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Abstract— This paper considers the problem of blind source ~ The linear instantaneous mixing model is expressed as
separation in the case where both the source signals and the
mixing coefficients are non-negatives. The problem is referred to T, = As;+e, fort=1,...,N, 1)
as non-negative source separation and the analysis is achieved )
in a Bayesian framework by taking the non-negativity of source Where St denotes then x 1 vector of the source signals
signals and mixing coefficients as prior information. Since the {s(j7t)},:1, x; the m x 1 vector of the measured signals

main application concerns the analysis of spectral signals, to {x ) } e; am x 1 vector of an additive noise (mea-
encode jointly non-negativity, sparsity and possible background (i.t) f =12 ©t

in the sources, Gamma densities are used as priors. The sourceSurement er.rc_’rs and model UF“?e”a'”t'EA),",S the m X n
signals and the mixing coefficients are estimated by implementing unknownrl Mixing matrix containing the mixing coefficients
a Monte Carlo Markov Chain (MCMC) for sampling their joint {a(w)}i:’l py andt is an observation variable. Having all

posterior density. Synthetic and experimental results motivate the ppservations and using matrix notations, the mixingehod
the problem of non-negative source separation and illustrate the is written as

effectiveness of the proposed method.
prop X=AS+E, @)
Index Terms— Bayesian estimation, Source separation, Non- .
negativity, Gamma distribution, Monte Carlo Markov Chains where the matriceX € R™*V S ¢ RTN andE € R™*N,

(MCMC), Spectroscopy. contain respectively observations, source signals andenoi

sequences. The problem of blind source separation is then
stated as follows: knowing the number of sources and having
all the observations, estimate the sources signals and the

In analytical chemistry, it is often needed to process mif?ixing coefficients. _ _
ture data obtained by spectroscopy and/or chromatographyl© achieve the separation, any prior knowledge and assump-
analysis of multicomponent materials [1]-[3]. The progegs 0N abput the mixing process gnd the source S|gngls sh.tmld b
aims at identifying the pure components of the material@ken into account since this inverse problem is ill-posed,
and estimating the concentration of each component. Thd&& sense that the solution is not unique. Principal compone
objectives are formalized as a source separation probledalysis [6] (PCA), which is the most popular approach for
where the linear instantaneous mixture model holds. In tHe€ analysis of multivariate data, assumes that the sigoals
case of optical spectroscopy, this model is validated afisgr '€construct are mutually uncorrelated, but this orthotignha
to Beer-Lambert law [4] (also termed as Beer’s law or Beefonstraint does not ensure neither the uniqueness nor tike no
Lambert-Bouguer law [5]). The pure component spectra apegativity of the solutio_n. A more constr_aining assumption
identified as the estimated sources and the concentrationg/ged for source separation is the mutual independence of the
the mixing coefficients. The main constraint in this apgiima Sources leading to the independent component analysis) (ICA
is the non-negativity of both the source signals and t@ncept [7], for which many algorithms has been developed
mixing coefficients. So, the problem is referred to as no#S€e the books [8]-{10] and the references therein). Assyimi
negative (positive) source separation. More generalig,rtan- Fhe mutual independence of the sources y|e_lds a solut|0(_:hNh|
negative source separation problem arises when one haalto eUnique (up to order and scale indeterminacies) but it does
with non-negative mixtures of non-negative signals (gjpect N0t ensure explicitly the non-negativity of both sourcesl an

images, hyperspectral data, etc.). In this paper, the caseMxing coefficients. Clearly, if the non-negative souragnsils
spectral data is considered. are mutually statistically mdependent', they can pg seeglra
successfully by ICA methods and their non-negativity wil b
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and mutual independence of the sources, as proposed in [E8fficient profiles. In section I, the Gibbs sampler [36Haa
by using a nonlinear PCA method that optimizes a criteridvietropolis-Hastings algorithm [36] are used to build a Mark
that takes into account the source non-negativity, under tthain which samples the joint posterior density from which
condition ofwell groundedsources. Unfortunately, since ICAsource signals and mixing coefficients are estimated fran th
methods produce an unmixing matrix, which is the (pseudojarginal distributions using the conditional mean estomat
inverse of the mixing matrix, the non-negativity of the migi All the Gibbs sampler steps and the required posterior eondi
coefficients is not considered during the separation. tional distributions are detailed. Finally, in section Isome

A second class of methods consists in minimizing a meaasults, obtained with synthetic and experimental midure
squares criterion under a non-negativity constraint,iteatb  states the problem of non-negative source separation and
algorithms differing on the way how this prior informationillustrate the usefulness of the proposed method.
is incorporated. In particular, the method presented i [14
performs an alternating least squares (ALS) estimationrevhe Il. BAYESIAN MODELING

the non-negativity is hardly imposed between successtre it The main idea of the Bayesian approach to source separation
ations by setting to zero the negative values of source EgNg& i yse not only the likelihoogh(X|S, A), but also any

and mixing coefficients or by performing a non-negative €agyior information on the source signals and the mixing pssce
squares estimation [15]. The ALS method is the method Wh'ﬂ'?rough the assignment of prior distributiopgS) andp(A).

is widely used in the chemometrics community [16] whergccording to the Bayes's theorem, the joint posterior dgnsi
the problem is termed by multivariate curve resolution [17}g expressed as

The non-negative matrix factorization (NMF) algorithm J18

is a second alternative of such approaches which achieees th p(S, A|X) = p(X]S. A) - p(S) 'p(A)7 ©)
decomposition by constructing a gradient descent algarith p(X)

over the objective function and updates iteratively sosiaed where the independence betwednand S is assumed. Since
mixing coefficients by considering a particular multiplive p(X) is a normalisation constant, one can write

learning rule that ensures the estimates to be non-negative
This method has also been applied to the case of noisy p(S; A|X) < p(X|S, A) - p(S) - p(A). (4)

mixture signals as well as to the recovery of constituentspe From this posterior density, joint estimation.dfandS can be
in chemical shift imaging [19]. Non-negative sparse codingchieved by using various Bayesian estimators [37]. Howeve
(NNSC) method [20] also treats that type of problems by aghe first task of the inference is to encode our knowledge on

suming non-negative sparse sources through the minimizatihe noise sequences, source signals and mixing coeffidignts
of a penalized least square criterion while the non-netfjativ appropriate probability distributions.

of the mixing coefficients is introduced in a similar way as
in ALS method. Finally, positive matrix factorization (PMF A

: . L Noise Distribution and Likelihood
[21] is a more general method since it minimizes a compound m

. N .
regularized criterion that enforces positivity and spaess | "€ noise _sequ_ence{se_(i,t)_}i:u:l,_ are assumed inde-
of both source signals and mixing coefficients. However, iR€ndent and identically distributed (i.i.d), independefthe
related optimization algorithm is numerically very expigas SOUrce signals, stationary and Gaussian with zero mean and

This paper addresses the problem of non-negative souy@giances{c?}” . Thus,

separation in a Bayesian framework for an application to the N m
analysis of mixtures in spectroscopy. The use of Bayesien th E~ H H/\/(e(i,t);o, o?), (5)
ory to source separation is not new since it has been addresse t=1i=1

in many papers [22]-[28] but, to our knowledge, its applmat

. . . and, notingd; = {o21"" | the likelihood is then expressed as
to the separation of non-negative sources has only recéved % {U‘ }1:1 P

attention [29]-[31]. There are two main reasons that make N m n )
Bayesian estimation approach very well suited to such arp (XA, S,0,) = HHN x(i,tﬁza(i,k)s(k,t)vgi )
application. Firstly, Bayesian inference offers a very pdu t=1i=1 k=1

(6)

theoretical framework to encode non-negativity inforroati
and, more generally, any additional prior knowledge on the ) o o
mixing coefficients and the source signals. Secondly, dtesto B- Priors on Source Signals and Mixing coefficients
recent developments in Monte Carlo Markov chain (MCMC) The sources are assumed mutually statistically indepeénden
methods [32]-[34] that enables to generate samples fremd eachj-th source signal is supposed i.i.d and distributed
the posterior density, various Bayesian estimators rewuir as a Gamma distribution of parametds;, 3;). These pa-
integration or optimization can be used, even if the posterirameters are considered constant for each source but may
law is not analytically tractable. differ from one source to another. The Gamma density is
This paper is organized as follows: section Il recalls thesed to take into account non-negativity and its parameters
main idea of a Bayesian inference for source separatialow a better fit to the spectra distribution. To incorpertite
and presents the proposed probabilistic modeling for theixing coefficient non-negativity, each colunjrof the mixing
analysis of spectral mixtures which consists in assigningatrix is also assumed distributed as a Gamma distribution o
Gamma density priors to both source signals and miximmrametersy;, A;). Eachj-th column of the mixing matrix



corresponds to the evolution profile of thigh source propor- This objective function can be decomposed intro three parts
tion in the mixture and its associated Gamma parameters are
considered equal for each profile. The two-parameter GamifigS: AlX, 0) = (S, A| X, 01)+Pp, (5]02) +Pp,(A[03)

density is expressed by where the term®, ®p , and®p, are given by

a

b
G(za,b) = —— 2% " exp {—bz} Iy oo (2). () mo XN n 2
F(a) (I)L = Z m (x(i,t) — Z a(L;@)S(;{,t)) 5 (11)
wherer (a) is the Gamma function. The Gamma distribution is =l =t =1

an exponential family distribution which is used for fittingn- Z o

n N
negative data singe(= < 0) = 0. Recently, it has been applied ~ ™~ £ ((1 - ) leog s + B Zl SW))’ (12)
for non-negative signal restoration (see for example [38je =1 = =

second advantage of the Gamma distribution is that its shapgy, = _ - ( 1— . - log ar - X - a ) 13
parameters allow to fit spectral data that may present some "~ ( %); SN ; G ) (13)
sparsity and possibly a background.

The prior densities on the source signals and the mixidde first part®;, of the objective function is the mean squares
matrix are then expressed by criterion, while the last two parts are regularization term

that penalize the negative values §f and A respectively.
This approach may be connected with previously proposed
G(s(j,: 5, 65), (8)  methods. Indeed, this criterion is an extension of the PMF
method criterion, in which the Gamma parameters may differ
for each source signal and mixing coefficient profile. The
case{a; = 1}?:1 corresponds to assigning an exponential
distribution prior for source distribution and leads to g-re
where the vector®, = {aiﬁj};}:l and 85 = {%")‘j}?ﬂ ularization criterion similar to that minimized in the NNSC
contain the parameters of the Gamma distributions. method for sparse source estimation. As compared to these
penalized least squares approaches, this Bayesian fdromula
has the advantage to give a well stated theoretical framewor
C. Posterior Density and Estimation Issues for estimating the hyperparameters.

Using Bayes's theorem and noting I} the vector con- In [31], the optimization of this criterion is performed nogi
taining the noise variances and the parameters of the Gamamaalternating Gradient iterative descent procedure, tigga
densities§ = {61, 0-, 05}, the posterior law is expressed asat each iteration, the source estimate using the lateshasti

of the mixing coefficients, then the mixing matrix estimage i
N m n updated using the latest estimate of the source signals. The
p(S,AIX,0) [TV <$(i,t); Za(i,k)s(k,t)70i2> learning parameter of the Gradient algorithm is optimized a
t=1i=1 k=1 each iteration. The critical point with this optimizatiocheme
N mon comes from the initialization of the algorithm, since it i€v
X H H G(s(j,0; a5, 85) x H H G(agigi s Ai)- (10)  known that the Gradient algorithm converges to the neatast s
t=1j=1 i=1j=1 tionary point of the criterion. Satisfactory results webgained
From this joint posterior density, various estimators can WY initializing the source estimates from the observations
used to estimate the sources and the mixing coefficients. Thethe most mutually uncorrelated observations, but, toced
joint maximization of this posterior density with respeot tthe dependence with respect to the initial values, a sttichas
S and A leads to the joint maximuna posteriori IMAP Optimization scheme is considered in this paper. In thateets
estimator. The estimation of the mixing matriA can be Gibbs sampler is used for sampling the posterior density and
performed by marginalizing the posterior density with extp the estimation is achieved using the marginal posteriorrmea
to S, to get p(A|X) from which A can be estimated. (MPM) estimator
The optimization problems associated to these estimators ¢ PN
be achieved using either Gradient/Newton based algorithms (4,5) =Eps.aix.0 {5, A} (14)

providing that the posterior densities are analyticaljctable The choice of this estimator is motivated by its simpler
or, if not, stochastic simulation tools. In this paper, tlst implementation from the sampled posterior density.

solution is retained by sampling the posterior distributio aq giscussed previously, for an unsupervised learning, the
using Gibbs algorithm and gonstructing the estimator frobm thyperparameters of the prior distributions and the noisée va
samples of the Markov chain. ances have also to be inferred. The joint posterior digiobu

It is interesting to consider firstly the joint maximum ancluding the hyperparameters is expressed as
posteriori estimator. It corresponds to the joint maximization

of the posterior density or equivalently to the minimizatio p(S,A,0|X)xp(S,AlX,0) p(0), (15)

with respect toS and A of the objective function defined as ) ) - )
in which prior densities may be assigned to the hyperparam-

(S, A|X,0)=—logp(S,A|X,0). eters{o?}._ {ai, 3;};_, and{y;, \;}7_ ).

Jj=1

N

p(S|62) = H

t=1j

=T

p(A|03) =

.ES
=

@
Il
_

g(a(i,j);7j7)‘j)7 (9)

Jj=1



II. MCMC SAMPLING AND ESTIMATION 1. forj=1,...,nandt=1,..., N, samples ) from
A. Gibbs Sampler
(r+1) (r) (r) ) )

The main objective of Gibbs sampling is to simulate a p(s(jvt)‘x(limyt)’s(l:jfl,t)’S(j+1:n,t)7a(1:m,1:n)
stationary ergodic Markov chain whose samples asymptoti-
cally follow the posterior density (S, A, 0| X). Estimates of 2. fori=1,..,n andj = 1,...,n, sampleagj)l) from
source signals and mixing coefficients are then calculated f ’

the samples of this chain. The MCMC sampling procedure (r41) (r) Sr+D) .
for source separation in the general case are firstly retalle p (a(iﬁj)‘x(lim@’a(z‘,l:jfl)’ U(ij+1m)> S(1im,1: T))
and nextly the main steps of sampling for non-negative sourc 3
separation are given. 3. fori=1,...,m, sample(o; )(TJr from
To samplep (S, A,0|X), at each new iteratiom of the
algorithm, the main steps consists in » ( 1 @ QD D) ) )
1. Sampling the source signa®&’*" from (1) i 2m) 7 2 (1em, 1T)
p (S|X,A(’“),9(T)> 4. forj=1,...n, samplea§r+1) from
xp(X|5,47,60) p(s]67); (16) (r+1)
| ( ‘ p(aj|5J1N)vﬁ )

2. Sampling the mixing coefficientd "+ from
5. for j = 1,...,n, sampleg!" " from
p (A|X, S(r+1)’0(7“))

(r+1) (D) |
o<p(X|S(rH),A,0(T)) p(A\O(T)> . (17) <ﬂj|5g1N)’ Q; ) ’
3. Sampling the hyperparamete?€ ") from 6. forj=1,..,n, samplefy(’”rl from
(r+1) A(r+1) . .
(o570 4 )

x p (X|S<’”+1>, A<T+1>,0)
xp(SUHV10) p(ATV10) p(6). (18)

7. forj =1,..,n, samplex!" "

(r+1) (r+1)
There are three types of hyperparametdéds,0, and 0;, p()‘j’au:m,j)»% )
supposed to be independent, so the third step of the sampler
can be divided into three sub-steps After r,... iterations, estimate source signals and mixing
3.1 Sampling the noise variancég“) from coefficients
. 1 Ly r
p (01|X73(T+1)3A(T+1)> S(Ln,1:T) = 7 — Z Sgl:)n,lzT) (22)
max min r:TminJFl
x p (X\S<T+1>,A<’”+1>,91) p(61); (19) .
i e — al?) 23
) QA(1:m,1:n) o Z (1 m,1:n) ( )
3.2 Sampling the source hyperparamet@ys™") from AL T i1
p<92’s(r+1)) O(p(s(r+1)|92> p(0s); (20) The valuer,,;, represents the number of iterations cor-
3.3 Sampling the mixing coefficient hyperparamet@rs S responding to the burn-in run of the Markov chain whose
from associated samples are discarded. Other posterior istatist
(r+1) (r1) such as variances, covariances may be computed from the
p (03"4 ) xp (A |93> (6) - 1) retained samples of the Markov chain and their histograms

can be represented.

B. MCMC Sampling of the Joint Posterior Density

We now describe the whole algorithm to implement the
Gibbs sampler corresponding to the proposed inference for Conditional Posterior Densities
non-negative source separation. For the sake of simplicity|| the required conditional posterior densities for MCMC
the following notationsyi:n), 2(1:n,1:m) are)lntroduced 0 sampling are detailed below. Firstly priors are assigned to
represent respectivelfy; }"_, and{z(”)} source signalss(;.,,1.n), secondly to m|xmg coefficients

After a random initialization of all the varlables and atleaca;.,,,1.,) and finally to noise varlance(s(1 and Gamma
iterationr of the algorithm densny parameters 1.y, B(1:n)s Y(1:n)s A(1:n)-



1) Source Signals:At the r-th iteration of the Gibbs The sampling from this distribution can be achieved by cu-
sampler, the conditional posterior density of each sougreas mulative distribution function inversion technique [39] loy

5(j,+) Is expressed as using an accept-reject method [40].
Note that constrainingy; = 1 corresponds to taking an
(s(j MEREN E1J;1)1 " sgll st ag:)m M)) exponential prior for the/-th source distribution. The use of
(r+1) () ) the Metropolis-Hastings algorithm is not necessary simee t
x P (I(l:n,t)|5(j7t)v S(1:5—1,t)2 S(j+1:m,t)° H(1:m,1: n)) posterior density is a truncated normal of parameters egqual

those of the proposed instrumental density.

INPCNO) )
xp (S(J’t)|ai 5 )H[07+°°] (s60) (@4 2) Mixing Coefficients: The conditional posterior density

which is proportional to of each mixing coefficient; ;) is expressed as
(r1) ) S )
a;-r)—l 1 likel 2 (r) p (a(i,j)’x(i,lzN)v (z 1:5—1) (z,j+1 n)’ (1 n,l: T))
S(j,t) exp - likel 2 (S(jit) MS(] t)) ﬁ] S(j’t) r4 ) (’I“) (T+1)
2 {Uszj e} xp (x(i»liN)’a’(i,l:jfl)’a’(i,frl:n)’S(l:n,l:T))
X H[0,+0<>] (s(jyt)) (25) Xp (a(i,j) IWJ(T)? AY)) ]I[O,+oo] (a(i,j)) (30)
where ) which is proportional to
]
[ lzkel} _ i (@.9) A 1 likel (r)
Os; = {UET)}Q ) a(’ij) exp ——2( lzkel) ( ag;, ) —MJ(E)) —/\j Q(s,5)
a(, 7)
(r) _—j
R S e R0 x Lo, 400 (a(i,5)  (31)
/’(‘S(] t) ] 2 . (r) 2
{ag’fd} =1 [oi } where
. j—1 2
-Jj _ (r) (r+1) (r)
g(i,]t) =Tt — kzla( B)Skt) Z a(z £)S( k t)" [ likelr B [U%])] )
B @] T N ’
This conditional posterior denS|ty is not an usual pdf Z ;f)l
therefore its sampling is achieved using the Metropolis} T
Hastings algorithm. An instrumental distribution is detéred plikel — — Z 38;1) Eny
by rewriting the posterior law in the form 7 [ glz(kel)} t=1
¥
) () o) _; r r T
(S(Jvt)h(l n,t)s S (1] 1,t)> S(j+1m,t) Y(1:m,1: n)) E(ift) = ( (i,t) — Z a 12)1 kt)l) - Z al lk) Ekt)l)> )
O‘E'T)_l 1 post 2 . . . . ..
X Sy €XP —W(S(g‘, ) T sy, t)) As for the source signals, this conditional posterior dgrisi
Os; then rewritten in the form
X Ti0. 400 4 26
[0,+ ](S(Lt)) (26) p(a(i ) ‘x(i LY, Gt ) S(r+1) )
with upost) = lzkel) ﬂ](r) lzkel and gPost — glikel Thea J T (4,1:j=1)" 7(i,5+1:n)? 7 (1in,1:T)
S(j,t S(j,t 5 55 Sj i
mode of the posterior law is obtalned by solving the follogvin ~ a”} -1 exp 1 (a(i iy — prest )2
second order equation 9 2 [0h2% ] “7
2 .
5ty — M sy — |02 (a7 1) = 0, with s 20, T, oc) (a.0)  (32)
_ . (27) Where'upost _ plikel _\(™) [Ulikel 2 andorost — glikel |ts
whose resolution yields gy T LA R N
_ samplmg |s achieved using a Metropolis-Hastings algorith
o 0 it A <0; The instrumental density is calculated as in the case of the
T max {1 (Mg?st + \/Z) 70} else source signals.
2 ’ 3) Noise Variances:The posterior conditional density of

9 9 (28)  each noise variance? is expressed as,
whereA = (ui‘;j“) +4 [aigfst} (ay)—l). Note that the root

1 (r+1)  (r+1)
(upost \/Z> k does not correspond to a maximum of P U_Zz{I(iJ:N)’a(i,l:N)’S(i,er)

the posterior law. Therefore, the instrumental densityaien % N 2
as a truncated normal distribution of paramejefs? = ;7o L 1 ) § (rt1) o(r+1)
p 1ers” = ug x\oz) &P T3,2 Tit) — a (k) S(k,t)
i iog=1

and g5t = gPost
J J

) ) 2 1
510 ~ N (swosn [one] ). @ Xp(ﬁ)‘ 3



The prior for the noise variance? is an inverse Gamma, wherez,,,q. andz;, s, are the mode and the superior inflexion
which corresponds to assigning a Gamma distributiqroint (z;,, ;1 > Zmoeae) Of g(2). The calculation of the first and
for [ = second derivative of(z) yields these two non-linear equations
2

o

1 rior rior mode) — )\z = 0»

(—2) ~ g (azer gerY. (34) Vo) ) (40)
;i : : VI (Zingt) = (U (zing1) — A2)" =0,

leading to a posterior density given by ] . ] . ]
where is the psi function, also called the digamma function

L TSt ) g 1 kgt gpost and () is its first derivative, also called trigama function.
Z(i,1:N)> ;. 1:N)> S(3,1:N) . . ) . ) .
o} H These functions and their approximations are defined in [41,
with p.253] and the resolution of the two equations in (40) is
post N prior performed using a numerical method for root finding [42,
Cpz = o T 05, ch.9]. Finally, the posterior den_sity(aj]sj,uj) = _g(aj)N_
2 _ is sampled using the Metropolis-Hastings algorithm with a
pret = lz Za““ (D) g G inst tal density wh t iven b
o2 T 3 (i) — (k) S(kt) 52 - amma instrumental density whose parameters are given by
The parametersy””"r and 55;”’“ are chosen according to agt =N (O‘g«f - 1) +1, (41)
an a priori noise lével and variance. Note that this approach Z,j;st =NpZ .

transforms the original problem of choosing to that of
choosing aprwr and ﬁpmor But the point is that this last Concerning the hyperparametgy, the posterior distribution

r+1)

choice is by no way as crucial as the choicesgfis. p 5J|S(]J{ N)) is expressed as

4) Source HyperparametersThe sampled sources being
given, their associated Gamma distribution parameters, (r1)  (r41) alrtn
and 1.,y are sampled as follows. (ﬂﬂ (,1:N) Y5 ) « 5

The posterior density of each hyperparametgris given .
as exp{ B Zséjt >} (). (42)

N e %]
T T /8 g a;—1
p(%|55 fj;,ﬁ( )) & HF(Ja S play), Therefore, one can note that the conjugate prior for the
t=1 2 parameterd; is a Gamma density,
1 ) (r+1) ,
[e'¢ W exp { <N10g/6) + Zlog S(J t) ﬂ ~G ( P:ZOT’ g:mr) : (43)
x plaj). (39) leading to ama posterioriGamma distribution
By assigning an exponential prior fof; of parameters\g’;’”, . , .
this posterior density takes the form (ﬁj( H) ngjlzzf) Oé( H)) ( post 5p08t) (44)
N
1 .
N - )\poef 36) With parameters
p(ajlsy, pj) o (I‘(aj)eXp{ aj}) 5 (36) |

where A2 = log j3; Zl 08 5(; 1 )\P”OT The ﬂpost _ N (45)

Z S(J " + ﬂpmm
sampling from this dlstr|but|on |s achieved usmg a Metragpo =

Hastings algorithm. To obtain an instrumental density, a

Gamma density To illustrate the proposed sampling algorithm for estimgti
01 the parameters of a Gamma density, an example is presented.
q(z) o< 2% exp {—p1z}, BN A sequence ofV = 1000 samples generated from a Gamma
is firstly used to fit the term between brackets density of parameters = 3 and3 = 2 is considered. Figure 1
1 shows one realization of the Markov chain and the evolution
g(z) = e exp{A.z}. (38) of the averaged acceptation rate of the Metropolis-Hasting

algorithm. The good approximation of the conditional dgnsi
The parameterga?, 37) of this function are determined in of the parameters results in a high acceptation rate of the
such a way that its mode and inflexion point are the same Mgtropolis-Hastings algorithm and a fast convergence ef th
that of the functiory(z). This Gamma density parameters areampled parameters around the true value of the parameters

obtained as (& = 3.08+0.13, 8 = 2.07 & 0.09).
0l — 14 22 5) _I\/_Iixing C(_)efficient Hyperp_arameter§ince the rr_1ixi_ng _
? (Zmode — mez)2’ (39) coefficient profiles are also assigned by a gamma distributio
81 = Zmode -, prior, the parameters;.,,) and\(;.,) are sampled in the same

(Zmode — Zinft) manner as for the source signal hyperparameters.



() (b)
4 1 r the mixing matrix. However, it is very important to measure

the accuracy of the reconstruction of each source signal. In
that respect, one can use the residual cross-talk indexedefin
as

o
©

acceptation rate

N
N 2
CTs, = > (s —3G0) (47)
t=1
o0 25 0 w0 09 5 o~ o awe Wheres(;q.n) is the estimate of thg-th source signas; 1.y
iteration iteration and the two signals have unit variance. In all the following

Fig. 1: (a) Generated Markov chains from the posterior defesults, the two performance criteria are expressed in dB.
sity p(«, 8) and (b) averaged acceptation rate of the

Metropolis-Hastings algorithm B. Can ICA Methods Separate Non-negative Sources ?
In a first simulation, two mutually independent non-negativ
D. Comments on the MCMC Algorithm sequences (spectra of two speech signals) are mixed with

. . . . ... _ hon-negative mixing coefficients and an additive zero mean
As mentioned in subsection IlI-C, the posterior densities 9 g

= - aussian noise is added in such a way to have a signal to
the sources and the mixing coefficients are not usual, so thr%ise ratio (SNR) of 20 dB. The mixing matrix is
sampling is performed using a Metropolis-Hastings algaonit

In addition, the noise variances and the hyperparameters A— { 0.60 0.40} (48)
Ba:ny and A,y are sampled directly from their posterior 0.40 0.60 |’

conditional distributions while the hyperparameters..) and 54 the source signals with the resulting mixtures are shown
7(1:) are sampled using a Metropolis-Hastings algorithm. Sgy fiy,re 2. The estimated empirical covariance matrix of the

the whole procedure results in an hybrid Gibbs-Metropoligources
Hastings sampling. However, if an exponential prior is take B — 1.00 0.01 49
by constraining ¢.,y = 1 and yg.,) = 1), the sampling 7 001 1.00 |’ (49)

rocedure does not require the use of the Metropolis-Hgstin
proce q P shows that they are mutually uncorrelated.
algorithm.

(@ (b)
IV. EXPERIMENTS 15 ; 10 ‘ ‘ ‘

To illustrate the problem of non-negative source separatir
and show the effectiveness of the proposed method, tl
section presents some numerical and experimental regultss: e
a first time an experiment opens the discussion about t 5
separation of non-negative sources using statisticalpeile 0
.dence. anq non—negatlwty assumptions. The fII’S.t simulatic 4 T e T . 0 o1 o2 o oa os
is a situation where the independence assumption allows
achieve the separation and the second points out the neec is 10
taking into account the non-negativity. The next experimel
concerns the analysis of a spectral mixture obtained by mi 1w
ing experimentally three chemical species and measuriag #: 728
resulting mixture data using a near infrared spectrometer. s

0 L;Jx_rt PR

A. Performance Measures S e 0 o1 0z 03 os os

As a performance measure the performance in@x Normalized frequency Normalized frequency
defined by Fig. 2: (a) Source signals and (b) resulting mixtures

n n 2 n 2
PL = % Z { (Z $—1>+<Z #{'P—Q} The analysis of this mixture using the independence as-

i=1 k= TG k= 196 sumption requires a first step of estimating the separating
) . o matrix from the centered mixture data using an ICA method.
is used, whergy;; is the (i, j)th element of the global system ., the available methods, SOBI [12], JADE [43] and
matrix G = BA, maxg; sands for the maximum valueqyca [44] have been considered, however other ICA al-
among the elements in théeh row vector ofG andmaxge;  gorithms may be used as well. The estimation of the sources
represents the maximum value among the elements intlthe is then achieved by applying the separating matrix to the non
column vector ofG. It is zero for perfect signal separationcentered mixture data. The use of NNICA method does not
In practice, it takes small values when a good separationrexjuire this first step. Table (I) summarizes the perforreanc
achieved. This index assesses the overall separationrperfd the separation using different methods (where BPSS for
mance and measures mainly the quality of the estimation Bayesian Positive Source Separaticafers to the proposed



FastICA FastICA

©
i

method). All the considered analysis methods succeeded
separate the two components with slightly different perfo
mance indexes, but we may note that even if A& is

particulary similar in these methods, t6& indexes are much
better with BPSS as compared to the others. It turns o - 04
that the separation of non-negative independent souraes
be achieved either using only the mutual independence
by incorporating the non-negativity of sources and mixin 2,200 40 o0 80 1000 1200 140c D

0.2]

coefficients sample mixture
SOBI SOBI
. 8 1
TABLE |: Speech spectra separation performances
JADE FastiCA NNICA BPSS 08
CTsourcer | -13.04 -13.02 -12.81 -16.74 . 06
CTsource2 | -12.56  -1259  -12.67 -16.56
P 2727 -27.64 2519 -26.93 2 o4
0 0.2
-2 0
C. Is there any Improvement Introduced by Considering No ™o 2o 40 &0 a0 o0 1200 1ac _
sample mixture

negativity ? )

In a second simulation, the mixture data are obtained k'):)l/g 4
constructing three synthetic spectra and simulating tea-me
sures with mixing coefficients chosen in such a way to have
an evolution profile similar to the component concentration
behavior in chemical reactions. Figure (3) shows the source

signals, their mixing coefficient profiles and the resulting The proposed separation method is applied to the analysis
mixture for a signal to noise ratio (SNR) equal to 20 dByf this mixture, yielding the results of figure (5). Both soer
signals and mixing coefficients are estimated successfully
without negative values.

Estimated sources (left) and mixing coefficientght)
using SOBI and FastICA methods (continuous line).
True sources and mixing coefficients are shown in
dotted lines

(CY (b)

BPSS
8 1

source 2 BPSS

0.8

6 source Lsource 3
'4 v/ i

'

source 3 source,
A N

0.6 0.8

-
\ source 1

0.4 0.6

0.2 0.4]

0 200 400 600 800 1000 1200 14( ® 2 4 6 8 10 0

sample measure

% 200 400 600 800 1000 1200 140 D 2 4 6 8 10
sample measure

) ) ) Fig. 5: Estimated sources (left) and mixing coefficientght)
To assess the spatial correlation of the source signals, we  sing Gamma prior and MCMC sampling (continuous

calculated their empirical covariance matrix line). True sources and mixing coefficients are shown
in dotted lines

Fig. 3: (a) Original sources and (b) mixing coefficients

A 1.00 0.24 -0.21
R;,=| 024 100 —0.17 (50) , _ ,
_0.21 —0.17 1.00 Concerning the separation accuracy, table (II) summarizes

the performance index reached by the different methodse Not
The off-diagonal terms of this covariance matrix are NOParticularly the superior performances of the proposedotet
null, showing that the available samples of the source 8gn@, this case, not only théZ of the BPSS method is better
presents a significant spatial correlation, so the indegecel pt 550 all the?7 are much better by 10dB. This experiment
assumption required by usual ICA methods is not totallyjjows to conclude that an improvement in the separation
satisfied by these signals. Among the methods used, Wi&formances is significantly introduced by considering th
best separation results, obtained by the FastiCA methed, gpn-negativity, which particularly illustrates the neefdcon-

shown in figure (4). However, note the negative values Qfgering the non-negativity and motivates the usefulnésiseo
the estimated source signals which does not correspondpigyesian approach.

the very nature of the sources. The results obtained with

SOBI algorithm are also given to illustrate the estimatidn o

both negative sources and mixing coefficients. These esdft Near Infrared Data

illustrate the need to take into account the non-negatiofty To validate the proposed approach with real data, an ex-
both source signals and mixing coefficients. periment is performed in which the mixture data are obtained



TABLE 1l: Synthetic source separation performances Figure 7 compares both the estimate and true sources in

- JlAngEg FalS?t'g? 'CA1'7A'2-25 NYIsF75 5'2254 . the more challenging bands (3500-4500¢nand 5000-6000
source 1 -19. - . -1/, - . - . 1 . .
CToe | 1856  -14.47 1482 019  -24.62 cm™ ), where j[he _peak_s of_ _the different source spectra highly
CT source3 | -16.05  -16.01 -16.53 11.47  -27.29 overlap, resulting in a significant cross-correlation. Sbarce

PL -1510  -15.36 -15.85 994 -27.23 spectra are well reconstructed, which makes the ideniificat

of the components easier. Concerning the estimation of the
cyclopentane cyclohexane n-pentane

from near infrared (NIR) spectroscopy measurements. Thr :
known chemical species (cyclopentane, cyclohexane and
pentane) are mixed experimentally with specified propostio
These species have been chosen for two main reasons. Fire
their available spectra in the NIR frequency band are high
overlapping and as a consequence are spatially correlat = e e S e Ry
This precludes the use of standard ICA methods to achieve
the separation. Secondly, these species do not interaat whe
they are mixed, guaranteing that no new component appe . oropenare . s . e
Thus, the number of sources as well as their concentrations
the mixtures are known exactly. In addition, their indivadlu £
spectra can be (and are) measured separately. Figure (83 shi
the pure spectra of the chemical species and their contientra
profiles.

wavenumber (cm*) wavenumber (cm*) wavenumber (cm')

orbance

5

absorbance

absorbance

absorbance
absnorbance

(8) cyclopentane _ (b) cyclohexane Fig. 7: Zoom of two subbands of the source spectra. The true
spectra are shown in dotted lines.

o
=)
o
© =3

concentrations, figure (8) shows the similarity of the eatid
mixing coefficients with the true concentration profilest hu
small error still remains.
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I
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o
(=)

o

()
o
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Fig. 8: Estimated (continuous curve) and true (dotted qurve

o concentration profiles
measure

&2
N
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0
3000 4000 5000 6000 7000 8000  900(
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Fig. 6: (a,b,c) Constituent spectra and (d) concentrati@n p
files V. CONCLUSION

_ _ _ _ _ The problem of non-negative source separation has been
_Wh|Ie processing the _m|xture data using _dlfferent methodgidressed in this paper. The proposed Bayesian inference
yields the performance index summarized in tat_JIe lll. Thes@nsiders the non-negativity as prior information which is
methods have been chosen because they give both n@Reoded through the assignment of Gamma distributiongprior
negative sources and mixing coefficients. The ALS methaghe Gamma density is an exponential family distribution
is initialized using an ICA method. The more recent NMRynich is frequently used to represent non-negative datatand
method offers the advantage of being numerically fast@facond advantage is that its shape allows to fit spectradlsign
Comparing the results shows the effectiveness of the peaposgy, 5t may present some sparsity and/or a possible background

inference. The result that has been presented illustrate that such prio
distribution is very suitable for the separation of spdctra
TABLE IlI: NIR spectra separation accuracy source signals. To achieve a better fit of the source signal
— 'C_ﬁ/.*z'-os ’—\Ill\gES 5_2523 distributions, the proposed approach can be straightfuliya
3;25:;26 1750  -23.43 -24.98 extended to the more general model consisting in mixtures of
T n—pentanc -17.88  -14.01 -26.05 Gamma or truncated normal distributions. A second resatt th
PI -1160 810 -19.22 has been discussed concerns the separation of non-negative
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sources by using independent component analysis methtod$23] K. Knuth, “A Bayesian approach for source separatiém Proceedings

has been shown that the separation of positive sources by an

ICA method is possible, but it is conditioned by the statsiti
independence of the non-negative sources. In that caséarsim

performances are obtained with the proposed approach. H
ever, if the independence assumption is not totally satisfi

by the sources, the non-negativity is an additional assiompt

that should be considered to improve the separation by an 0= _ o ,
[26] D. Rowe,Multivariate Bayesian Statistics: Models for Source Segian

appropriate Bayesian analysis model.
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