this posterior density, joint estimation ofA andS can be
achieved by using various Bayesian estimators [37]. However,
the first task of the inference is to encode our knowledge on
the noise sequences, source signals and mixing coefficientsby
appropriate probability distributions.

A. Noise Distribution and Likelihood

The noise sequences
{

e(i,t)

}m,N

i=1,t=1
, are assumed inde-

pendent and identically distributed (i.i.d), independentof the
source signals, stationary and Gaussian with zero mean and
variances

{

σ2
i

}m

i=1
. Thus,

E ∼
N
∏

t=1

m
∏

i=1

N
(

e(i,t); 0, σ
2
i

)

, (5)

and, notingθ1 =
{

σ2
i

}m

i=1
, the likelihood is then expressed as

p (X|A,S,θ1) =

N
∏

t=1

m
∏

i=1

N
(

x(i,t);

n
∑

k=1

a(i,k)s(k,t), σ
2
i

)

,

(6)

B. Priors on Source Signals and Mixing coefficients

The sources are assumed mutually statistically independent
and eachj-th source signal is supposed i.i.d and distributed
as a Gamma distribution of parameters(αj , βj). These pa-
rameters are considered constant for each source but may
differ from one source to another. The Gamma density is
used to take into account non-negativity and its parameters
allow a better fit to the spectra distribution. To incorporate the
mixing coefficient non-negativity, each columnj of the mixing
matrix is also assumed distributed as a Gamma distribution of
parameters(γj , λj). Eachj-th column of the mixing matrix
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corresponds to the evolution profile of thej-th source propor-
tion in the mixture and its associated Gamma parameters are
considered equal for each profile. The two-parameter Gamma
density is expressed by

G(z; a, b) =
ba

Γ(a)
za−1 exp {−bz} I[0,+∞](z). (7)

whereΓ(a) is the Gamma function. The Gamma distribution is
an exponential family distribution which is used for fittingnon-
negative data sincep(z < 0) = 0. Recently, it has been applied
for non-negative signal restoration (see for example [38]). The
second advantage of the Gamma distribution is that its shape
parameters allow to fit spectral data that may present some
sparsity and possibly a background.

The prior densities on the source signals and the mixing
matrix are then expressed by

p(S|θ2) =

N
∏

t=1

n
∏

j=1

G(s(j,t);αj , βj), (8)

p(A|θ3) =

m
∏

i=1

n
∏

j=1

G(a(i,j); γj , λj), (9)

where the vectorsθ2 = {αi, βj}n

j=1 and θ3 = {γj , λj}n

j=1
contain the parameters of the Gamma distributions.

C. Posterior Density and Estimation Issues

Using Bayes’s theorem and noting byθ the vector con-
taining the noise variances and the parameters of the Gamma
densities,θ = {θ1,θ2,θ3}, the posterior law is expressed as

p (S,A|X,θ) ∝

N
∏

t=1

m
∏

i=1

N
(

x(i,t);
n

∑

k=1

a(i,k)s(k,t), σ
2
i

)

×
N
∏

t=1

n
∏

j=1

G(s(j,t);αj , βj) ×
m
∏

i=1

n
∏

j=1

G(a(i,j); γj , λj). (10)

From this joint posterior density, various estimators can be
used to estimate the sources and the mixing coefficients. The
joint maximization of this posterior density with respect to
S and A leads to the joint maximuma posteriori JMAP
estimator. The estimation of the mixing matrixA can be
performed by marginalizing the posterior density with respect
to S, to get p(A|X) from which A can be estimated.
The optimization problems associated to these estimators can
be achieved using either Gradient/Newton based algorithms
providing that the posterior densities are analytically tractable
or, if not, stochastic simulation tools. In this paper, thislast
solution is retained by sampling the posterior distribution
using Gibbs algorithm and constructing the estimator from the
samples of the Markov chain.

It is interesting to consider firstly the joint maximum a
posteriori estimator. It corresponds to the joint maximization
of the posterior density or equivalently to the minimization
with respect toS andA of the objective function defined as

Φ(S,A|X,θ) = − log p (S,A|X,θ) .

This objective function can be decomposed intro three parts,

Φ(S,A|X,θ) = ΦL(S,A|X,θ1)+ΦP1
(S|θ2)+ΦP2

(A|θ3)

where the termsΦL,ΦP1
, andΦP2

are given by

ΦL =
m

∑

i=1

1

2σ2
i

N
∑

t=1

(

x(i,t) −
n

∑

k=1

a(i,k)s(k,t)

)2

, (11)

ΦP1
=

n
∑

j=1

(

(1 − αj)
N

∑

t=1

log s(j,t) + βj

N
∑

t=1

s(j,t)

)

, (12)

ΦP2
=

n
∑

j=1

(

(1 − γj)

m
∑

i=1

log a(i,j) + λj

m
∑

i=1

a(i,j)

)

. (13)

The first partΦL of the objective function is the mean squares
criterion, while the last two parts are regularization terms
that penalize the negative values ofS and A respectively.
This approach may be connected with previously proposed
methods. Indeed, this criterion is an extension of the PMF
method criterion, in which the Gamma parameters may differ
for each source signal and mixing coefficient profile. The
case{αj = 1}n

j=1 corresponds to assigning an exponential
distribution prior for source distribution and leads to a reg-
ularization criterion similar to that minimized in the NNSC
method for sparse source estimation. As compared to these
penalized least squares approaches, this Bayesian formulation
has the advantage to give a well stated theoretical framework
for estimating the hyperparameters.

In [31], the optimization of this criterion is performed using
an alternating Gradient iterative descent procedure, updating,
at each iteration, the source estimate using the latest estimate
of the mixing coefficients, then the mixing matrix estimate is
updated using the latest estimate of the source signals. The
learning parameter of the Gradient algorithm is optimized at
each iteration. The critical point with this optimization scheme
comes from the initialization of the algorithm, since it is well
known that the Gradient algorithm converges to the nearest sta-
tionary point of the criterion. Satisfactory results were obtained
by initializing the source estimates from the observationsor
by the most mutually uncorrelated observations, but, to reduce
the dependence with respect to the initial values, a stochastic
optimization scheme is considered in this paper. In that respect,
Gibbs sampler is used for sampling the posterior density and
the estimation is achieved using the marginal posterior mean
(MPM) estimator

(

Â, Ŝ
)

= Ep(S,A|X,θ) {S,A} . (14)

The choice of this estimator is motivated by its simpler
implementation from the sampled posterior density.

As discussed previously, for an unsupervised learning, the
hyperparameters of the prior distributions and the noise vari-
ances have also to be inferred. The joint posterior distribution
including the hyperparameters is expressed as

p (S,A,θ|X) ∝ p (S,A|X,θ) · p (θ) , (15)

in which prior densities may be assigned to the hyperparam-
eters

{

σ2
i

}n

i=1
,{αi, βj}n

j=1 and{γj , λj}n

j=1.
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III. MCMC SAMPLING AND ESTIMATION

A. Gibbs Sampler

The main objective of Gibbs sampling is to simulate a
stationary ergodic Markov chain whose samples asymptoti-
cally follow the posterior densityp (S,A,θ|X). Estimates of
source signals and mixing coefficients are then calculated from
the samples of this chain. The MCMC sampling procedure
for source separation in the general case are firstly recalled
and nextly the main steps of sampling for non-negative source
separation are given.

To samplep (S,A,θ|X), at each new iterationr of the
algorithm, the main steps consists in

1. Sampling the source signalsS(r+1) from

p
(

S|X,A(r),θ(r)
)

∝ p
(

X|S,A(r),θ(r)
)

p
(

S
∣

∣θ(r)
)

; (16)

2. Sampling the mixing coefficientsA(r+1) from

p
(

A
∣

∣X,S(r+1),θ(r)
)

∝ p
(

X
∣

∣S(r+1),A,θ(r)
)

p
(

A|θ(r)
)

; (17)

3. Sampling the hyperparametersθ(r+1) from

p
(

θ
∣

∣X,S(r+1),A(r+1)
)

∝ p
(

X
∣

∣S(r+1),A(r+1),θ
)

× p
(

S(r+1)
∣

∣θ
)

p
(

A(r+1)
∣

∣θ
)

p (θ) . (18)

There are three types of hyperparameters,θ1,θ2 and θ3,
supposed to be independent, so the third step of the sampler
can be divided into three sub-steps

3.1 Sampling the noise variancesθ
(r+1)
1 from

p
(

θ1

∣

∣X,S(r+1),A(r+1)
)

∝ p
(

X
∣

∣S(r+1),A(r+1),θ1

)

p (θ1) ; (19)

3.2 Sampling the source hyperparametersθ
(r+1)
2 from

p
(

θ2

∣

∣S(r+1)
)

∝ p
(

S(r+1)
∣

∣θ2

)

p (θ2) ; (20)

3.3 Sampling the mixing coefficient hyperparametersθ
(r+1)
3

from

p
(

θ3

∣

∣A(r+1)
)

∝ p
(

A(r+1)
∣

∣θ3

)

p (θ3) . (21)

B. MCMC Sampling of the Joint Posterior Density

We now describe the whole algorithm to implement the
Gibbs sampler corresponding to the proposed inference for
non-negative source separation. For the sake of simplicity
the following notationsy(1:n), z(1:n,1:m) are introduced to

represent respectively{yi}n
i=1 and

{

z(i,j)

}(n,m)

(i=1,j=1)
.

After a random initialization of all the variables and at each
iterationr of the algorithm

1. for j = 1, ..., n and t = 1, ..., N , samples
(r+1)
(j,t) from

p
(

s(j,t)

∣

∣x(1:m,t), s
(r+1)
(1:j−1,t), s

(r)
(j+1:n,t), a

(r)
(1:m,1:n)

)

;

2. for i = 1, ..., n and j = 1, ..., n, samplea
(r+1)
(i,j) from

p
(

a(i,j)

∣

∣x(1:m,t), a
(r+1)
(i,1:j−1), a

(r)
(i,j+1:n), s

(r+1)
(1:n,1:T )

)

;

3. for i = 1, ...,m, sample
(

σ2
i

)(r+1)
from

p

(

1

σ2
i

∣

∣x(i,1:T ), a
(r+1)
(i,1:n), s

(r+1)
(1:n,1:T )

)

;

4. for j = 1, ..., n, sampleα
(r+1)
j from

p
(

αj

∣

∣s
(r+1)
(j,1:N), β

(r)
j

)

;

5. for j = 1, ..., n, sampleβ
(r+1)
j from

p
(

βj

∣

∣s
(r+1)
(j,1:N), α

(r+1)
j

)

;

6. for j = 1, ..., n, sampleγ
(r+1)
j from

p
(

γj

∣

∣a
(r+1)
(1:m,j), λ

(r)
j

)

;

7. for j = 1, ..., n, sampleλ
(r+1)
j

p
(

λj

∣

∣a
(r+1)
(1:m,j), γ

(r+1)
j

)

.

After rmax iterations, estimate source signals and mixing
coefficients

ŝ(1:n,1:T ) =
1

rmax − rmin

rmax
∑

r=rmin+1

s
(r)
(1:n,1:T ) (22)

â(1:m,1:n) =
1

rmax − rmin

rmax
∑

r=rmin+1

a
(r)
(1:m,1:n) (23)

The value rmin represents the number of iterations cor-

responding to the burn-in run of the Markov chain whose
associated samples are discarded. Other posterior statistics
such as variances, covariances may be computed from the
retained samples of the Markov chain and their histograms
can be represented.

C. Conditional Posterior Densities

All the required conditional posterior densities for MCMC
sampling are detailed below. Firstly priors are assigned to
source signalss(1:n,1:N), secondly to mixing coefficients
a(1:m,1:n) and finally to noise variancesσ2

(1:m) and Gamma
density parametersα(1:n), β(1:n), γ(1:n), λ(1:n).
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1) Source Signals:At the r-th iteration of the Gibbs
sampler, the conditional posterior density of each source signal
s(j,t) is expressed as

p
(

s(j,t)

∣

∣x(1:n,t), s
(r+1)
(1:j−1,t), s

(r)
(j+1:n,t), a

(r)
(1:m,1:n)

)

∝ p
(

x(1:n,t)

∣

∣s(j,t), s
(r+1)
(1:j−1,t), s

(r)
(j+1:n,t), a

(r)
(1:m,1:n)

)

× p
(

s(j,t)

∣

∣α
(r)
j , β

(r)
j

)

I[0,+∞]

(

s(j,t)

)

(24)

which is proportional to

s
α

(r)
j

−1

(j,t) exp











− 1

2
[

σlikel
sj

]2

(

s(j,t) − µlikel
s(j,t)

)2

− β
(r)
j s(j,t)











× I[0,+∞]

(

s(j,t)

)

(25)

where






















































[

σlikel
sj

]2

=







m
∑

i=1

[

a
(r)
(i,j)

]2

[

σ
(r)
i

]2







−1

,

µlikel
s(j,t)

=
1

[

σlikel
sj

]2

m
∑

i=1

a
(r)
(i,j) ε

−j

(i,t)
[

σ
(r)
i

]2 ,

ε
−j

(i,t) = x(i,t) −
j−1
∑

k=1

a
(r)
(i,k)s

(r+1)
(k,t) −

n
∑

k=j+1

a
(r)
(i,k)s

(r)
(k,t).

This conditional posterior density is not an usual pdf,
therefore its sampling is achieved using the Metropolis-
Hastings algorithm. An instrumental distribution is determined
by rewriting the posterior law in the form

p
(

s(j,t)

∣

∣x(1:n,t), s
(r+1)
(1:j−1,t), s

(r)
(j+1:n,t), a

(r)
(1:m,1:n)

)

∝ s
α

(r)
j

−1

(j,t) exp

{

− 1

2
[

σ
post
sj

]2

(

s(j,t) − µpost
s(j,t)

)2

}

× I[0,+∞]

(

s(j,t)

)

(26)

with µpost
s(j,t)

= µlikel
s(j,t)

− β
(r)
j

[

σlikel
sj

]2

andσpost
sj

= σlikel
sj

. The
mode of the posterior law is obtained by solving the following
second order equation

s2
(j,t)−µpost

sj
s(j,t)−

[

σpost
sj

]2
(

α
(r)
j −1

)

= 0, with s(j,t) ≥ 0,

(27)
whose resolution yields

µmax
sj

=







0 if ∆ < 0;

max

{

1

2

(

µpost
sj

+
√

∆
)

, 0

}

else,

(28)

where∆ =
(

µpost
sj

)2

+4
[

σpost
sj

]2
(

α
(r)
j −1

)

. Note that the root
{

1

2

(

µpost
sj

−
√

∆
)

}

, does not correspond to a maximum of

the posterior law. Therefore, the instrumental density is taken
as a truncated normal distribution of parametersµinst

sj
= µmax

sj

andσinst
sj

= σpost
sj

s
(r+1)
(j,t) ∼ N+

(

s(j,t);µ
inst
sj

,
[

σinst
sj

]2
)

. (29)

The sampling from this distribution can be achieved by cu-
mulative distribution function inversion technique [39] or by
using an accept-reject method [40].

Note that constrainingαj = 1 corresponds to taking an
exponential prior for thej-th source distribution. The use of
the Metropolis-Hastings algorithm is not necessary since the
posterior density is a truncated normal of parameters equalto
those of the proposed instrumental density.

2) Mixing Coefficients:The conditional posterior density
of each mixing coefficienta(i,j) is expressed as

p
(

a(i,j)

∣

∣x(i,1:N), a
(r+1)
(i,1:j−1), a

(r)
(i,j+1:n), s

(r+1)
(1:n,1:T )

)

∝ p
(

x(i,1:N)

∣

∣a
(r+1)
(i,1:j−1), a

(r)
(i,j+1:n), s

(r+1)
(1:n,1:T )

)

× p
(

a(i,j)

∣

∣γ
(r)
j , λ

(r)
j

)

I[0,+∞]

(

a(i,j)

)

(30)

which is proportional to

a
γ
(r)
j

−1

(i,j) exp







− 1

2
(

σlikel
a(i,j)

)2

(

a(i,j) − µlikel
a(i,j)

)2

− λ
(r)
j a(i,j)







× I[0,+∞]

(

a(i,j)

)

(31)

where






















































[

σlikel
a(i,j)

]2

=

[

σ
(r)
a(i,j)

]2

N
∑

t=1
s
(r+1)
(j,t)

;

µlikel
a(i,j)

=
1

[

σlikel
a(i,j)

]2

N
∑

t=1
s
(r+1)
(j,t) ε

−j

(i,t),

ε
−j

(i,t) =

(

x(i,t) −
j−1
∑

k=1

a
(r+1)
(i,k) s

(r+1)
(k,t) −

n
∑

k=j+1

a
(r)
(i,k)s

(r+1)
(k,t)

)

.

As for the source signals, this conditional posterior density is
then rewritten in the form

p
(

a(i,j)

∣

∣

∣
x(i,1:N), a

(r+1)
(i,1:j−1), a

(r)
(i,j+1:n), s

(r+1)
(1:n,1:T )

)

∝ a
γ
(r)
j

−1

(i,j) exp

{

− 1

2
[

σ
post
a(i,j)

]2

(

a(i,j) − µpost
a(i,j)

)2
}

× I[0,+∞]

(

a(i,j)

)

(32)

whereµpost
a(i,j)

= µlikel
a(i,j)

−λ
(r)
j

[

σlikel
a(i,j)

]2

andσpost
a(i,j)

= σlikel
a(i,j)

. Its
sampling is achieved using a Metropolis-Hastings algorithm.
The instrumental density is calculated as in the case of the
source signals.

3) Noise Variances:The posterior conditional density of
each noise varianceσ2

i is expressed as,

p

(

1

σ2
i

∣

∣x(i,1:N), a
(r+1)
(i,1:N), s

(r+1)
(i,1:N)

)

∝

(

1

σ2
i

)

N
2

exp







− 1

2σ2
i

N
∑

t=1

(

x(i,t) −
n

∑

k=1

a
(r+1)
(i,k) s

(r+1)
(k,t)

)2






× p

(

1

σ2
i

)

. (33)
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The prior for the noise varianceσ2
i is an inverse Gamma,

which corresponds to assigning a Gamma distribution

for

(

1

σ2
i

)

(

1

σ2
i

)

∼ G
(

α
prior

σ2
i

, β
prior

σ2
i

)

, (34)

leading to a posterior density given by
(

1

σ2
i

∣

∣

∣
x(i,1:N), a

(r+1)
(i,1:N), s

(r+1)
(i,1:N)

)

∼ G
(

1

σ2
i

;αpost

σ2
i

, β
post

σ2
i

)

,

with


















α
post

σ2
i

=
N

2
+ α

prior

σ2
i

,

β
post

σ2
i

=
1

2

N
∑

t=1

(

x(i,t) −
n

∑

k=1

a
(r+1)
(i,k) s

(r+1)
(k,t)

)2

+ β
prior

σ2
i

.

The parametersαprior

σ2
i

and β
prior

σ2
i

are chosen according to
an a priori noise level and variance. Note that this approach
transforms the original problem of choosingσ2

i to that of
choosingα

prior

σ2
i

and β
prior

σ2
i

. But the point is that this last

choice is by no way as crucial as the choice ofσ2
i is.

4) Source Hyperparameters:The sampled sources being
given, their associated Gamma distribution parametersα(1:n)

andβ(1:n) are sampled as follows.
The posterior density of each hyperparameterαj is given

as

p
(

αj

∣

∣s
(r+1)
j,1:N , β

(r)
j

)

∝

N
∏

t=1

β
αj

j

Γ(αj)
s

αj−1

(j,t) · p(αj),

∝

1

Γ(αj)N
exp

{(

N log β
(r)
j +

N
∑

t=1

log s
(r+1)
(j,t)

)

αj

}

× p(αj). (35)

By assigning an exponential prior forαj of parametersλprior
αj

,
this posterior density takes the form

p (αj |sj , µj) ∝

(

1

Γ(αj)
exp

{

λpost
αj

αj

}

)N

, (36)

whereλpost
αj

= log β
(r)
j +

1

N

N
∑

t=1
log s

(r+1)
(j,t) − 1

N
λprior

αj
. The

sampling from this distribution is achieved using a Metropolis-
Hastings algorithm. To obtain an instrumental density, a
Gamma density

q(z) ∝ zαq
z−1 exp {−βq

zz} , (37)

is firstly used to fit the term between brackets

g(z) =
1

Γ(z)
exp {λzz} . (38)

The parameters(αq
z, β

q
z) of this function are determined in

such a way that its mode and inflexion point are the same as
that of the functiong(z). This Gamma density parameters are
obtained as















αq
z = 1 +

z2
mode

(zmode − zinfl)
2 ,

βq
z =

zmode

(zmode − zinfl)
2 ,

(39)

wherezmode andzinfl are the mode and the superior inflexion
point (zinfl > zmode) of g(z). The calculation of the first and
second derivative ofg(z) yields these two non-linear equations

{

ψ(zmode) − λz = 0,

ψ(1)(zinfl) − (ψ(zinfl) − λz)
2

= 0,
(40)

whereψ is the psi function, also called the digamma function
and ψ(1) is its first derivative, also called trigama function.
These functions and their approximations are defined in [41,
p.253] and the resolution of the two equations in (40) is
performed using a numerical method for root finding [42,
ch.9]. Finally, the posterior densityp (αj |sj , µj) = g(αj)

N

is sampled using the Metropolis-Hastings algorithm with a
Gamma instrumental density whose parameters are given by

{

αinst
αj

= N
(

αq
αj

− 1
)

+ 1,

βinst
αj

= Nβq
αj

.
(41)

Concerning the hyperparameterβj , the posterior distribution

p
(

βj |s(r+1)
(j,1:N)

)

is expressed as

p
(

βj

∣

∣s
(r+1)
(j,1:N), α

(r+1)
j

)

∝ β
Nα

(r+1)
j

j

exp

{

−βj

N
∑

t=1

s
(r+1)
(j,t)

}

· p(βj). (42)

Therefore, one can note that the conjugate prior for the
parameterβj is a Gamma density,

βj ∼ G
(

α
prior
βj

, β
prior
βj

)

, (43)

leading to ana posterioriGamma distribution
(

β
(r+1)
j

∣

∣s
(r+1)
(j,1:N), α

(r+1)
j

)

∼ G
(

α
post
βj

, β
post
βj

)

, (44)

with parameters










α
post
βj

= 1 + Nα
(r+1)
j + α

prior
βj

,

β
post
βj

=
N
∑

t=1
s(j,t) + β

prior
βj

.
(45)

To illustrate the proposed sampling algorithm for estimating
the parameters of a Gamma density, an example is presented.
A sequence ofN = 1000 samples generated from a Gamma
density of parametersα = 3 andβ = 2 is considered. Figure 1
shows one realization of the Markov chain and the evolution
of the averaged acceptation rate of the Metropolis-Hastings
algorithm. The good approximation of the conditional density
of the parametersα results in a high acceptation rate of the
Metropolis-Hastings algorithm and a fast convergence of the
sampled parameters around the true value of the parameters
(α̂ = 3.08 ± 0.13, β̂ = 2.07 ± 0.09).

5) Mixing Coefficient Hyperparameters:Since the mixing
coefficient profiles are also assigned by a gamma distribution
prior, the parametersγ(1:n) andλ(1:n) are sampled in the same
manner as for the source signal hyperparameters.
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Fig. 1: (a) Generated Markov chains from the posterior den-
sity p(α, β) and (b) averaged acceptation rate of the
Metropolis-Hastings algorithm

D. Comments on the MCMC Algorithm

As mentioned in subsection III-C, the posterior densities of
the sources and the mixing coefficients are not usual, so their
sampling is performed using a Metropolis-Hastings algorithm.
In addition, the noise variances and the hyperparameters
β(1:n) and λ(1:n) are sampled directly from their posterior
conditional distributions while the hyperparametersα(1:n) and
γ(1:n) are sampled using a Metropolis-Hastings algorithm. So,
the whole procedure results in an hybrid Gibbs-Metropolis-
Hastings sampling. However, if an exponential prior is taken
by constraining (α(1:n) = 1 and γ(1:n) = 1), the sampling
procedure does not require the use of the Metropolis-Hastings
algorithm.

IV. EXPERIMENTS

To illustrate the problem of non-negative source separation
and show the effectiveness of the proposed method, this
section presents some numerical and experimental results.In
a first time an experiment opens the discussion about the
separation of non-negative sources using statistical indepen-
dence and non-negativity assumptions. The first simulation
is a situation where the independence assumption allows to
achieve the separation and the second points out the need of
taking into account the non-negativity. The next experiment
concerns the analysis of a spectral mixture obtained by mix-
ing experimentally three chemical species and measuring the
resulting mixture data using a near infrared spectrometer.

A. Performance Measures

As a performance measure the performance indexPI
defined by

PI =
1

2

n
∑

i=1

{(

n
∑

k=1

|gik|2
max

ℓ
|giℓ|2

−1

)

+

(

n
∑

k=1

|gki|2
max

ℓ
|gℓi|2

−1

)}

(46)
is used, wheregij is the(i, j)th element of the global system
matrix G = B̂A, max

ℓ
giℓ sands for the maximum value

among the elements in theith row vector ofG and max
ℓ

gℓi

represents the maximum value among the elements in theith
column vector ofG. It is zero for perfect signal separation.
In practice, it takes small values when a good separation is
achieved. This index assesses the overall separation perfor-
mance and measures mainly the quality of the estimation of

the mixing matrix. However, it is very important to measure
the accuracy of the reconstruction of each source signal. In
that respect, one can use the residual cross-talk index defined
as

CT sj
=

N
∑

t=1

(

s(j,t) − ŝ(j,t)

)2
, (47)

whereŝ(j,1:N) is the estimate of thej-th source signals(j,1:N)

and the two signals have unit variance. In all the following
results, the two performance criteria are expressed in dB.

B. Can ICA Methods Separate Non-negative Sources ?

In a first simulation, two mutually independent non-negative
sequences (spectra of two speech signals) are mixed with
non-negative mixing coefficients and an additive zero mean
Gaussian noise is added in such a way to have a signal to
noise ratio (SNR) of 20 dB. The mixing matrix is

A =

[

0.60 0.40
0.40 0.60

]

, (48)

and the source signals with the resulting mixtures are shown
in figure 2. The estimated empirical covariance matrix of the
sources

R̂s =

[

1.00 0.01
0.01 1.00

]

, (49)

shows that they are mutually uncorrelated.
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Fig. 2: (a) Source signals and (b) resulting mixtures

The analysis of this mixture using the independence as-
sumption requires a first step of estimating the separating
matrix from the centered mixture data using an ICA method.
Among the available methods, SOBI [12], JADE [43] and
FastICA [44] have been considered, however other ICA al-
gorithms may be used as well. The estimation of the sources
is then achieved by applying the separating matrix to the non-
centered mixture data. The use of NNICA method does not
require this first step. Table (I) summarizes the performances
of the separation using different methods (where BPSS for
Bayesian Positive Source Separationrefers to the proposed
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method). All the considered analysis methods succeeded to
separate the two components with slightly different perfor-
mance indexes, but we may note that even if thePI is
particulary similar in these methods, theCT indexes are much
better with BPSS as compared to the others. It turns out
that the separation of non-negative independent sources can
be achieved either using only the mutual independence or
by incorporating the non-negativity of sources and mixing
coefficients.

TABLE I: Speech spectra separation performances
JADE FastICA NNICA BPSS

CT source1 -13.04 -13.02 -12.81 -16.74
CT source2 -12.56 -12.59 -12.67 -16.56

PI -27.27 -27.64 -25.19 -26.93

C. Is there any Improvement Introduced by Considering Non-
negativity ?

In a second simulation, the mixture data are obtained by
constructing three synthetic spectra and simulating ten mea-
sures with mixing coefficients chosen in such a way to have
an evolution profile similar to the component concentration
behavior in chemical reactions. Figure (3) shows the source
signals, their mixing coefficient profiles and the resulting
mixture for a signal to noise ratio (SNR) equal to 20 dB.
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Fig. 3: (a) Original sources and (b) mixing coefficients

To assess the spatial correlation of the source signals, we
calculated their empirical covariance matrix

R̂s =





1.00 0.24 −0.21
0.24 1.00 −0.17
−0.21 −0.17 1.00



 . (50)

The off-diagonal terms of this covariance matrix are non
null, showing that the available samples of the source signals
presents a significant spatial correlation, so the independence
assumption required by usual ICA methods is not totally
satisfied by these signals. Among the methods used, the
best separation results, obtained by the FastICA method, are
shown in figure (4). However, note the negative values of
the estimated source signals which does not correspond to
the very nature of the sources. The results obtained with
SOBI algorithm are also given to illustrate the estimation of
both negative sources and mixing coefficients. These results
illustrate the need to take into account the non-negativityof
both source signals and mixing coefficients.
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Fig. 4: Estimated sources (left) and mixing coefficients (right)
using SOBI and FastICA methods (continuous line).
True sources and mixing coefficients are shown in
dotted lines

The proposed separation method is applied to the analysis
of this mixture, yielding the results of figure (5). Both source
signals and mixing coefficients are estimated successfully,
without negative values.
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Fig. 5: Estimated sources (left) and mixing coefficients (right)
using Gamma prior and MCMC sampling (continuous
line). True sources and mixing coefficients are shown
in dotted lines

Concerning the separation accuracy, table (II) summarizes
the performance index reached by the different methods. Note
particularly the superior performances of the proposed method.
In this case, not only thePI of the BPSS method is better
but also all theCT are much better by 10dB. This experiment
allows to conclude that an improvement in the separation
performances is significantly introduced by considering the
non-negativity, which particularly illustrates the need of con-
sidering the non-negativity and motivates the usefulness of the
Bayesian approach.

D. Near Infrared Data

To validate the proposed approach with real data, an ex-
periment is performed in which the mixture data are obtained
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TABLE II: Synthetic source separation performances
JADE FastICA ICA-ALS NMF BPSS

CT source 1 -13.99 -17.63 -17.22 -15.75 -22.46
CT source 2 -18.56 -14.47 -14.82 -9.19 -24.62
CT source 3 -16.05 -16.01 -16.53 -11.47 -27.29

PI -15.10 -15.36 -15.85 -9.94 -27.23

from near infrared (NIR) spectroscopy measurements. Three
known chemical species (cyclopentane, cyclohexane and n–
pentane) are mixed experimentally with specified proportions.
These species have been chosen for two main reasons. Firstly,
their available spectra in the NIR frequency band are highly
overlapping and as a consequence are spatially correlated.
This precludes the use of standard ICA methods to achieve
the separation. Secondly, these species do not interact when
they are mixed, guaranteing that no new component appears.
Thus, the number of sources as well as their concentrations in
the mixtures are known exactly. In addition, their individual
spectra can be (and are) measured separately. Figure (6) shows
the pure spectra of the chemical species and their concentration
profiles.
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Fig. 6: (a,b,c) Constituent spectra and (d) concentration pro-
files

While processing the mixture data using different methods
yields the performance index summarized in table III. These
methods have been chosen because they give both non-
negative sources and mixing coefficients. The ALS method
is initialized using an ICA method. The more recent NMF
method offers the advantage of being numerically faster.
Comparing the results shows the effectiveness of the proposed
inference.

TABLE III: NIR spectra separation accuracy
ICA-ALS NMF BPSS

CT cyclopentane -14.20 -15.18 -33.23
CT cyclohexane -17.50 -23.43 -24.98
CT n−pentane -17.88 -14.01 -26.05
PI -11.60 -8.10 -19.22

Figure 7 compares both the estimate and true sources in
the more challenging bands (3500–4500 cm−1 and 5000–6000
cm−1), where the peaks of the different source spectra highly
overlap, resulting in a significant cross-correlation. Thesource
spectra are well reconstructed, which makes the identification
of the components easier. Concerning the estimation of the
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Fig. 7: Zoom of two subbands of the source spectra. The true
spectra are shown in dotted lines.

concentrations, figure (8) shows the similarity of the estimated
mixing coefficients with the true concentration profiles, but a
small error still remains.
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Fig. 8: Estimated (continuous curve) and true (dotted curve)
concentration profiles

V. CONCLUSION

The problem of non-negative source separation has been
addressed in this paper. The proposed Bayesian inference
considers the non-negativity as prior information which is
encoded through the assignment of Gamma distribution priors.
The Gamma density is an exponential family distribution
which is frequently used to represent non-negative data andits
second advantage is that its shape allows to fit spectral signals
that may present some sparsity and/or a possible background.
The result that has been presented illustrate that such prior
distribution is very suitable for the separation of spectral
source signals. To achieve a better fit of the source signal
distributions, the proposed approach can be straightforwardly
extended to the more general model consisting in mixtures of
Gamma or truncated normal distributions. A second result that
has been discussed concerns the separation of non-negative
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sources by using independent component analysis methods. It
has been shown that the separation of positive sources by an
ICA method is possible, but it is conditioned by the statistical
independence of the non-negative sources. In that case, similar
performances are obtained with the proposed approach. How-
ever, if the independence assumption is not totally satisfied
by the sources, the non-negativity is an additional assumption
that should be considered to improve the separation by an
appropriate Bayesian analysis model.
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