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Separation of Singing Voice From Music
Accompaniment for Monaural Recordings

Yipeng Li, Student Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Separating singing voice from music accompaniment
is very useful in many applications, such as lyrics recognition and
alignment, singer identification, and music information retrieval.
Although speech separation has been extensively studied for
decades, singing voice separation has been little investigated. We
propose a system to separate singing voice from music accompani-
ment for monaural recordings. Our system consists of three stages.
The singing voice detection stage partitions and classifies an input
into vocal and nonvocal portions. For vocal portions, the predom-
inant pitch detection stage detects the pitch of the singing voice
and then the separation stage uses the detected pitch to group the
time-frequency segments of the singing voice. Quantitative results
show that the system performs the separation task successfully.

Index Terms—Predominant pitch detection, singing voice detec-
tion, sound separation.

I. INTRODUCTION

I
T IS well known that the human auditory system has a

remarkable capability in separating sounds from different

sources. One important aspect of this capability is hearing out

singing voice (also called vocal line) accompanied by musical

instruments. Although this task seems effortless to humans,

it turns out to be very difficult for machines. To date, few

systems have addressed the problem of separating singing

voice from music accompaniment systematically. A singing

voice separation system has its applications in areas such as

automatic lyrics recognition and alignment. Automatic lyrics

recognition often requires that the input to the system is solo

singing voice [41], which is often unrealistic since for almost all

songs, singing voice is accompanied by musical instruments.

However, such a requirement can be satisfied if successful

separation of singing voice is used for preprocessing. Aligning

lyrics to singing voice is a key step for applications such as

karaoke [45], and currently it remains labor-intensive work.

Automating this process therefore will be of considerable help.
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An accurate lyrics alignment system will allow listeners to

follow singing voice more easily. However, the task of aligning

lyrics to singing voice becomes difficult when accompaniment

is present, and a separation system can be used to alleviate the

problem. Singer identification is another promising area for

applying such a system. Several studies [3], [19], [47] have ad-

dressed the problem of singer identification in real recordings,

but the attempts so far have not separated a singer’s voice. With

singing voice separation, the accuracy of singer identification

is expected to improve. Another area where singing voice

separation can be applied is musical information retrieval.

Singing voice carries useful information, such as melody, for

identifying a song in a database and singing voice separation

can facilitate the extraction of such information.

Although songs today are often recorded in stereo, we focus

on singing voice separation for monaural recordings where only

one channel is available. This is because a solution for monaural

recordings is indispensable in many cases, such as for record-

ings of live performance (non-studio recordings). Such a solu-

tion can also assist in analysis of stereo recordings. It is well

known that human listeners have little difficulty in hearing out

singing voice even when it is recorded with music accompa-

niment in a single channel. Therefore, a separation system for

monaural recordings could also enhance our understanding of

how the human auditory system performs this task.

Although speech separation has been extensively studied,

few studies are devoted to separating singing voice from music

accompaniment. Since singing voice is produced by the speech

organ, it may be sensible to explore speech separation techniques

for singing voice separation. Before applying such techniques,

it is instructive to compare singing voice and speech. Singing

voice bears many similarities to speech. For example, they both

consist of voiced and unvoiced sounds. However, the differences

between singing and speech are also significant. A well-known

difference is the presence of an additional formant, called the

singing formant, in the frequency range of 2000–3000 Hz in

operatic singing. This singing formant helps the voice of a singer

to stand out from the accompaniment [37]. However, the singing

formant does not exist in many other types of singing [5], [22],

such as the ones in rock and country music we examined in

this paper. Another difference is related to the way singing and

speech are uttered. During singing, a singer usually intentionally

stretches the voiced sound and shrinks the unvoiced sound to

match other musical instruments. This has two direct conse-

quences. First, it alters the percentage of voiced and unvoiced

sounds in singing. The large majority of sounds generated during

singing is voiced (about 90%) [20], while speech has a larger

amount of unvoiced sounds [42]. Second, the pitch dynamics
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(the evolution of pitch in time) of singing voice tends to be piece-

wise constant with abrupt pitch changes in between. This is in

contrast with the declination phenomenon [30] in natural speech,

where pitch frequencies slowly drift down with smooth pitch

change in an utterance. Besides these differences, singing also

has a wider pitch range. The pitch range of normal speech is

between 80 and 400 Hz, while the upper pitch range of singing

can be as high as 1400 Hz for soprano singers [38].

From the sound separation point of view, the most important

difference between singing and speech is the nature of other con-

current sounds. In a real acoustic environment, speech is usu-

ally contaminated by interference that can be harmonic or non-

harmonic, narrowband or broadband. Interference in most cases

is independent of speech in the sense that the spectral contents

of target speech and interference are uncorrelated. For recorded

singing voice, however, it is almost always accompanied by mu-

sical instruments that in most cases are harmonic, broadband,

and are correlated with singing since they are composed to be

a coherent whole with the singing voice. This difference makes

the separation of singing voice from music accompaniment po-

tentially more challenging.

In this paper, we propose a singing voice separation system.

Our system consists of three stages. The first stage performs

singing voice detection. In this stage, the input is partitioned and

classified into vocal and nonvocal portions. Then, vocal portions

are used as input to a stage for predominant pitch detection. In

the last stage, detected pitch contours are used for singing voice

separation where we extend a system for pitch-based separa-

tion [18]. The output of the overall system is separated singing

voice. To our knowledge, the proposed system is the first at-

tempt at a comprehensive solution to the problem of singing

voice separation.

The remainder of this paper is organized as follows. Section II

presents related work to singing separation. Section III gives

an overview of the system and describes each stage in detail.

Section IV presents the systematic evaluation of each stage as

well as the overall system. The last section gives further discus-

sion and concludes the paper.

II. RELATED WORK

To our knowledge, only a few systems directly address the

separation of singing voice from music accompaniment. Wang

[40] developed a system for singing voice separation by using a

harmonic-locked loop technique to track a set of harmonically

related partials. In his system, the fundamental frequency of the

singing voice needs to be known a priori. The system also does

not distinguish singing voice from other musical sounds, i.e.,

when the singing voice is absent the system incorrectly tracks

partials that belong to some other harmonic source. The har-

monic-locked loop requires the estimation of a partial’s instan-

taneous frequency, which is not reliable in the presence of other

partials and other sound sources. Therefore, the system only

works in conditions where the energy ratio of singing voice to

accompaniment is high. Another system proposed by Meron and

Hirose [27] aims to separate singing voice from piano accom-

paniment. For the system to work, a significant amount of prior

knowledge is required, such as the partial tracks of premixing

singing voice and piano or the music score for piano sound. This

prior knowledge in most cases is not available; therefore, the

system cannot be applied for most real recordings.

Since we pursue a sound separation solution for monaural

recordings, approaches to speech separation based on micro-

phone arrays are not applicable. Speech enhancement can be

employed for separation for monaural recordings. However, it

tends to make strong assumptions about interference, such as

stationarity, which generally are not satisfied for music accom-

paniment. An emerging approach for general sound separation

exploits the knowledge gained from the human auditory system.

In an influential book [6], Bregman proposed that the auditory

system employs a process called auditory scene analysis (ASA)

to organize an acoustic mixture into different perceptual streams

which correspond to different sound sources. This process in-

volves two main stages: Segmentation stage and grouping stage.

In the segmentation stage, the acoustic input is decomposed

into time-frequency (T-F) segments, each of which likely origi-

nates from a single source. In the grouping stage, segments from

the same source are grouped according to a set of ASA princi-

ples, such as common onset/offset and harmonicity. ASA has

inspired researchers to build computational auditory scene anal-

ysis (CASA) systems for sound separation [7], [12], [33]. Com-

pared to other sound separation approaches, CASA makes min-

imal assumptions about concurrent sounds; instead it relies on

the intrinsic properties of sounds and, therefore, shows a greater

potential in singing voice separation for monaural recordings.

The work by Mellinger [26] represents the first CASA

attempt to musical sound separation. His system extracts onset

and common frequency variation and uses them to group

frequency partials from the same musical instrument. However,

these two cues seem not strong enough to separate different

sounds apart. The author suggested that other cues, such as

pitch, should be incorporated for the purpose of sound sepa-

ration. The pitch cue, or the harmonicity principle, is widely

used in CASA systems. For example, Godsmark and Brown

[14] developed a CASA system which uses the harmonicity

and other principles in a blackboard architecture for grouping.

Goto [15] developed a music-scene-description system which

uses the harmonicity principle for melody detection.

Recently, a sound separation system developed by Hu and

Wang [18] successfully segregates voiced speech from acoustic

interference based on pitch tracking and amplitude modulation.

The Hu–Wang system employs different segregation methods

for resolved and unresolved harmonics. Systematic evaluation

over a commonly used database shows that the system performs

significantly better over previous systems.

The Hu–Wang system relies heavily on pitch to group seg-

ments; therefore, the accuracy of pitch detection is critical.

However, their system obtains its initial pitch estimation from

the time lag corresponding to the maximum of a summary

autocorrelation function. This estimation of pitch is unreliable

for singing voice as shown in [24], and it limits the separation

performance of the system. In [24], we proposed a predom-

inant pitch detection algorithm which can detect the pitch

of singing voice for different musical genres even when the

accompaniment is strong. The Hu–Wang system assumes that

voiced speech is always present. For singing voice separation,

this assumption is not valid. Therefore, it is necessary to have
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Fig. 1. Schematic diagram of the proposed system.

a mechanism to distinguish portions where singing voice is

present from those where it is not. On the other hand, although

their system cannot separate unvoiced speech, this limitation

is less severe for singing voice separation because unvoiced

singing comprises a smaller percentage in terms of time and its

contribution to the intelligibility of singing is less than that to

the intelligibility of speech.

III. SYSTEM DESCRIPTION

Our system is illustrated in Fig. 1. The input to the system

is a mixture of singing voice and music accompaniment. In the

singing voice detection stage, the input is first partitioned into

spectrally homogeneous portions by detecting significant spec-

tral changes. Then, each portion is classified as a vocal portion

in which singing voice is present, or a nonvocal portion in which

singing voice is absent.

The predominant pitch detection stage detects the pitch con-

tours of singing voice for vocal portions. In this stage, a vocal

portion is first processed by a filterbank which simulates the fre-

quency decomposition of the auditory periphery. After auditory

filtering periodicity information is extracted from the output of

each frequency channel. Next the probability of each pitch hy-

pothesis is evaluated and a hidden Markov model (HMM) is

used to model the pitch generation process. Finally, the most

probable pitch hypothesis sequence is identified as pitch con-

tours of the singing voice using the Viterbi algorithm.

The separation stage is extended from the Hu–Wang system

[18] and has two main steps: thej segmentation step and the

grouping step. In the segmentation step, a vocal portion is

decomposed into T-F units, from which segments are formed

based on temporal continuity and cross-channel correlation. In

the grouping step, T-F units are labeled as singing dominant or

accompaniment dominant using detected pitch contours. Seg-

ments in which the majority of T-F units are labeled as singing

dominant are grouped to form the foreground stream, which

corresponds to singing voice. Separated singing voice is then

resynthesized from the segments belonging to the foreground

stream.

The following subsections explain each stage in detail.

A. Singing Voice Detection

The goal of this stage is to partition the input into vocal

and nonvocal portions. Therefore, this stage needs to address

the classification and partition problem. For the classification

problem, the two key components in the system design are fea-

tures and classifiers. Different features have been explored for

singing voice detection. These features include mel-frequency

cepstral coefficients (MFCCs) [2], [25], linear prediction coef-

ficients (LPCs) [25], perceptual linear prediction coefficients

(PLPs) [3], and the 4-Hz harmonic coefficient [10]. MFCC,

LPC, and PLP are also widely used for general sound classifica-

tion tasks and they are the so-called short-term features because

they are calculated in short-time frames. Similarly, different

classifiers have also been explored, including Gaussian mix-

ture models (GMMs) [10], support vector machines (SVMs)

[25], and multilayer perceptrons (MLPs) [3]. As for the parti-

tion problem, HMM [2] and rule-based post-processing [10]

have been proposed. The underlying assumption of these two

methods is that a vocal or nonvocal portion sustains a certain

amount of time therefore the short-term classification should

not jump back and forth rapidly.

Several studies have shown that MFCC is a good feature

for sound classification, even for mixtures. Li et al. [23]

compared different features in classifying a sound into seven

classes and found that MFCC provides the best classification.

In Berenzweig’s work [2], MFCC-based classification also

performs well compared to other more complicated features.

Therefore, we use MFCC as the short-term feature for clas-

sification and calculate it for each frame. A frame is a block

of samples within which the signal is assumed to be near

stationary. However, the short-term classification is not reliable

since the information within a frame is limited. Observe that,

when a new sound enters a mixture, it usually introduces

significant spectral changes. As a result, the possible instances

of a sound event in a mixture can be determined by identifying

significant spectral changes. This idea is more compelling in

singing voice detection since a voice more likely joins the

accompaniment at beat times in order to conform with the

rhythmic structure of a song [31]. Beats are regularly spaced

pulses that give the sensation of the rhythm of music. Because

beats are usually generated by percussive instruments, they

tend to introduce strong spectral perturbations. The portion

between two consecutive spectral change instances is relatively

homogeneous, and the short-term classification results can then

be pooled over the portion to yield more reliable classification.

Therefore, we propose a novel method for extracting vocal

portions that takes into account the rhythmic aspect of music

signals. Specifically, we first partition the input into portions

by detecting instances when significant spectral changes occur,

and then pool the likelihoods over all the frames of a portion

and classify the portion into the class with the larger overall

likelihood.

We use a simple spectral change detector proposed by

Duxbury et al. [13]. This detector calculates the Euclidian

distance in the complex domain between the expected

spectral value and the observed one in a frame

(1)

where is the observed spectral value at frame and

frequency bin . is the expected spectral value of the

same frame and the same bin, calculated by

(2)

where is the spectral magnitude of the previous

frame at bin . is the expected phase which can be cal-

culated as the sum of the phase of previous frame and the phase

difference between the previous two frames

(3)
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where and are the unwrapped phases for

frame and frame , respectively. is calculated

for each frame of 16 ms with a frame shift of 10 ms.

A local peak in indicates a spectral change, which can

either be that the spectral contents of a sound are changing or a

new sound is entering the scene. To accommodate the dynamic

range of the spectral change as well as spectral fluctuations, we

apply weighted dynamic thresholding to identify the instances

of significant spectral changes. Specifically, a frame will be

recognized as an instance of significant spectral change if

is a local peak, and is greater than the weighted median

value in a window of size

(4)

where is the weighting factor. Finally, two instances are

merged if the enclosed interval is less than ; specifically,

if two significant spectral changes occur within , only the

one with the larger spectral change value is retained.

After the input is partitioned, we pool the information in a

whole portion to obtain more reliable classification. A portion

is classified as vocal if the overall likelihood of the vocal

class is greater than that of the nonvocal class. Formally let

be a set of feature vectors for a portion

with frames. Let and represent

the log likelihood of an observed feature vector being in the

vocal class and the nonvocal class , respectively. Then a

portion is classified as vocal if

(5)

We choose MFCC as the feature vector and the GMM as the

classifier since they have been widely and successfully used for

audio classification tasks [2], [23]. Specifically, we calculate a

-dimensional MFCC feature vector for each frame using the

auditory toolbox by Slaney [36]. A Gaussian mixture model

with components, each having a diagonal covariance matrix,

is used to model the MFCC distribution of the two classes:

and . The parameters of the GMMs are estimated using the

toolbox by Murphy [29]. The parameter estimation is initialized

using a -mean algorithm and stopped after 1000 iterations.

For easy reference, we summarize the parameters and their

values used in the singing voice detection stage in Table I.

B. Predominant Pitch Detection

In the second stage, portions classified as vocal are used as

input to a predominant pitch detection algorithm we proposed in

[24]. This algorithm is extended from the one by Wu et al. [46],

TABLE I
PARAMETER VALUES USED FOR SINGING VOICE DETECTION

which detects multiple, simultaneous pitch contours for noisy

speech. Compared to the original algorithm, we improve their

channel/peak selection method and obtain optimal statistics of

pitch dynamics for singing voice. As will be clear later, these

improvements directly contribute to our significantly better per-

formance compared to the original one.

Our predominant pitch detection starts with an auditory pe-

ripheral model for frequency decomposition. The signal is sam-

pled at 16 kHz and passed through a 128-channel gammatone

filterbank. The center frequencies of the channels are equally

distributed on the equivalent rectangular bandwidth (ERB) scale

between 80 Hz and 5 kHz. Channels with center frequencies

lower than 800 Hz are designated as low-frequency channels,

and others are designated as high-frequency channels. In each

high-frequency channel, the envelope of the filter output is ex-

tracted using the Teager energy operator and a low-pass filter

with the stop frequency 800 Hz [46].

After peripheral processing, a normalized correlogram is

computed for each channel with a frame length of 32 ms and a

frame shift of 10 ms, as shown by (6) at the bottom of the page,

where is the filter output for low-frequency channels and the

envelope of the filter output for high-frequency channels. is

the frame index, and is the time step index. Here,

corresponds to the frame length of 32 ms and the

frame shift of 10 ms. The normalized correlogram is calculated

for time lag from 0 to 200. The normalization converts cor-

relogram values to the range of [ 1, 1] with 1 at zero time lag.

The peaks in the normalized correlograms indicate the pe-

riodicity of the input. However, the presence of accompani-

ment makes the peaks in some channels misleading. Percussive

accompaniment usually has significant energy in the low-fre-

quency channels, which makes the peaks in those channels par-

ticularly unreliable. Consequently, we apply channel selection

to the low-frequency channels. Specifically, a channel is se-

lected if the maximum value of its normalized correlogram in

the plausible pitch range (80–500 Hz) exceeds a threshold .

is related to the degree of periodicity within a channel and we

choose , the same as in [46]. Our evaluation shows

this threshold value gives the highest pitch detection accuracy

and is not sensitive to the tested samples. Note that in a selected

channel, usually only one harmonic is dominant, and this har-

monic may or may not belong to singing voice. For a selected

(6)
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low-frequency channel, the time lags of peaks are included in

the set of peaks . For high-frequency channels, unlike in [46],

we retain all the channels and apply peak selection to conform

with the beating phenomenon [17]. Specifically, only the first

peak at a nonzero lag in the plausible pitch range of the normal-

ized correlogram is retained and the corresponding time lag is

included in .

Not applying channel selection in the high-frequency chan-

nels may introduce noisy peaks, whose time lags do not cor-

respond well to the fundamental period of the singing voice.

However, we have found experimentally that the time lag of

the first peak within the pitch range in a noisy high-frequency

channel is still a good indicator of the true pitch of singing voice

in many cases. We emphasize that this is not caused by the

singing formant since for the genres tested the singing formant

is not present. It is, however, possible that the high-frequency

components become more salient because of singing. More im-

portantly, keeping all the high-frequency channels makes more

channels available, which is important for distinguishing dif-

ferent harmonic sources as well as for reducing pitch-halving

errors. The peak selection method in high-frequency channels

is motivated by the beating phenomenon, i.e., high-frequency

channels respond to multiple harmonics and the envelope of

the response fluctuates at the fundamental frequency [17], [18].

Therefore, the selected time lag of the first peak corresponds

to the fundamental period of some harmonic source. Compared

to [46], this channel/peak selection method is tailored for the

pitch detection of singing voice in the presence of music ac-

companiment. As a result, our method along with the following

statistical cross-channel integration substantially improves the

performance of pitch detection for singing voice.

Next, the probability of a pitch hypothesis is evaluated. No-

tice that, if voiced singing is dominant in a channel, the distance

between the true pitch period and the time lag of the closest

observed peak tends to be small. With clean singing voice

available, the statistics of can be extracted. This statistic can be

quantitatively described by a Laplacian distribution [46], which

centers at zero and exponentially decreases as increases

(7)

where the distribution parameter indicates the spread of the

Laplacian distribution. The probability distribution of in a

channel is defined as

(8)

where the uniform distribution is used to model back-

ground noise, and indicates the plausible range of pitch pe-

riods. is the partition factor .

The Laplacian distribution parameter gradually decreases

as the channel center frequency increases. When estimated for

each frequency channel, we approximate this relation by

. A maximum-likelihood method is used to estimate the

parameters , , and according to the statistics of collected

from singing voice alone. Due to the different properties of low-

and high-frequency channels, the parameters are estimated in

these two ranges separately.

The statistics of when singing voice is accompanied by mu-

sical instruments can also be extracted. Since the sound of each

musical instrument in the accompaniment is not available, we

only collect from channels where singing voice is dominant,

i.e., the energy of singing voice is stronger than that of accom-

paniment. Here, we assume that in other channels is similarly

distributed. The probability distribution of is denoted as

and has the same form as in (8). Distribution parameters are also

estimated using the maximum-likelihood method based on the

statistics collected from mixtures of singing voice and accom-

paniment. The resulting parameters for and are sim-

ilar to those in [46] therefore are not listed here. For more details

about parameter estimation as well as the probability formula-

tion described in (7), (8) and in the following (9)–(13), the in-

terested reader is referred to [24], [46]. All the statistics used to

train the model are collected from a small database which con-

sists of clips different from those used for testing.

With the distribution of available, the channel conditional

probability for one- and two-pitch hypotheses can be formu-

lated. By estimating up to two simultaneous pitches rather than

one, the interference from concurrent pitched sounds can be

dealt with directly. When a mixture contains more than two

pitches, our algorithm should produce the two most dominant

ones. Since singing voice tends to be dominant when present, we

choose to produce no more than two pitches at a single frame.

For the 1-pitch hypothesi:

if channel is selected

otherwise
(9)

where is the hypothesized pitch, and is the difference be-

tween and the time lag of the closest peak in , which is the

set of peaks selected for channel . is the partition factor

for channel in the one-pitch case. If a channel is not selected,

then the probability of background noise channels is used.

The channel conditional probability of a two-pitch hypoth-

esis can be formulated, as shown by (10) at the bottom of the

page, where and are the hypothesized pitches. is the

partition factor for channel in the two-pitch case. is

the same as mentioned before. Channel belongs to

if the distance between and the time lag corresponding to

the closest peak in that channel is less than . This condition

if channel is not selected

if channel belongs to

else

(10)
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essentially tests whether channel is dominated by . In

this way, the formulation distinguishes from

. In the former case, the dominance of is

first tested, while in the latter case the dominance of is

first tested. If the hypothesized pitch dominates channel

, exceeds , and vice versa.

In other words, the first pitch in a two-pitch hypothesis is the

dominant one.

Due to the wideband nature of singing voice, the responses

of different channels are correlated therefore the statistical inde-

pendence assumption is generally invalid. However, according

to [16], this can be partially remedied by taking a root greater

than 1 to smooth the combined probability estimates. Hence, the

probability of the one-pitch and two-pitch hypotheses across all

the frequency channels can be obtained by

(11)

(12)

where and are the normalization factors. is used to com-

pensate for statistical dependency among channels. Note that

the combined probability estimate preserves the dominance of

the first pitch in a two-pitch hypothesis.

The final part of our pitch detection algorithm performs

pitch tracking by an HMM, which models the pitch generation

process. The pitch state space is a union of three -dimensional

subspaces , each of which represents the collection

of hypotheses with pitches. In each frame, a hidden node

represents the pitch state space, and the observation node

represents the set of observed peaks . The observation prob-

ability is calculated as (11) and (12). The pitch transition

between consecutive frames, i.e., between different states in

the pitch state space, is described by pitch dynamics, which has

two components: the transition probability between different

pitch configurations in the same pitch subspace and the jump

probability between different pitch subspaces. The transition

behavior within is well described by a Laplacian distribution

(13)

where is the change of pitch periods in two consecutive

frames of a pitch contour, and is the mean of the changes.

We extract from the true pitch contours of clean singing

voice and estimate and using the maximum-likelihood

method. For singing voice, the estimated values are

and , respectively. The zero value of indicates that pitch

contours of singing voice do not exhibit systematic drift. This

is different from natural speech where is estimated to be 0.4

[46]. Compared to [46], the value of for singing voice is also

smaller (0.7 versus 2.4), which indicates that the distribution

is more narrow. The transition behavior within can be

described as by assuming the two pitch contours

evolve independently. is the change of pitch periods in

two consecutive frames of the th pitch contour. The transition

probability between different pitch subspaces is determined by

TABLE II
TRANSITION PROBABILITIES BETWEEN STATE SUBSPACES OF PITCH

examining the pitch contours of singing voice and the pitch

contours of the dominant sound in the accompaniment. The

later one can be obtained by inspecting the spectrogram of

the accompaniment. Table II shows the estimated transition

probability between different pitch subspaces using the training

data.

The Viterbi algorithm is used to decode the most likely se-

quence of pitch hypotheses. If a pitch hypothesis in the optimal

sequence contains two pitches, the first pitch is considered as

the pitch of singing voice. This is because, as mentioned before,

the first pitch is the dominant one in our formulation.

C. Singing Voice Separation

For our separation task, we extend the algorithm by Hu and

Wang [18], originally proposed to separate voiced speech from

interference. Their algorithm has two main steps: segmentation

step and grouping step. In the segmentation step, the input, a

vocal portion, is passed through a model of auditory periphery,

similar to the one used in our predominant pitch detection. The

output of each channel is then divided into overlapping time

frames with the 16-ms frame length and the same frame shift

of 10 ms as used in the first two stages. Note that we use a

longer frame for pitch detection than for separation. Our eval-

uation using the same frame length as that for pitch detection

shows worse separation performance, probably because the as-

sumption that singing voice is stationary is valid only for a short

duration.

After the input is decomposed into T-F units, our algorithm

extracts following features for each T-F unit: energy, autocor-

relation, cross-channel correlation, and cross-channel envelope

correlation. Next, segments are formed by merging contiguous

T-F units based on temporal continuity and cross-channel cor-

relation. Only those T-F units with significant energy and high

cross-channel correlation are considered. Neighboring units ei-

ther in time or frequency are iteratively merged into segments.

In the grouping step, the Hu–Wang algorithm applies an

iterative method to estimate the pitch contours of the target

signal. Since we have already obtained pitch contours in the

second stage, we directly supply detected pitch contours in the

grouping step. The grouping step then proceeds with labeling

T-F units based on detected predominent pitches. Briefly

speaking, a T-F unit is labeled as singing dominant if its local

periodicity matches the detected pitch of the frame. If the

majority of the T-F units within a certain frame are labeled

as singing dominant, the segment is said to be dominated by

singing voice at this frame. If a segment has more than half of

its frames dominated by singing voice, the entire segment is

labeled as singing voice dominant. All the singing dominant
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segments are grouped to form the foreground stream, which

corresponds to the singing voice.

Our separation stage differs from the original Hu–Wang al-

gorithm in the grouping step. Specifically, their algorithm uses

the longest segment for grouping, which makes the dominant

source limited in time to the longest segment. To relax this limi-

tation, we perform grouping directly on the basis of labeled T-F

units as described above. As a result, our separation is simpler

and less constrained.

The separation stage outputs singing voice resynthesized

from the segments in the foreground stream. For more details

of the Hu–Wang algorithm, see [18], and for the corresponding

program code, see http://www.cse.ohio-state.edu/pnl/software.

html.

IV. EVALUATION AND COMPARISON

Systematic evaluation is important for gauging the perfor-

mance of a sound separation system. Although several common

databases currently exist for speech separation, there is none

for singing voice separation. The difficulty of constructing such

a database mainly lies in getting separately recorded singing

voice and music accompaniment. In modern studios, singing

voice and accompaniment are usually recorded separately and

then mixed together. However, such separate recordings are not

accessible due to copyright issues. On the other hand, some

modern commercial karaoke compact disks (CDs) are recorded

with multiplex technology in which singing voice and accompa-

niment are multiplexed and stored in a single file. With proper

demultiplexing software, separate singing voice and accompa-

niment can be extracted. We extracted ten songs from karaoke

CDs obtained from [1] to construct a database for singing voice

detection. These songs are sampled at 16 kHz with 16-bit res-

olution. Among these ten songs, five are rock music and the

other five are country music. Clips are extracted to form another

database for singing voice pitch detection and separation. We

refer to the energy ratio of singing voice to accompaniment as

signal-to-noise ratio (SNR) as in speech separation studies. In

the following subsections, we evaluate the performance of each

stage as well as the performance of the whole separation system.

A. Singing Voice Detection

With separate singing voice available, vocal and nonvocal

portions can be easily labeled for training and testing pur-

poses. We apply a simple energy-based silence detector on

clean singing voice signals to distinguish vocal portions from

nonvocal portions. Few systems developed for singing voice

detection consider the effect of SNRs on classification. We

found that a classifier trained at one SNR often performs poorly

when tested at another SNR because of the mismatch between

training and testing. Nwe et al. [31] pointed out that different

sections of a song (intro, verse, chorus, bridge, and outro) have

different SNRs, and a singing voice detector needs to handle

different sections properly. To address this problem, we train

a classifier with samples mixed in different SNRs. In this way,

the classifier is trained over a range of SNRs. Specifically, we

mix the singing voice track and the accompaniment track of

each song at SNRs of 10 and 0 dB and then use the mixtures

Fig. 2. Singing voice detection for a clip of rock music. (a) The waveform of
the singing voice signal. The thick lines above the waveform indicate vocal por-
tions. (b) The mixture of the singing voice and the accompaniment in 0 dB SNR.
(c) The spectrogram of the mixture. Brighter area indicates stronger energy. The
vertical lines in (d) indicate the spectral change moments identified by the spec-
tral change detector. (e) The frame-level classification of the clip. A high value
indicates the frame is classified as vocal and a low value as nonvocal. (f) The
final classification using the spectral change detection and the overall likelihood.

to train the classifier. The SNR of the songs in the database is

1.5 dB on average.

Fig. 2 shows the classification result for a clip of rock music.

The clean singing voice is shown in Fig. 2(a), and in Fig. 2(b),

it is mixed with music accompaniment to give an overall SNR

of 0 dB. The thick line above the waveform in Fig. 2(a) shows

the vocal portions obtained from silence detection. In Fig. 2(c),

the spectrogram of the mixture is plotted. The vertical lines in

Fig. 2(d) show the instances of significant spectral changes iden-

tified by our spectral change detector. The input is over-parti-

tioned to some extent, but the beat times and the time instances

when the singing voice enters are well captured except at times

around 0.7 and 1.1 s. Fig. 2(e) gives the result of frame-level

classification, i.e., a frame is classified as vocal (indicated as a

high value) if its likelihood of is greater than that of ,

and vice versa. As can be seen, frame-level classification is

not very reliable. Fig. 2(f) shows the final classification, which

matches the reference labeling indicated in Fig. 2(a) well except

at around 1.5 s for a very short nonvocal portion. Many frames

around 2.7 s are misclassified as vocal in the frame-level clas-

sification but are correctly classified as nonvocal as shown in

Fig. 2(f).

We perform tenfold cross validation to access the overall per-

formance of the proposed detection method. Each time, 90% of

the data is used for training and the rest is used for testing. This

process is repeated ten times, and the average of classification
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Fig. 3. Performance of the proposed singing voice detection algorithm in dif-
ferent SNRs. For comparison, the performances of four alternative methods are
also shown.

accuracy (percentage of frames) is taken as the performance of

the method. The total amount of data for training and testing is

about 30 min.

Fig. 3 shows the error rates of our singing voice detection

method in four different SNR situations. An error rate is

calculated as the percentage of frames that are correctly clas-

sified. For comparison purposes, the performances of several

other methods are also presented. Frame-level classification

is as described before. The HMM method is similar to the

one used in [2]. Each class is modeled as a one-state HMM

using the trained GMM as the observation distribution. The

exiting probability from the state is the inverse of the average

duration of portions of each class. In magnitude-based change

detection, we detect spectral changes in the real domain instead

of the complex domain but the classification is still based on

the overall likelihood. Another method combines the spectral

change detection and a majority vote to determine the labeling

of a portion. By a majority vote we mean that if the majority

of frames of a portion is classified as vocal the portion is

classified as vocal, and vice versa. As can be seen from Fig. 3,

the proposed method has the lowest error rates for the 0, 5, and

10 dB cases and is only slightly worse than that with majority

vote in the 5-dB case.

To give another evaluation of the singing voice detection

stage, we also calculate the precision and recall values of

singing voice for all the SNR conditions, and the results are

shown in Table III. The precision is the percentage of the frames

that are correctly classified as vocal over the frames that are

classified as vocal. The recall is the percentage of the frames

that are correctly classified as vocal over all the vocal frames.

The precision value becomes lower as SNR decreases, indi-

cating that more nonvocal portions are misclassified. The recall

values are high for all SNRs, indicating that most of the vocal

portions are correctly classified. This evaluation suggests that,

when making errors, this stage tends to misclassify nonvocal

portions as vocal portions, especially in low SNR conditions.

TABLE III
PRECISION AND RECALL (%) OF SINGING VOICE

Fig. 4. Predominant pitch detection on the clip of rock music. (a) Cochleagram
of the clip. Brighter area indicates stronger energy. The vertical axis shows the
center frequencies of frequency channels. (b) Results of pitch detection. The
thin solid lines indicate the reference pitch contours and the dots represent the
detected pitches. The thick lines at the top indicate the detected vocal portions.

B. Predominant Pitch Detection

In order to evaluate the applicability of the proposed system

to a wide range of polyphonic audio for singing voice detection

and separation, we further extract a total of 25 clips from the ten

songs used in the singing voice detection. The average length of

each clip is 3.9 s, and the total length of all the clips is 97.5 s.

The clips include both male and female singers. In some clips,

singing voice is present all the time; in some other clips, singing

voice is present either at the beginning, the middle, or the end of

a clip. For each clip, the singing voice and the accompaniment

are mixed at four different SNRs: 5, 0, 5, and 10 dB. The

variety in the testing database is designed to better access the

proposed system.

Since separate singing voice tracks are available, accurate

reference pitch contours can be determined. The reference pitch

contours are calculated using Praat [4], which is a standard

system of pitch detection for clean signals. The clean singing

voice is processed by Praat, and the detected pitch contours

are visually inspected to correct obvious pitch halving and

doubling errors.

Fig. 4 shows the result of the pitch detection for the same clip

in Fig. 2(b). The clip is partitioned into vocal and nonvocal por-

tions by the first stage. The cochleagram of the clip is shown in

Fig. 4(a). Unlike the spectrogram as in Fig. 2(c), the cochlea-

gram is an auditory spectrogram of a signal with a quasi-log-

arithmic frequency scale similar to that of the human auditory
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system. In this case, the cochleagram is calculated over 32-ms

time frames with 10-ms frame shift and a gammatone filterbank

with 128 frequency channels whose center frequencies are dis-

tributed on the ERB scale. It can be seen that the singing voice is

dominant in high-frequency channels, while the low-frequency

channels are severely corrupted by the accompaniment. The pre-

dominant pitch detection algorithm is applied to the detected

vocal portions. In Fig. 4(b), the detected pitches are plotted as

dots against the reference pitch contours which are plotted as

solid lines. In this example, the detected pitches well match the

reference most of the time. For unvoiced singing, such as the

portion from 2.2 to 2.3 s, the pitch detector gives pitches be-

longing to some other source. The thick lines in Fig. 4(b) indi-

cate the detected vocal portions.

Since pitch detection depends on classification, we consider

three cases to evaluate different aspects of the predominant pitch

detection stage.

1) No Classification: No classification is used and the pre-

dominant pitch detector is applied to the whole clip. The

results in this case should demonstrate the value of singing

voice detection.

2) Ideal Classification: The reference classification is used

and the predominant pitch detector is applied to vocal por-

tions only. This evaluates the performance of the pitch de-

tector alone.

3) Actual Classification: The classification obtained in the

first stage is used, and the predominant pitch detector is

applied to the detected vocal portions. This gives the com-

bined result for the first two stages.

Fig. 5 shows the gross error rates of pitch detection for dif-

ferent algorithms measured at the frame level; a gross error oc-

curs if the detected pitch is not within 10% of the reference pitch

in frequency. For nonvocal portions, the reference pitches are

set to 0 Hz. Since the pitch range for the types of singing ex-

amined in this study is relatively small compared to that of op-

eratic singing, we set 80–500 Hz as the plausible pitch range

for all algorithms. The correlogram algorithm for predominant

pitch detection has been used in several studies [35], [44] and is

used in [18] to get the initial pitch estimation. The performance

of the original algorithm by Wu et al. [46] is also presented.

Ryynänen and Klapuri [34] developed an algorithm for singing

voice pitch detection. Their algorithm detects multiple pitches

for each frame and then uses note models for tracking. Their al-

gorithm performs very well in the melody detection contest in

MIREX 2005. We obtained the software from the authors for

comparison purposes.

Fig. 5(a) and (b) shows the error rates for the cases of “No

classification” and “Ideal classification,” respectively. Since

the algorithm by Ryynänen and Klapuri implicitly performs

singing voice detection, its performance is only included in

Fig. 5(c) for the case of “Actual classification.” As can be seen,

our predominant pitch detection algorithm performs substan-

tially better than the correlogram algorithm and also improves

the accuracies over the Wu et al. algorithm. The Ryynänen and

Klapuri algorithm performs slightly better than ours for the

10-dB case, but our algorithm produces higher accuracies for

Fig. 5. Pitch detection error rates in different cases for different algorithms.
(a) No classification is performed prior to predominant pitch detection. (b) Ideal
classification is performed prior to predominant pitch detection. (c) Actual clas-
sification is performed prior to predominant pitch detection.

Fig. 6. Pitch detection error rates using different frame lengths. The same frame
shift rate is used for all evaluations.

the other SNRs, especially for the 5-dB case. In an earlier

study [24], we also compared our algorithm to the one by

Klapuri [21] and found that ours performs predominant pitch

detection significantly better.

We have also investigated the effects of frame length on pitch

detection. Fig. 6 shows the error rates of pitch detection using

four different frame lengths along with actual classification. As

can be seen, our algorithm performs best overall for the frame

length of 32 ms, and similar results are achieved with the frame
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length of 64 ms. The error rates are a little higher with the 16-ms

frame length, which is used in [46] for pitch detection of speech.

For the frame length of 128 ms, the error rates are considerably

higher at all the SNR conditions.

C. Singing Voice Separation

As mentioned in Section II, few systems are devoted to

singing voice separation. As a result no criterion has been

established for evaluating the separation of singing voice. A

fundamental question related to evaluation criteria is what the

computational goal of a singing voice separation system should

be. The Hu–Wang system [18] uses a notion called ideal binary

mask to quantify the computational goal. The ideal binary

mask is defined as follows: a T-F unit in the mask is assigned

1, if the energy of the target source in the unit is stronger than

that of the total interference, and 0, otherwise. This notion is

grounded on the well-established auditory masking phenom-

enon [28]. Human speech intelligibility experiments show that

target speech reconstructed from the ideal binary mask gives

high intelligibility scores, even in very low SNR conditions

[8], [9], [32]. More discussion of the ideal binary mask as the

computational goal of CASA can be found in [43].

For musical applications, the perceptual quality of the sepa-

rated sound is emphasized in some cases. However, perceptual

quality is not well defined and hard to quantify. Our informal

listening experiments show that the quality of singing voice re-

constructed from the ideal binary mask is close to the original

one when SNR is high and it degrades gradually with decreasing

SNR. Consistent with speech separation, we suggest to use the

ideal binary mask as the computational goal for singing voice

separation.

To quantify the performance of the system, we then calculate

the SNR before and after the separation using the singing voice

resynthesized from the ideal binary mask as the ground truth

[18]

SNR (14)

where is the resynthesized singing voice from the ideal

binary mask, which can be obtained from the premixing singing

voice and accompaniment. The clean reference singing voice is

available, but it is not used because of the computational goal

of our system as well as the distortion introduced in the signal

representation and resynthesis (see [18]). In calculating the SNR

after separation, is the output of the separation system.

In calculating the SNR before separation, is the mixture

resynthesized from an all-one mask, which compensates for the

distortion introduced in the resynthesis.

Fig. 7 shows a separation example of the same clip used in

Figs. 2 and 4. Fig. 7(a) is the clean singing voice resynthesized

from the all-one mask. Fig. 7(b) is the mixture resynthesized

from the all-one mask. Fig. 7(c) shows the resynthesized wave-

form from the ideal binary mask, and Fig. 7(d) is the output

of our separation system. As can be seen, the output waveform

well matches that from the ideal binary mask. It also matches

the original signal shown in Fig. 7(a) well.

Fig. 8(a) and (b) shows the ideal binary mask and the mask

estimated by the separation system, respectively. It is clear that

Fig. 7. Waveform comparison. (a) Singing voice. (b) Mixture. (c) Ground truth
resynthesized from the ideal binary mask. (d) Output of the proposed separation
system. The vertical axis in each plot indicates the amplitude of the waveform.

Fig. 8. Mask comparison. (a) Ideal binary mask obtained from the premixed
singing voice and accompaniment. White pixels indicate 1 and black pixels in-
dicate 0. (b) The mask of singing voice estimated by the separation system.

the estimated mask is similar to the ideal mask and retains most

of the energy of the singing voice.

Since separation depends on classification and pitch detec-

tion, we consider three cases in the evaluation, each character-

izing a different aspect of the system.

1) Ideal Pitch: The reference pitch contour is used for separa-

tion. This gives the ceiling performance of the separation

system.

2) Ideal Classification with Pitch Detection: Use the refer-

ence classification but use detected pitch for separation.

This isolates the classification stage and gives the perfor-

mance of the last two stages.

3) Actual Classification with Pitch Detection: This gives the

performance of the whole system.

Fig. 9 shows the SNR gains after separation by the proposed

system for the three cases. When the ideal pitch contour is given

(as shown by the Case 1 line), the SNR gains for low SNRs, e.g.,

5 and 0 dB, are significant. However, for the SNR of 10 dB,

the gain is relatively small. One reason is that in some cases the

pitches of singing voice may change rapidly. When the pitches

change fast, the separation stage does not group properly. An-

other reason is the presence of unvoiced consonants. Unvoiced

constants cannot be recovered by the pitch-based separation al-

gorithm. Also the Hu–Wang system gives only an estimate of the
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Fig. 9. SNR gain comparison. The SNR gains for the three cases are displayed
(see Section IV-C). Also displayed are the SNR gains of a comb filtering method.

ideal binary mask, and it makes certain errors in grouping seg-

ments belonging to the singing voice. When the original SNR

is high, the accompaniment is weak and the energy loss of the

singing voice may be comparable to the rejected energy of the

accompaniment. As the SNR decreases, the accompaniment be-

comes stronger and the energy loss of the singing energy be-

comes less compared to the rejected energy of the accompa-

niment. Therefore, the separation stage works better when the

original SNR is lower. For example, the system achieves an SNR

gain of 11.4 dB for the input SNR of 5 dB. We note that for

many applications, such as those mentioned in Section I, singing

separation is particularly needed for low SNR situations.

The use of the pitch detection algorithm given the ideal clas-

sification is subject to pitch detection errors. Erroneous pitch

estimates make some segments group incorrectly. As a result,

the overall performance (Case 2 in Fig. 9) is worse than that

with ideal pitch contours. For the SNR of 10 dB, the SNR after

separation is even slightly lower than that of the original mix-

ture. However, as the SNR decreases, the SNR after separation

is consistently higher. When the classification stage is also in-

cluded, i.e., the entire system is evaluated, the SNR gains (Case

3 in Fig. 9) are slightly lower than those in the second case.

Although the SNR after separation for the 10-dB case is not im-

proved, the system achieves SNR improvements of 7.3, 5.6, and

3.9 dB for the input SNR of 5, 0, and 5 dB, respectively. This

demonstrates that the proposed method works well for low SNR

situations.

For Case 3 where both actual classification and pitch de-

tection are used, we compare the proposed separation method

with a standard comb filtering method [11], which extracts the

spectral components at the multiples of a detected pitch. Note

that for the comb filtering method, actual classification is also

applied. The comb filter implemented has three coefficients and

is applied to every frame. After comb-filtering, the obtained

signal is passed through an all-one mask. This step makes the

comb-filtered signal comparable to the resynthesized signal

from a binary mask. The performance of the comb filtering

method, shown in Fig. 9, is consistently worse than that of

our approach. For example, the SNR gain is 0.9 dB lower

in the 10-dB case and 2.1 dB lower in the 5-dB case. The

worse performance is mainly caused by the fact that the comb

filter passes all frequency components close to the multiples

of a given pitch, which include those belonging to music

accompaniment.

The classification stage alone is expected to contribute to

the SNR gain by rejecting the energy from accompaniment. To

quantify this contribution, we calculate the SNR gains resulted

from classification alone. More specifically, after classification,

the vocal portions of the input are retained while the nonvocal

portions are rejected. The retained signal, after being passed

through an all-one mask, is used in (14) for the SNR calcu-

lation. The SNR gains from the classification stage alone are

1.4, 1.0, 1.1, and 0.2 dB for 5, 0, 5, and 10-dB cases, respec-

tively. Therefore, except for the 10-dB case, the contribution

of the classification stage to the overall SNR gain is small. In

other words, the overall system is responsible for the perfor-

mance improvements.

Since the separation stage is only applied to vocal portions,

we also measure SNR improvements using just vocal portions.

Compared to those using whole mixtures, the corresponding

SNR improvements are lower: 5.4, 3.5, 1.0, and 2.9 dB at input

SNR of 5, 0, 5, and 10-dB, respectively. In this case, the orig-

inal SNRs are higher and, as discussed earlier, our system does

not perform as well in high input SNR situations.

We have also directly applied the original Hu–Wang system to

the vocal portions obtained from the first stage. In this case, the

pitch contour of singing voice is iteratively refined starting from

the estimates obtained from the correlogram pitch detection al-

gorithm. It is found that the resulted SNR gains are lower. This

indicates that the proposed predominant pitch detection stage is

important for the performance of the overall system.

V. DISCUSSION AND CONCLUSION

As mentioned in the Introduction, few systems have been pro-

posed for singing voice separation. By integrating singing voice

classification, predominant pitch detection, and pitch-based sep-

aration, our system represents the first general framework for

singing voice separation. This system is also extensible. Cur-

rently, we use pitch as the only organizational cue. Other ASA

cues, such as onset/offset and common frequency modulation,

can also be incorporated into our system, which would be able

to separate not only voiced singing but also unvoiced singing.

Another important aspect of the proposed system is its adapt-

ability to different genres. Currently, our system is genre inde-

pendent, i.e., rock music and country music are treated in the

same way. This, in a sense, is a strength of the proposed system.

However, considering the vast variety of music, a genre-depen-

dent system may achieve better performance. Given the genre

information, the system can be adapted to the specific genre. The

singing voice detection stage can be retrained using genre-spe-

cific samples. The observation probability and the transition

probability of the HMM in the pitch detection stage are also re-

trainable. The genre information can be obtained from the meta-

data of a musical file or by automatic genre classification [39].
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Our classification stage is based on MFCC features. Re-

cently long-term features, such as modulation spectrum [10],

have been used with some success in related tasks such as

speech/music classification. We have attempted to incorporate

the modulation spectrum into the first stage, but the overall

classification accuracy is not improved. It seems that the modu-

lation spectrum of vocal and nonvocal segments does not have

enough discrimination power to produce further improvement.

Our pitch detection system uses an auditory front-end for

frequency decomposition and an autocorrelation function for

pitch detection. One problem with this autocorrelation-based

pitch detection approach is that the frequency resolution in the

high-frequency range is limited. As a result the proposed system

cannot be used to separate high-pitched singing voice, as en-

countered in operatic singing. However, most types of singing,

such as in pop, rock, and country music, have a smaller pitch

range and, therefore, this system can potentially be applied to a

wide range of problems.
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spectra in professional folk singing voices: A comparison of the Klapa
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