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SEPARATION OF SPERM WHALE CLICK-TRAINS FOR 
MULTIPATH REJECTION AND LOCALIZATION 

1. INTRODUCTION 

The localization of sperm whales (Physeter macrocephalus) is mainly accomplished through 
the measurement of the time-delay between individual clicks received at multiple sensors. 
Complicating the problem is the existence of multiple propagation paths ("multipath"), which 
causes false associations and false time-delay measurements. To reduce these false time-delay 
measurements, the elimination of multipath at individual sensors is proposed. This elimination 
will be accomplished by first arranging clicks into separate click-trains corresponding to 
individual whales and propagation paths, and then by classifying entire click-trains as either 
direct path or reflected path. 

Previous work in click-train separation has employed various clues, including spectral and 
temporal features, inter-click correlation, and multisensor time delay (references 1 - 3). In an 
earlier publication (reference 4), the author describes a technique for separating the sperm whale 
clicks received at a single sensor into individual click-trains. The click-trains could be from 
single whales with multipath or from multiple whales or from both. 

Assume that a series of Nc clicks has been received at one sensor. A click similarity metric 
L ij is defined here as a measure of similarity between clicks i andy, 1 < / < Nc, 1 <j < Nc, i £j. It 
is assumed that L y has a higher value if clicks i andy are more similar. The goal is to arrange 
clicks into related groups or click-trains so as to minimize the sum of L tj between sequential 
click-pairs in a group. The hypothesis is that, if the inter-click similarity is measured only 
between adjacent clicks within a click-train, then the total similarity (i.e., the sum of the inter- 
click similarity metric over all adjacent click-pairs) is maximized when the clicks are properly 
grouped. There must also be a penalty for creating a new click-train (otherwise, the metric 
would be minimized at zero by assigning each individual click to a click-train of one click). 
Thus, a fixed penalty value is added for each group. 

This problem setup is identical to that posed in reference 4—although, in that paper, the goal 
was the minimization of total error as opposed to the maximization of similarity. The algorithm 
reported in reference 4 has two shortcomings. The first shortcoming relates to the method that 
the algorithm uses to search for the maximum total similarity. The algorithm was inspired by the 
Viterbi algorithm, which is a type of dynamic programming (reference 5). It performed 
exhaustive searches over limited time windows, moving forward in time, and repeating the 
exhaustive search at regular time intervals. In environments with three or more whales, the 
exhaustive searches, even if limited in time, required too much computer time to complete. So, 
the number of click-pairs that could be considered at one time had to be limited, reducing the 
algorithm's performance. In the present report, this issue is addressed through the use of a 
"break-and-reassemble" approach that does not suffer the exponentially increasing computation 
time of the exhaustive searches, yet has comparable performance. 



The second shortcoming of the reference 4 algorithm is that it does not consider click-train 
correlations. In other words, once the click-trains are formed, the algorithm classifies the click- 
trains as direct path or reverberation based only on individual click characteristics. A better 
approach would try to establish whether two click-trains from the same sensor are related by a 
time delay, and, if they are, then the click-train that comes later in time is likely to be 
reverberation. 

In this report, these issues and related enhancements to the original algorithm are discussed. 
Further, the algorithm is tested as part of a localization system, and actual localization results are 
shown using data from the Second International Workshop on Detection, Classification, and 
Localization of Marine Mammals (Monaco 2005 Workshop) (reference 6), as well as 2007 data 
from the Atlantic Undersea Test and Evaluation Center (AUTEC) range. Section 2 discusses the 
process of separating the clicks into some number of click-trains. Section 3 describes the 
elimination of those click-trains due to multipath. In section 4, the click-trains are used to 
estimate the position of each whale. In section 5, the application of these techniques to real data 
is examined. 



2. CLICK-TRAIN SEPARATION 

2.1 CLICK DETECTION 

Clicks are detected on a single sensor within a 12-second data window. A wider time 
window is not desired because the ultimate goal is position estimation. The animal's position 
can be regarded as constant in a 12-second window. To detect clicks, a 0.012-second moving 
average of instantaneous power was used. A time quantization of 0.004 second was achieved by 
shifting the moving average 0.004 second at each update. The moving average can be 
normalized by any standard local background estimator that gives an approximately unbiased 
estimate of local ambient background noise power, such as a median filter. An approximate 
unbiased background power estimator is needed to prevent changing the effective signal-to-noise 
ratio (SNR) threshold as a function of click density, since nearby clicks could bias the estimate 
of local noise power. Before detection, the input data were bandpass filtered to the range of 
1800 to 24,000 Hz. Information below 1800 Hz tended to be affected by frequency dispersion 
effects, so its elimination made it easier to determine click arrival times because the clicks were 
sharper. 

Clicks are detected by first finding a local maximum above the threshold. The detection 
start time is found by searching backward in time from the peak and finding the point where the 
instantaneous power falls below one-quarter of the peak value or the point where it stops 
decreasing. The detection end time is found by searching forward in time from the peak until the 
power either: (1) exceeds the peak value, or (2) rises by more than 20% in one time step, or (3) 
reaches a maximum at about 64 msec from event peak location. The detection scheme seeks to 
declare only one event in the case of two closely separated peaks, such as may occur from the 
inter-click interval, or two events in the case of two very close clicks. It also allows for slight 
temporary increases in power on the tail end, such as may occur in reverberation. Since the start 
and end time of the click is determined "on the fly," the clicks have a variable duration. A short 
time-series was extracted from the input data stream for each click for later use in click 
classification and formation of click-trains (separation). 

2.2 CLICK PERIODICITY ANALYSIS 

A database of manually validated (validation methods are described in sections 5.2.1 
through 5.2.3) click-trains totaling some 68,000 clicks was gathered. A histogram of the time 
delays between adjacent clicks is shown in figure 1. The distribution has a median of 0.752 
second. There is a narrow central lobe with outliers. It is possible that many of the outliers are 
caused by errors in the validation process—for example, by occasional missing clicks. By fitting 
a two-component Gaussian (kernel) mixture model (GMM) to the distribution, the central lobe 
and outliers can be separately modeled. The main lobe is fitted with a GMM having a mean of 
0.7525 and a standard deviation of 0.1276. The outliers are modeled with a mean of 1.11 and a 
standard deviation of 0.4648. The main lobe component is a Gaussian distribution estimate of 
the instantaneous click period for sperm whales. 
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Figure I. Statistical Analysis of Click-to-Click Time Interval (Period) 

(Top: histogram of '68,000 validated click pairs. Bottom: two-component GMMfit. 

Red is GMM, light-blue is the histogram.) 

It is also interesting to analyze the consistency of the click-to-click time delays. A good 
measure of this consistency is to analyze each available click triple. Given consecutive clicks at 
times /,, //, tk, a period consistency measure is 

c = log 'ill' (1) 

A histogram of c is shown in figure 2. The distribution is centered at 0. As with the time delays, 
there is a narrow central lobe with outliers. Again, it is possible that many of the outliers are 
caused by errors in the validation process. Fitting a two-component GMM to the distribution 
allows the central lobe and outliers to be separately modeled. The central lobe has a standard 
deviation of 0.0526. The outliers have a standard deviation of 0.1534. The fit is illustrated in 
figure 2. The main lobe component is a Gaussian distribution estimate of the click period 
consistency for sperm whales and will be useful later in calculating a measure of goodness-of-fit 
(see section 2.3.3). 
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Figure 2. Statistical Analysis of Period Consistency 

(Top: histogram of 68,000 validated click pairs. Bottom: two-component GMMfit.) 

2.3 CLICK SEPARATION ALGORITHM 

2.3.1 Identification of Candidate Click-Pairs 

Let there be Nc detected clicks at one sensor within a specified time window of T seconds. 
The approximately Nc * Nc potential pairings are examined in order to determine a set of Np 

potential click-pairs. Let the time difference be defined as 

In practice, it is not necessary to examine all (approximately) Nc * Nc potential pairings because 
the search can be limited to only click pairings where /, < /,, and where the time difference falls 
within a practical range of values: 

r     < r    - r 
mm /,/ max 

For sperm whales, typically, 

rm,n = °-4 second,   rmax = 1.2 second. 



It is also possible to arbitrarily limit the SNR so that the ratio between the two peak SNRs must 
fall within a prescribed range. 

The left and right indexes of the click-pair candidates are given by 

(lp,/„),    \<p<Np. 

Thus, candidate click pairing p associates the clicks at time t, and time t. , and time difference 
ft J p 

*,mth-W 

2.3.2 Calculation of Click Similarity Metric 

Let Hi be the hypothesis that clicks /' andy are related (two sequential clicks in a click-train 
from one whale). Let Ho be the hypothesis that clicks i andy are unrelated, or are selected at 
random. There is a subtle difference between /// and Ho because, by chance, random selection 
could result in two related clicks being selected. To be precise, what is actually meant is the 
latter definition, selected at random. Let L,j be a statistical measure of how similar clicks i and j 

are defined: 

kj = lo8 
/>(#,*,,) 

P(H0*,j) 

where z(i/ are features extracted jointly from the time-series data of clicks i and j. Using Bayes' 
rule, 

kj = '°g 

kj = >°g< 

P(H, 

P(H0 

HJ) 

\J) 

(2) 

/>(//,)p(zJ//,) 
p(H0)p(z,JH0) 

where p(//o) and p(H\) are the a priori probabilities of HQ and H\\ 

p{Hx) = \-p{H,). 

Probability p(H i) is just the probability that two clicks are related if they are selected at 

random. A value of 0.03 was used forp(W\). The likelihood functions p(zjj\HQ) and 



/?(z, ,|//|) (actually, estimates of the true likelihood functions) are represented as a GMM and 

estimated using standard estimation methods (reference 7). Click-pairs for hypothesis H\ were 

collected from the 68,000 validated clicks (resulting in slightly less than 68,000 click-pairs), and 

their feature information was stored. Likewise, 48,000 randomly paired clicks were collected for 

The eight features include information that compares the clicks, such as spectral comparison 
and correlation coefficient (the normalized peak of the time-domain correlation of the two time- 
series), as well as information about individual clicks i andy. The click-pair features are listed in 
table 1. In addition to the 8 click-pair features, the difference of 10 single-click features (see 
table 3) from the left-most click (first in time) was used. Also, the difference of left and right 
click single-click features was appended. From this total of 28 features, the following 17 
features were selected and separated into 3 groups: 

[kerr, perr, aerr, K.3, D-K3], 

[cerr, psdot, derr, Kl, K2, K4, TSTD, TM4, D-Kl, D-K4, D-TM3], 

[dT], 

where "D-" stands for feature differencing. Feature selection was accomplished by maximizing 
classification performance while training on half of the data and testing on the other half. The 
experiment was then reversed by exchanging the two halves. The results were then combined. 

Table 1. List of Click-Pair Features Used for Click Association 

Name Description 
kerr Mean square reflection coefficient deviation 
cerr Coherent correlation measure. 
perr Log power ratio 
aerr Log amplitude (SNR) ratio 

psdot Power spectrum deviation 

snrmin SNR off weakest click 
derr Incoherent correlation measure 
dT Detection time difference 

Each of the two groups was independently modeled as a GMM, and the log-likelihood 
values of the three group likelihood functions were added. This approach reduced the effects of 
dimensionality on the estimation of the probability density function (PDF) models. Note that the 
detection time difference (dT) stands alone and is modeled by a fixed Gaussian distribution with 
a mean of 0.7525 and a standard deviation of 0.1276 (see section 2.2). 



A histogram of the likelihood ratio (equations (2)) is shown in figure 3. The classification 
performance on training data is shown in table 2. 

Hlttoarsim 

-20 -IO O 
Pair No F»olr Decision statistic 

Figure 3. Histogram of Likelihood Ratio (Equation (2)) for Training Data for 

Class H0 (Cyan) and H, (Red) 

Table 2. Confusion Matrix for Single-Click Classification 

Events Classified As: 

Ho H 
Ho (unrelated) 45,918(96%) 2082 (4%) 
H\ (related) 3770 (6%) 64,614(94%) 

2.3.3 Optimization Criterion 

Solution of the click separation problem is tantamount to finding the best valid subset of the 
Np click-pairs. Let 5 be a valid subset of the Np candidate click-pairs. To be valid, a given click 

must appear no more than once as a left-click in a pairing, and no more than once as a right-click 
in a pairing. Associated with each valid subset is a total similarity value: 

LXox{S) = P{S) + H{S) + JjLhip. 

The term P(S) is the total lone click penalty. In simple terms, P(S) is the number of clicks not 

appearing in subset 5 (unused clicks) multiplied by the specified constant lone penalty value 

P\onc- Typically, Pionc is set to a value less than the threshold appropriate for a two-class classifier 
between Ho and H\ (about -2 in figure 3). Increasing P\onc makes it more attractive to leave 



clicks out of possible pairings, while decreasing P\onc makes it more attractive to include clicks in 
possible pairings. P]on<: is set manually to maximize qualitative performance. 

H(S) is a periodicity measure based on c, the period consistency measure (equation (1)). 

H{S) increases if the clicks in 5 exhibit consistent periodicity. This term is calculated from each 

set of adjacent click-triples. Let (i,j, k) be a click-triple contained in a click-train in the 

groupings 5. Then, 

1 ,       c2 

h{iJ,k) = --\og(2xcr
2
) 

2 "    2a; 
•>» 

where c is the period consistency measure (equation (1)) and a2
p is the periodicity variance (a2 

= 0.05262) (see section 2.2). The total term H{S) equals the sum over all the triples contained in 

grouping 5: 

SeS   i.j.keS 

The click separation approach comes down to the maximization 

maxLtot(S). 

2.3.4 Algorithm Initialization 

The algorithm is initialized by choosing the null set 

s=n, 
thus assuming that all candidate pairings are false. Each click is therefore regarded as a click- 
train of one click. The value of Ll0, for the null set is simply Nc P\onc- 

2.3.5 Algorithm Update 

Let 5* be the current best solution. The algorithm is best described as "break and re- 

assemble" in that it chooses an arbitrary time / and removes all click pairs in 5* that straddle 

time /. Thus, it "breaks" the solution at time /. Let this broken subset be called 5'. The 
algorithm then enumerates all the valid subsets of candidate click-pairs that straddle time / and 

can be added to 5 to repair the break. Let 21 be the set of valid "repair" subsets or, in other 

words, the set of subsets S such that the union 5' + 5 is a valid subset. In mathematical 
notation, 

max Lm(S'+S). 



Set !Ris very small compared to the total number of valid click-pair subsets, so exhaustive 

search is very fast. The solution is broken and repaired at arbitrary times t that typically fall 
between clicks. Time t was selected on a uniform grid by incrementing by rmjn. Note that during 

initialization when 5 = { } there is nothing to "break," so the algorithm proceeds by adding the 

best subsets of click-pairs that straddle time /. 

2.3.6 Click- Train Merging 

Often the algorithm produces two overlapping click-trains that use alternating clicks from a 
given whale. To prevent this, click-trains are merged when possible and a test is run for any 
increase in the total similarity measure. Merging was done by forming one click-train from the 
union of the clicks in two click-trains. This technique has led to a significant performance 
improvement. 

2.3.7 Algorithm Convergence 

The algorithm declares convergence when Llol stops increasing after repeated attempts. 

10 



3. MULTIPATH ELIMINATION 

3.1  INDIVIDUAL CLICK CLASSIFICATION 

Before click-trains can be classified as reverberation, one needs to know how to classify 
individual clicks. To assist in the rejection of multipath, individual clicks are classified as direct 
path, surface path, or bottom-bounce reverberation. There is no inherent benefit in distinguishing 
the surface path from the bottom reverberation path, but the characteristics of the two reflection 
types are very different. It has been found that it is best to separate them for purposes of PDF 
estimation. The PDF models of the two classes are typically better than a single PDF model of 
the joined classes. 

A set of single-click features is extracted from the time-series of each click (that is, the input 
data samples in a time window encompassing the click). These features are listed in table 3. 
GMMs are used for PDF modeling. Single-click training data were manually collected for 
37,000 direct-path clicks; 26,000 surface-path clicks; and 4200 reverberation (bottom-bounce) 
clicks. Table 4 shows the results of a classification experiment using the single-click training 
data. Individual clicks were classified using a classical Neyman-Pearson classifier or so-called 
Bayes classifier for equal class prior probabilities. Thus, the likelihood function is calculated for 
each of the three hypotheses and the likelihood values are compared. A feature scatter diagram 
is shown in figure 4 for a typical feature pair.. 

Table 3. List of Single-Click Features Used for Path Identification 

Name Description 
SNR Log of signal-to-noise ratio 
Kl First autoregressive reflection coefficient 
K2 Second autoregressive reflection coefficient 
K3 Third autoregressive reflection coefficient 
K4 Fourth autoregressive reflection coefficient 
TSTD Second moment of signal energy about center of mass 
TM3 Third moment of signal energy about center of mass 
TM4 Fourth moment of signal energy about center of mass 
SI -4 Amplitude attack rate 
LEN Click detection length 

Table 4. Confusion Matrix for Single-Click Classification 

Events Classified As: Percent Classified As: 
Direct Surface Reverberation Direct Surface Reverberation 

Direct Path 30,545 6467 877 81 17 2 
Surface Path 604 25,396 232 2 97 1 
Reverberation Path 52 368 3843 1 9 90 

11 
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Figure 4. Scatter Diagram for Features TSDT and Kl for Direct Path (Red), 

Surface Path (Green), and Reverberation Path (Blue) 

(While the GMM model operates in many dimensions, viewing the data in two 

dimensions adds insight into the separability of the classes in the feature space.) 

3.2 CLICK-TRAIN CORRELATION 

To assist in classifying a click-train as direct path or multipath, the click-trains found at a 
given sensor are cross-correlated. The hypothesis is that two click-trains that are different 
propagation paths of the same original click-train will have a high correlation coefficient. If they 
correlate, the later click-train will be rejected as multipath. 

Two click-trains are correlated using the frequency-domain approach. The artificial 
frequency-domain representation of each click-train is created by assuming that the clicks are 
impulses (Dirac delta functions) of equal amplitude. The sampling rate is chosen to provide a 
time-domain resolution of 20 msec. The two click-trains are cross-correlated by calculating the 
inverse fast Fourier transform (FFT) of the product of the frequency-domain representations of 
the two click-trains. To produce smooth correlograms, the frequency-domain is limited (by 
Hanning shading centered at zero frequency) to one-quarter of the sampling rate, effectively 
providing an 80-msec resolution. Finer resolution is not desired as there is error in the click 
arrival times, as well as error due to animal motion during the time window (normally 12 
seconds). Correlation peaks are searched in a range of time depending on the bottom depth, 
which influences the maximum difference in propagation time between paths (±1.4 seconds was 
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used here). An example of a correlogram is shown in figure 5. Superimposed on the correlogram 
is the computed maximum correlation value, which depends on the delay value. The maximum 
correlation value equals the number of potential overlapping clicks (upper red line). In the figure, 
the maximum correlation value varies between 2 and 11, depending on the number of clicks that 
potentially overlap. The correlation value must be compared with this maximum value when 
determining if the correlation value is adequate. The actual unnormalized correlation at - 
0.5 second is about 10.5, which is very good compared to the maximum value of 11. Thus, it 
indicates that the two click-trains are indeed multipath related and the later click-train is 
multipath. In the figure, the side lobe peaks are due to the 1.1 -second period of the click-trains. 
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Figure 5. Example of Inter-Click Correlation 
(The light blue line can be interpreted as the number of overlapping clicks (Y-axis) when the two click-trains are 
superimposed at a particular delay (X-axis). The red line is the upper limit of correlation (the number of 
potentially overlapping clicks). The actual unnormalized correlation at-0.5 second is about 10.5, which is very 
good compared to the maximum value of 11. The upper limit indicates that there are 11 available time- 
overlapping clicks.) 

3.3 MULTIPATH ELIMINATION RULES 

Multipath click-trains are eliminated if the individual clicks within the click-train are 
overwhelmingly classified as surface or reverberation using single-click classification. This can 
be determined by calculating the median single-click likelihood value in the click-train. Click- 
trains with questionable classification results are not eliminated based on single-click 
classification. Those click-trains that remain are processed by click-train correlation (section 
3.2). If the correlation value exceeds a threshold of about 0.90 (as compared with the maximum 
potential value as described in section 3.2), the later click-train is eliminated. It was determined 
that at least four clicks need to be involved in the correlation; otherwise, the result is not 
meaningful. 
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4. LOCALIZATION 

4.1  LOCALIZATION APPROACH 

The problem of localizing sperm whales using click-trains received at multiple sensors 
works primarily by measuring time delays between the clicks received at multiple sensors and 
comparing them with a propagation model. Previous approaches (references 6, 8 - 10) have 
estimated time delays using clicks received at multiple sensors without first forming click-trains 
or removing multipath. 

4.2 INTER-SENSOR TIME-DELAY ESTIMATION APPROACH 

For localization, the click-train correlation described in section 3.2 is applied to correlate 
click-trains received at pairs of sensors. Time delays are subjected to a minimum correlation 
value of 0.9 and a minimum number of clicks (four). This results in a set of time delays from 
available sensor pairs. Each time delay carries a weight corresponding to the number of clicks 
involved in the correlation (the unnormalized correlation value in section 3.2). 

Besides the ability to reject invalid time delays, correlation can be used to form inter- 
associated groups. All of the available time-delay measurements can be organized into inter- 
related groups based on correlation. When initializing the localization solutions, this correlation 
significantly limits the number of potential locations to test. 

4.3 LOCALIZATION MODEL 

Assume for the moment that there is only one whale and that a single 12-second window of 
time is being considered. Thus, the whale is regarded as stationary. (Multiple whales and false 
time delays will be introduced later.) Let z be an initial guess of whale position. Let there be M 

time-delay values available from click-train correlation between pairs of sensors. For a two- 
dimensional solution, at least two time-delay values from three or more sensors are assumed; 
and, for a three-dimensional solution, at least three time-delay values from four or more sensors 
are assumed. Let r„ 1 < i < M, be the time delays, and let vv„ 1 < / < M, be the associated weights 
that represent the approximate number of clicks that are correlated to produce the time-delay 
estimates. 

Let T(z, s, r) be the model propagation time difference between sensor s and sensor r, 
assuming that the whale is at location z. Let time-delay measurement r, be based on sensors .v, 
and rt. Then, assume that 

r, = T(z,s„rl) + u„ 

where w, is zero-mean, Gaussian, independent noise with variance cr2. For the log-likelihood 
function, a weighted sum of the log-likelihood functions is formed for the independent 
measurements: 
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Q{r,,...rw;z,cr2) = logp(r,...tu|z) = £ wA--logger2)- —[r,-7\z,s,.,/-)]2 k (3) 

where p() is a PDF or a likelihood function. Weighting the terms by w, is equivalent to 

replicating the r, measurement w, times. The approach is to maximize £?(rlv..rw;z,cr2) over z. 
Note that o2

 can be estimated in parallel as the mean square time-delay error. The maximization 
of ^(r,,...rM;z,cr2) is more efficient if the first and second derivatives are analytically obtained. 

4.3.1 First Derivatives 

Let the model time-delay error be 

w, = r,-7Xz, *,,>-). 

Let 

z = [x,v,z]. 

Taking derivatives with respect to component x of vector z, 

ggae£«agfl.^j-^(-r^,,r,))jt 

where T
x
(z,s,r) is the partial derivative with respect to the x-component of z. Let D(z,zs) be 

the distance from position z to sensor s: 

ox 

= ~{D(z,z,)-D(z,zr)}, 
C ox 

= i|.{[(x-xJ)
2 +(y-y.)a +(^-^)2]"2 -K*-*,)2 +(y- yrf +(z-z,.)2]"2}, 

C ox 

= ^{D'(z,z5)2(x-xJ)-D-|(z,zr)2(x-xr)}, 

= i{D,(z,zv)(x-xs)-D-,(z,zr)(x-xr)}, 

where (x,t<y,,z,) is the sensors position and C is the speed of sound. Partial derivatives with 

respect to y and z are obtained similarly. 
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4.3.2 Second Derivatives 

Taking second derivatives, 

52^r'7^;''g2) = £^i-4r(Z,J<,r<)rx»,JMrf)--LM,^(»,s,.,rl)] 
cxdy ~f     [   o~ a J 

4.3.3 Fisher's Information Matrix 

The Fisher's information matrix is a P x P matrix where P is the total number of parameters 
(three or four including tr, depending on whether depth z is required). Let x andy be two 
arbitrary position parameters (they can represent any pair in the set {x,y,z}. Then, the x,y 

element of the Fisher's information matrix is 

_   JdQ(Tl,...TAf;z,a2)} 

•••""  |     dxdy     y 

where e { } is the statistical expected value (mean value). One needs to take the expected value 

of the negative of the above second derivatives. Note that £•{«,} = 0. Thus, 

7v- 2><p-r (* s»r>vy fr*i.»i)}- 

Note that in the above expressions x and v are general position parameters that stand for any two 
components of z. 

4.3.4 Solution Error Ellipse 

It is important not only to know the solution z that maximizes equation (3) but also the error 
variance associated with this solution. This information is important when updating a recursive 
tracker. It is also critical in establishing, for example, whether the depth component can be 
trusted. It is very common for the x,y position to be accurate but the depth estimate to be wildly 
off the mark. This condition typically occurs when there are no nearby sensors. It is also of 
interest to know along which axis in the x,y plane is the most error expected to lie. 

The x,y error ellipse is defined as a region in space (drawn around the position estimate) that 
can be regarded as the region in the x,y plane where—to some degree of certainty—the true 
position must be. It is possible to use equation (3) to estimate the solution error ellipse based on 
the Cramer-Rao lower bound. 

The Cramer-Rao lower bound matrix (reference 11) is the inverse of the Fisher's 

information matrix C = I"'   . Here, C is the 3 x 3 error covariance matrix for the three- 

dimensional parameter set z = {x,y,z} for a location solution. What this value represents is the 
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asymptotic error covariance matrix. As the amount of data goes to infinity (M—• oo), the error 
covariance 

£((z-z())(z-z0 )')-><:, 

where z is a solution estimate and zo is the true location. 

The solution error ellipse for solution z is the locus of points z* where the inner product 

(z-z*)'Ivi..(z-z*) = £, 

where Kisa constant, typically 1. These points can be drawn using eigen-analysis of matrix 
I        A MATLAB code segment to do this is provided below. 

~% 
% code segment to plot ellipse at solution z using FIM Ixyz 
% 
function plot_ellipse(z,lxyz,min_std_x) 

% Here we calculate C=inv(l) taking into account the possibility of singular matrix Ixyz. 
% min_std_x is the minimum positional standard deviation for a component x,y, or z 
[V,D]=eig(lxyz); 
e1=V(:,1);e2=V(:,2); 
d=diag(D); 

d=max(d, ([1000000 1000000 1000000]')."(-2)); 
d = 1./d; 

d=max(d, (min_std_x*[1 1 1]*).*2); 
C = V*diag(d)*V; 

% determine the individual standard deviations of each component 
xyz_std=sqrt(diag(C)); 

% now isolate x,y component and draw ellipse 
tV,D]=eig(C(1:2,1:2)); 
d=diag(D); 

% plot'+' at center 
plot(z(1 ),z(2), 'b+','linewidth',2); 

% now plot ellipse 
ang=[0:10:360]'; 
u= V(1:2,1:2) * diag(sqrt(d(1:2))) * V(1:2,1:2)' * [cos(pi/180*ang) sin(pi/180*ang)]'; 

plot(z(1)+u(1,:),z(2)+u(2,:)); 
return 

4.3.5 Localization Maximization Iteration 

The parameters of the solution include the time-delay error variance (? and the position 
vector 

z = [xyz]'. 

Let Zk be the position vector at the fc
h
 iteration. The algorithm update equation is 



z*.i =z*+ii(z*)<?(z*), 

where I_(Zj) is the Fisher's information matrix and S is the vector of first derivatives (of 

Q(z,a
2
) with respect tox,y, and z). Both are computed using previous solution z*. 

4.4 LOCALIZATION INITIALIZATION 

To localize, it is necessary to obtain starting points. One possible initialization approach is 
to determine likely starting points based on intersections of hyperbolas. Each time-delay 
measurement corresponds to a locus of points forming a hyperbola in a two-dimensional 
geometric plot (see figure 6). The depth of the whale must be assumed in order to create the 
hyperbolas. A depth of 500 meters can be used. Figure 6 shows such a set of hyperbolas drawn 
using the time delays obtained from a single 12-second window from dataset 3. The initial 
position needs to be accurate enough so that the time-delay errors are small. Using the geometric 
mean of the sensor positions, for example, would probably not be close enough as an initial 
guess. For the manual initialization, an operator manually entered a position based on observing 
the hyperbola plot. 
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Figure 6. Hyperbola Plots for a Single 12-Second Window from Dataset 1 

Using Initial Depth Estimate of 500 Meters 
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4.5 MULTIPLE WHALES AND FALSE TIME DELAYS 

Not all of the inter-sensor time-delay measurements that are produced for a given data time 
window are generally associated with a given whale position solution. Either they are false time- 
delays altogether, or they may be associated with other valid solutions. 

To handle the possibility that some time delays are not associated with the given solution, it 
is necessary to augment the weight w, in equation (3) with a membership probability calculated 
for the current position estimate z. Thus, let there be K potential solutions with current 
localization solutions z*. The membership probabilities are given by 

wki,   1 < k < K,  1 < i < M. 

Thus, a given time delay i is "soft-assigned" to the solutions. Two ways of calculating the 
membership probabilities Wkj are considered—"open-loop" (single pass) and "closed-loop" 
(iterative). 

4.5.1 Open-Loop Membership Weights 

For the open-loop method, a fixed weight that depends only on the time-delay error is 
assigned. The weight used here is 

wu = ni exP 
MM.i)^ 

v 2<r 

where am is the fixed membership time-delay standard deviation of 0.1 second and nt is the 
number of clicks associated with time-delay measurement i. The standard deviation om acts as a 
"soft" threshold for time delays to be included in solution k. 

4.5.2 Closed-Loop Membership Weights 

The open-loop method fails if time delays are close matches to more than one solution. 
Take, for example, figure 7 where three hyperbolas intersect more than one solution (there are 
four solutions indicated by the star-like convergence points for like-colored hyperbolas). 
Because each of these time delays (hyperbolas) is consistent with more than one solution, the 
open-loop scheme would probably assign each of these time delays more or less equally to two 
solutions, biasing the localization positions. There is no easy way to know a priori which 
solution the time delays belong to. The color-coding seen in the figure is an automatically 
generated grouping based on correlation, but it cannot be relied on in every instance to make the 
correct associations. Thus, at the outset it must be assumed that any time delay can associate 
with any solution. 
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Figure 7. Hyperbolas from Dataset 2 Simultaneously Showing Four Whales 

(A depth of 760 meters is assumed; this is the solution depth for the left-most whale.) 

Closed-loop membership probabilities allow an interactive "negotiation" to take place that 
attempts to resolve "disputes" happening when a given time delay suits more than one solution. 
These "disputes" can be resolved if, for a given solution, the time-delay errors for the correctly 
associated time delays are smaller than the time-delay errors for the falsely associated time 
delays. Then, the incorrectly associated time delays will have lower weight. This lower weight 
will reduce the bias, which in turn will drive the solution closer to the correct location, further 
reducing the time-delay errors for the correctly associated time delays. Eventually, the 
incorrectly associated time delays will be driven out of the solution altogether. 

Let ak be the weight of solution k and assume that 

*=i 

Weight a* may be thought of as a relative measure of the number of time delays that each 
solution "owns." The process is started by assuming that the solutions are equally likely, setting 
a* = \IK. Let a* be the solution-dependent time standard deviation. One can initialize Ok to 0.1 
second, for example. 

21 



To proceed, the unnormalized weights are computed: 

V 2(T
k ) 

The weights are then normalized to sum to 1 over k: 

w,, = 
w*. 

These weights are used in the update of the solutions (section 4.3). In contrast to the open-loop 

method, these weights grow larger if a2
 grows smaller (the solution is tighter) or if solution k 

becomes "stronger" (larger a*). At each iteration, the localization solutions z* are updated using 
the new time-delay membership weights Wkj. On the next iteration, the solution weights are 
recalculated: 

aL = 

The algorithm is summarized as follows: 

1. Initialize ak, a], 1 <k<K, as described. 

2. Compute iv^,., 1 <k<K, 1 < i < M, as described. 

3. Compute wkj from wk, as described. 

4. Update ak as described. 

5. Execute one iteration of the localization algorithm (section 4.3.5), noting that o2
 and w, 

are replaced by the solution-dependent a\ and wki. 

6. Go to step 2. 

As the algorithm iterates, weak or redundant solutions are "pruned." A solution is 
eliminated if (1) ak falls below a certain threshold, or (2) two solutions become physically closer 
than about 30 meters (the weaker solution is removed), or (3) the membership functions of two 
solutions become highly correlated, indicating that they represent the same set of time delays. 
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5. APPLICATION TO REAL DATA 

5.1 DATASETS 

Five localization datasets are considered. Details of these datasets are given in table 5. 

Table 5. Dataset Details 

Dataset 
Length 

(minutes) 
No. of 

Sensors 
No. of 

Whales Description 
Identi- 
fication Nickname 

1 25 5 1 Monaco 2005 #2 (set 1-5) "monaco" 

2 20 6 4 Monaco 2005 #1 (set 6-9) "monaco" 

3 50 7 1 AIJTEC BRS Drive 2007 Dive 1 (set 10) "new" 

4 50 8 1 AUTEC BRS Drive 2007 Dive 2 (set 11) "new" 

5 50 7 1 AUTEC BRS Drive 2007 Dive 3 (set 12) "new" 

6 >3 hours 3 2+ AUTEC BRS Drive 2007 Set 3-Song 1 (set 13) "latest" 

5.2 CLICK SEPARATION 

5.2.1 First Case Study 

An example of the click-separation algorithm output for a 12-second input time window is 
shown in figure 8 for an "easy" problem consisting of a single sperm whale. Data are from 
dataset 1. The algorithm has organized the clicks into five groups (click-trains). A detailed 
analysis of each click-train is provided in figures 9 through 11. The clicks associated with the 
direct path are shown in figure 9, the clicks associated with the surface path are shown in figure 
10, and the clicks associated with a bottom path are shown in figure 11. In the top panel of each 
of these figures, the click amplitude is plotted as a function of time. In the middle panel, a 
concatenation of the short-time Fourier transform (STFT) or "spectrogram" of each click is 
shown. In the bottom panel, inter-click correlograms are shown. For each consecutive click-pair 
in the sequence, the correlogram amplitude is plotted as intensity in a vertical strip. Each vertical 
strip is centered at the maximum amplitude, which results in the horizontal line in the center. 

Several clues establish the identity of the direct-path click-train. First is the consistent 
arrival time difference between the direct and the reflected paths. This clue is difficult to see by 
eye in figure 8. A naive algorithm can be easily fooled by being one period ahead or behind. To 
reliably establish time precedence, it is necessary to use correlation (see section 3.2). The second 
clue is the relative SNR of the direct path seen in figure 8. The direct path is often but not 
always the strongest path. The third clue is evidence of the inter-pulse interval (which is 
normally explained as a reverberation occurring within the animal's skull). This evidence 
appears in the correlograms (bottom panel in figure 9). A consistent 4-msec peak (both at +4 and 
-4 msec) can be seen. This evidence also appears in the spectrogram (middle panel of figure 9). 
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A closeup is shown in figure 12. Again, the 4-msec inter-click interval can be faintly seen. The 
inter-click interval varies, possibly with aspect angle, and tends to be lost in reflected paths due 
to multipath distortion. 

Further evidence that this click-train is a direct path is shown in table 6. This table lists 
classification statistics for the 14 clicks in the direct-path click-train in figure 8. Columns are 
SNR and probability (in percent) for direct path, surface path, and reverberation path. These last 
three columns are the result of the likelihood comparison described in section 3.1. Of the 14 
single-click classifications, 9 are direct path. Many, however, are classified as surface path. 
These statistics demonstrate the difficulty of using single-click information to classify clicks, 
especially direct path versus surface path. Additional information will be obtained from 
correlation of click-trains (see section 3.2). Despite the fact that several of the clicks are 
classified as surface, one can still establish them as direct path. 

Consider the same statistics generated from the surface-path clicks (table 7). For these, the 
surface-path probability is 100 for all clicks but one. This is a common occurrence and is 
probably due to the very unique character of the surface path seen in this dataset. 

Table 6. Single-Click Statistics for Direct-Path Clicks 

[14 710141721 25 28 31 34 37 40 43J 

SNR P (Direct) P (Reverberation) P (Surface) 

186 100 0 0 

204 97 0 3 

204 100 0 0 

189 100 0 0 

167 97 0 3 

180 93 0 7 

156 99 0 1 

128 99 0 1 

108 87 0 13 

93 0 0 100 

83 8 0 92 

86 1 0 99 

65 40 0 60 

61 16 0 84 

24 



Table 7. Single-Click Statistics for Surface-Path Clicks 

13 6 912 15 19 23 27 30 33 36 39 42]. 

SNR P (Direct) P (Reverberation) P (Surface) 

111 0 0 100 

146 0 0 100 

112 0 0 100 

126 0 0 100 

158 0 0 100 

131 0 0 100 

82 0 0 100 

96 0 0 100 

94 0 0 100 

112 0 0 100 

65 1 16 83 

130 0 0 100 

141 0 0 100 

Figures 10-12 show distinctly different correlograms and spectrograms. The correlograms 
are more random-looking and, especially for the reverberation path, the amplitude envelope is far 
more diffuse. For the reverberation path, the single-click classification statistics in table 8 are 
consistently for reverberation except for one click. It can be seen that a classification of the 
entire click-train can be accomplished reliably by averaging or in some way combining the 
single-click classifications. This must be augmented by information from correlating the click- 
trains. 

Table 8. Single-Click Statistics for Reverberation-Path Clicks 

118 22 26 29 32 35 38 41 44/. 

SNR P (Direct) P (Reverberation) P (Surface) 

5 13 85 2 

4 0 100 0 

5 1 95 4 

4 2 94 4 

5 0 100 0 

3 45 55 0 

4 0 100 0 

4 96 4 0 

3 0 100 0 
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Figure 8. Illustration of a Click Grouping for a 12-Second 

Time Window After Convergence (First Case Study) 

(Click SNR is plotted as a function of time. Click-trains have been rendered in separate colors 

and vertically separated for clarity. Clicks fl 4 710 14 1721 25 28 31 34 37 40 43/ are the 

direct path, clicks [3 6 9 12 15 19 23 27 30 are a reverberation path, probably bottom-reflected. 

Clicks fl3 16 20 ...J are possibly a second bottom-reflected path.) 
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Figure 12. Closeup Spectrograms for Three Clicks 

Showing a 4-msec Inter-Click Interval 

5.2.2 Second Case Study 

A second example of the click-separation algorithm output for a 12-second input time 
window is shown in figure 13 for a problem consisting of two sperm whales. The algorithm has 
organized the clicks into six main groups (click-trains). In this example, the clicks are drawn in 
a color depending on the result of the single-click classifier (section 3.1). The baseline of the 
click-train is painted in a color depending on the classification of the entire click-train based on 
summing the single-click probabilities of the component clicks. Data are from dataset 6. 

To validate the results of the display, the operator has several possibilities. A detailed 
analysis of the direct-path click-train [3 8 14 ...] is provided in figure 14. A detailed analysis of 
the surface-path click-train [4 9 15 ...] is provided in figure 15. A detailed analysis of the direct- 
path click-train [30 35 41 ...] is provided in figure 16. The characteristic clues can be seen for 
each type of click-train, as described in section 5.2.1. 

To further validate the classifications, click-train correlation is used (section 3.2). Click- 
train correlation results for click-trains [2711 ...] and [4915 ...] are shown in figure 17. The 
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lower graph in this figure shows an overlay of the click times for the click-trains. When the 
circles coincide with the dots at the estimated delay, a correct solution is indicated. This 
supports the classification of these chains as direct and surface. The characteristic of a surface 
path is a delay of less than about 0.5 second. 

Correlation results for click-trains [2711 ...] and [30 35 41 ...] are shown in figure 18. The 
results support the classification of these chains as direct path and bottom reverberation. The 
characteristic of a reverberation path is a delay of greater than about 0.5 second. 

Correlation results for click-trains [2711 ...] and [51016...] are shown in figure 19. The 
results support the classification of these chains as unrelated. 

Correlation results for click-trains [3 8 14 ...] and [5 10 16 ... ] are shown in figure 20. The 
results support the classification of these chains as direct and surface. 

Correlation results for click-trains [3 8 14 ...] and [29 37 43 ... ] are shown in figure 21. The 
results support the classification of these chains as direct and bottom reverberation. 
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Figure 13. Illustration of a Click Grouping for a 12-Second 

Time Window After Convergence (Second Case Study) 
(Click SNR is plotted as a function of time. Click-trains are rendered in separate colors depending on click- 

type classification (blue = direct path, green = surface path, red = bottom reverberation) and vertically 
separated for clarity. Clicks [2 711 ...J and [3 814 ~.J are direct path; clicks [4 915 ...J and [51016...] are 

surface; and[29 3743.../ and[30 35 41 ...J are bottom reverb. File: uSet3-Songl-082307-0545L nvt2.31".) 
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5.2.3 Third Case Study 

The third case study, also from dataset 6, is peculiar in that there are two reverberation paths 
(figure 22). Click-train correlation results for click-trains [14 18 22 ...] and [2811 ...] are shown 
in figure 23. The results support the classification of these chains as direct and surface. 

Correlation results for click-trains [2811 ...] and [10 13 17 ... ] are shown in figure 24. The 
results show surface to first bottom reverberation delay. 

Correlation results for click-trains [10 13 17 ... ] and [3 9 12 ...] are shown in figure 25. The 
results show first bottom to second bottom reverberation delay. 

Correlation results for click-trains [14 18 22 ...] and [3 9 12 ...] are shown in figure 26. The 
results show the full direct to second bottom reverberation delay. 
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Figure 22. Illustration of a Click Grouping for a 12-Second 
Time Window After Convergence (Third Case Study) 

(Click SNR is plotted as a function of time. Click-trains have been rendered in separate colors 

depending on the click-type classification (blue = direct path, green = surface path, red = 

bottom reverberation) and are vertically separated for clarity. File: "Set3-Song 1-082307- 

0545L nvt2.32".) 
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5.3 TIME-DELAY ESTIMATES 

There is no better way to assess the performance of multipath rejection than to view the 
resultant time-delay estimates from each pair of sensors. Time-delay estimates are plotted as a 
function of time for datasets 1 through 6 in figures 27 through 32. A separate graph is plotted for 
each hydrophone pair. In figure 27 (dataset 1), a consistent time-delay trace is seen for each 
hydrophone pair. No false time delays are noted for the entire dataset; however, note that any 
hydrophone pair that includes hydrophone 2 has a 0.9-second time-delay shift at the end of the 
dataset, probably due to a pause in the recording of hydrophone 2. In figure 28 (dataset 2), the 
presence of four whales is evidenced by the existence of up to four consistent traces in many of 
the hydrophone pairs. In figure 29 (dataset 3), the presence of a single whale is seen. A 
speckling of false time delays is present. Most of these have been traced to the failure to reject 
surface path. In figure 30 (dataset 4), the presence of a single whale is seen. In figure 31 (dataset 
5), the presence of a single whale is seen. In figure 32 (dataset 6), the presence of two loud 
whales and possibly more is seen. 
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Figure 27. Plots of Inter-Sensor Time-Delay for Dataset 1 

(Note the step-function at the end of the run in each sensor pair that includes 

sensor 2.  This is apparently a time-shift due to a glitch in sensor 2.) 
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5.4 LOCALIZATION RESULTS (CASE STUDIES) 

An operator can manually initiate a localization solution at the hyperbola crossing points 
(section 4.4). Using a graphical user interface, solutions were initialized by clicking at the 
convergence of the hyperbolas in figure 6 using a starting depth of 500 meters, and the algorithm 
was allowed to converge. The solution converged at a depth of 780 meters, with a final 
Crammer Rao bound that had a standard deviation of 4.3, 3.4, and 19.0 meters in x, y, and z. 
The hyperbolas redrawn for the 780-meter depth are shown in figure 33. Note that a much 
tighter convergence is seen. The time-delay error values are also shown at the bottom of the 
figure. There is one error value for each time delay (and each hyperbola). Note that one error 
value is associated with a false time delay (the hyperbola that does not meet at the convergence 
point). Error absolute values of 0.01 second and below are typical for valid time delays. 
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5.5 SINGLE WHALES 

Only one whale was present in datasets 1, 3,4, and 5. Localization error ellipses for dataset 
1 and a corresponding depth profile are shown in figure 34. 

Localization error ellipses for data set 3 and corresponding depth profiles are shown in 
figure 35 and 36. In the depth profiles, the depth component of the error bound is drawn as a 
cyan envelope. Note that outlier solutions are usually associated with a widening of the error 
bounds. These occur typically because there is an insufficient number of sensors to provide good 
position accuracy or there is poor sensor spatial distribution. This insufficiency is caused by the 
unavailability of any nearby sensors that provide adequate depth observability. As with the error 
ellipses in the two-dimensional plane, this provides a reliable "warning" that solutions may have 
significant error. 

Localization error ellipses and corresponding depth profiles for dataset 4 are shown in 
figures 37 and 38. 

Localization error ellipses for dataset 5 and a corresponding depth profile are shown in 
figure 39, and figure 40 shows hyperbola plots for dataset 5. 
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Figure 40. Hyperbola Plots for Dataset 5 
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5.6 MULTIPLE WHALES 

As many as four whales were present in dataset 2. The locations of manually initialized 
location solutions throughout the data record are shown in figure 41. An example of a hyperbola 
plot was shown earlier in figure 7, with clear evidence of four simultaneously vocalizing whales. 
The time-delays have been automatically grouped into inter-related sets, as described in section 
4.2. The hyperbolas have been color-coded according to group membership. The error ellipses 
for each of the four whales are shown in figure 42. The depth profiles are shown in figure 43. 
Depth was difficult to estimate. Contributing factors include lower SNR for the clicks and the 
presence of multiple whales, which may complicate the click-train separation process. 

A problem that can occur with multiple whales is that time-delay estimates can overlap. For 
instance in figure 7, the whale positioned farthest to the right (dark blue) has two hyperbolas that 
pass near solutions belonging to other whales. When solving for the positions of all of these 
whales using the open-loop membership function, positional errors will be introduced because 
those time delays belonging to other whales will not be rejected by the membership function 
(section 4.5). This case was processed using the closed-loop algorithm. Solutions were placed 
manually by clicking at the convergence point of each solution in figure 7, which was drawn 
using an average depth of 500 meters. At each of the four convergence points, 10 initial 
solutions were added in depth increments of 160 meters spanning the water column. As the 
algorithm iterated, solutions were removed according to the pruning rules (section 4.5.2). In 10 
attempts, each time clicking at random locations near the four convergence points, the algorithm 
correctly reported four surviving solutions with the same final locations. The results are shown 
in figure 44. Blowups are shown in figures and 45 through 48, where the tight convergence 
provides good separation from the nearby hyperbolas. 
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Figure 41. History of Manual Solution Initialization Points Over 20 Minutes (Blue Dots) 

(The converging hyperbolas are associated with the solution of the current frame.) 
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Figure 44. Example of Figure 7 After Convergence of the Closed-Loop Algorithm 

(The hyperbolas are color coded according to membership to the four remaining solutions. 

The final solution depth was used when drawing the hyperbolas of each solution. A cross (+) 

is drawn at the x-y location of each solution.) 
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Figure 45. Expanded View of Solution I in Figure 44 
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Figure 46. Expanded View of Solution 2 in Figure 44 
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Figure 47. Expanded View of Solution 3 in Figure 44 
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Figure 48. Expanded View of Solution 4 in Figure 44 
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6. SUMMARY AND CONCLUSIONS 

This technical report has presented results in three main areas. First, a sperm whale click 
separation algorithm that groups clicks into click-trains and solves the computational problem of 
a previous approach. The algorithm has been demonstrated on benign and demanding real-world 
examples. How an operator might examine and validate the algorithm's results has been 
discussed in detail. 

Second, two ways that single-sensor information can be used to eliminate multipath have 
been discussed: (1) features extracted from individual clicks to classify them as direct path or 
reverberation, and (2) cross-correlation of click-trains formed by the separation algorithm to 
determine if one click-train is a time-delayed copy of the other. 

Third, two versions of a localization algorithm have been demonstrated. Both versions 
handle multiple simultaneous whales and attempt to resolve "disputes" in which more than one 
localization solution competes for a given time-delay estimate. One version is "open loop" and 
assigns time delays to solutions based on a fixed weight that is based on time-delay error. The 
other version is iterative, or "closed loop," because it recursively updates the weights based on 
the error variance of each solution. Real results are shown where time delays are correctly 
assigned to four whales simultaneously vocalizing. 
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