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1 Introduction

The Separation of Variables (SoV), which traces its origin to the Hamilton-Jacobi approach

and later to Sklyanin’s works [1–4], is often regarded as the most powerful method to

solve quantum integrable systems (for recent developments see [5–20]). It is based on the

expected property that eigenfunctions of the integrals of motion factorise when evaluated

in a special basis 〈x| labelled by the “separated variables” x ≡ {xn}
L
n=1, where L is the

number of degrees of freedom. Schematically, the eigenstates decompose as

〈x|Ψ〉 =
L∏

n=1

Q(n)(xn) , (1.1)

where the factors can be determined by solving linear functional equations in one variable.

Typically, they coincide with the so-called Q-functions (or simple combinations of them),

and the functional equations are known as Baxter TQ equations or, in certain contexts,

Quantum Spectral Curve (QSC) equations, which also include nontrivial analyticity con-

ditions. When it can be worked out, the SoV gives access not only to the spectrum and

eigenfunctions of the integrals of motion (IM), but also usually leads to simple expressions

for correlation functions (see e.g. [21, 22] for examples in two-dimensional integrable field

theories and recent work [7] for spin chains).

The SoV paradigm is expected to hold true for quantum integrable systems carrying

any representation of the symmetry algebra, in contrast e.g. with the Bethe Ansatz (BA),

which can be applied only in special cases. In particular, there is a growing body of

evidence that this approach is applicable for such complicated systems as 4D N = 4

SYM. In [23–26], it was shown that some correlation functions at finite coupling, obtained

by various techniques such as supersymmetric localisation or the direct resummation of

diagrams, can be written as an integral of a product of Q-functions, in agreement with

the type of structures expected from SoV. This is especially exciting as these examples

appear in the non-perturbative regime of observables involving short operators, where the

BA methods are not applicable.1 This gives hopes that the complete non-perturbative

solution of planar N = 4 SYM could be obtainable by means of SoV methods. The result

for correlators should be given in terms of the Q-functions, which are, luckily, already under

full control at finite coupling: they are solutions of the QSC equations [29, 30],2 obtained

in one-to-one correspondence with the anomalous dimensions of primary operators. In

addition, there are other examples of the applicability of SoV for studying various corners

of the theory [9, 12, 36–40], and these techniques could eventually lead to the first principles

derivation of the BA-based Hexagon formalism [27, 28].

Developing the SoV approach in N = 4 SYM from first principles is very challenging.

The main conceptual difficulty is that we do not even have a precise definition (in terms of

1At weak coupling or for very long operators, one can get spectacular results with BA-inspired meth-

ods [27, 28], and even go beyond the planar limit [28].
2The QSC formulation is also known for the ABJM theory [31–33] and for some non-local operators [34].

A similar construction with nontrivial analyticity conditions for the Q-functions also exists for the Hubbard

model [35].
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a Hilbert space and Hamiltonian) of the integrable system which controls the spectrum of

N = 4 SYM at finite coupling. It can be in principle obtained in AdS/CFT by quantising

appropriately the worldsheet σ-model, which has not been done beyond a few quasi-classical

orders. The situation improves considerably if we consider a theory that is closely related

to N = 4 SYM, the so-called fishnet CFT. This model was obtained as a double-scaling

limit of the γ-deformation of N=4 SYM in [41]. Remarkably, it is a non unitary, non

supersymmetric, but exactly conformal theory (at least in the planar limit) defined by a

very simple Lagrangian:3

L = NcTr
(
∂µφ†

1∂µφ1 + ∂µφ†
2∂µφ2 + (4π)2ξ2φ†

1φ†
2φ1φ2

)
, (1.2)

where the complex scalar fields φi, i = 1, 2 are Nc × Nc matrices. The model inherits

integrability from the γ-deformed N = 4 SYM: in particular, the Q-functions and QSC

equations can be understood as a limit of the ones in the “parent theory” [43]. However, in

the fishnet model this integrable structure can be understood much more clearly [41, 43–45],

making it an ideal playground for developing the SoV program.

Integrability arises directly as a property of the fishnet Feynman diagrams, which were

already studied by Zamolodchikov in [44]. The resummation of fishnet graphs with the

topology of a cylinder, and the related Dyson-Schwinger equations, define rigorously the

integrable system associated with the spectral problem. It consists in a spin chain carrying

an infinite-dimensional representation of the 4D conformal group. The role of Hamiltonian

is played by the graph-building operator which constructs the Feynman diagrams [43], or

more conveniently its inverse, which acts as a differential operator. In the following, we

will refer to the conformal spin chain with this Hamiltonian as the fishchain, following [46].

As we review in the main text of the article, the eigenstates of the integrable system can

be interpreted as certain trace-trace correlators introduced in [47], and called CFT wave

functions. The CFT wave functions encode all information on the single-trace operators

at planar level, and moreover appear as natural building blocks in correlators, see figure 1.

One expects that, written in a basis of Separated Variables, they can be computed in terms

of the Q-functions solving the QSC equations. The chain of relations between operators,

wave functions, and Q-functions, is illustrated here:

spin chain SoV map

O(x0) −→ ϕO(x0|x1, . . . , xJ) ←→ qa(u)

single-trace operator CFT wave function Q-functions

(1.3)

For the simplest family of nontrivial operators, those with length one in the presence

of twists [48], the map between wave functions and Q-functions was found by the present

authors with A. Sever in [49]. Generalising this result to all states is currently an important

open problem, but the general methods of [4, 7, 20] give a clear indication of how to

construct the SoV transformation at least formally.

3We are omitting three double-trace vertices in the Lagrangian, which are needed perturbatively for

quantum conformal invariance, see [42]. The double traces enter only into a limited number of diagrams

and will not play a crucial role in this paper.
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Figure 1. Left: illustration of a CFT wave function. The point x0 represents the insertion of the

operator and implies the renormalised sum of an infinite ladder of wheel diagrams. Right: 3 CFT

wave functions glued together into a 3-point function at finite coupling. The wave functions contain

all the nontrivial coupling dependence of the 3-point correlator.

The explicit construction of such map is referred to as the operatorial approach to

SoV. In this paper, we do not address this problem yet. However, we take a functional

approach [15], which is based only on the Baxter TQ equations, and allows us to derive a

number of mathematical results related to the structure of the SoV.

A key element of our construction is the introduction of inhomogeneities, and arbitrary

scaling weights, on the sites of the spin chain. Such parameters are typically very useful in

the SoV program. Here we introduce them for the first time for the single-trace operators

in the fishnet model at finite coupling. Following [7, 15], we show how variations of these

parameters can be used to generate nontrivial operators acting on the spin chain, and to

compute their expectation values in terms of Q-functions, as we discuss below.

Another important technical ingredient used in this paper are quasi-periodic, or

twisted, boundary conditions along the spin chain, which break the conformal symmetry

of local operators [48]. The twists are crucial for the SoV, since they lift the degeneracies

of the spectrum and guarantee that solutions of the QSC are identified one-to-one with

the eigenstates of the spin chain. We use the construction of the colour-twist [48], which

is particularly simple for the fishnet model, and introduces the twists directly at the level

of Feynman graphs.

1.1 Summary of the main results

In the first half of the paper we develop the functional SoV formalism for the fishchain. In

the second part, we discuss some applications, which broadly concern three topics: scalar

– 3 –



J
H
E
P
0
6
(
2
0
2
1
)
1
3
1

products, spin chain form factors, and the g-function. We also speculate on the applicability

of our methods to N = 4 SYM.

Integral orthogonality relations. It was shown in [15] that one can realise the orthog-

onality properties of different integrable eigenstates, in terms of an integral over certain

combinations of their Q-functions. This type of orthogonality relations in the context of

the spin chains are very useful, e.g. made it possible [7, 13] to extract the SoV measure

explicitly for higher-rank models.

In the previously studied cases, the Q-functions were polynomials, but we demonstrate

in this paper how the approach extends to the situations when all Q-functions are non-

polynomial. The key building blocks for the integral orthogonality relations are integrals of

the product of two Q-functions, which we call Q-bilinear forms. We discuss in detail their

properties. We show that some of these forms are finite precisely for “on-shell” solutions of

the TQ-relations, i.e. those satisfying the quantisation condition giving a discrete spectrum

of conformal dimensions. This gives a new interpretation of the quantisation conditions,

which were previously quite mysterious and could be justified mainly by invoking properties

of the QSC in N = 4 SYM.

Variation of parameters and spin chain form factors. We obtained an analytic

formula for the variation of any integral of motion of the fishchain with respect to a pa-

rameter. The expression, similar to those found in [7, 13] for HW spin chains, consists in

a ratio of determinants built with integrals over products of Q-functions. Such observables

can be interpreted as spin chain form factors, i.e. expectation values of operators acting

on the spin chain. Since we have ∼ 4J integrals of motion, and we can use as a parameter

any of the 2J inhomogeneities + weights, a naive counting suggests that we have access to

∼ (4J)× (2J) different observables, where J is the length of the chain.

The simplest example is the derivative of the scaling dimension ∆A of an arbitrary

single-trace operator OA with respect to the coupling constant. It is well known from

conformal perturbation theory that such variation can be identified with the OPE coeffi-

cient [50]

∂ξ2∆A = CO†
A

OALint

, (1.4)

where Lint = Tr(φ1φ2φ†
1φ†

2) is the interaction vertex in the Lagrangian. Even though

such correlators can also be extracted from the known spectrum, our result gives a closed

answer in terms of the Q-functions at a given value of the coupling ξ — as a determinant

of one-dimensional integrals of Q-functions. Based on the example of [23], we expect

this to provide rich structural information for generalisations to more complicated OPE

coefficients. Correlators of the type (1.4) were also recently studied in [51] with the hexagon

decomposition approach. Understanding fully the relation with our result could help to

advance with the resummation of the Hexagon series. We were also able to compute the

expectation value of the variation of the Hamiltonian w.r.t. local weights, which is a natural

observable and provides an exact result for a class of Feynman diagrams with nontrivial

local insertions.
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The structure of the g-function. We will also make some observations on the compu-

tation of the so-called g-functions inspired by the recent papers [52] and [6]. The g-functions

capture the overlap between a spin chain eigenstate and an integrable boundary state (for

a more detailed definition see section 7), and have appeared in connection to several ob-

servables in N=4 SYM [53–56]. The traditional integrable formalism for computing the

g-function [57] is based on the thermodynamic Bethe Ansatz, and organises the result as a

product of two factors. One, simpler to compute, is boundary-dependent, while the other

is a universal factor which depends only on the state. In [52], a conjecture was presented

expressing the universal factor in terms of determinants built with the Q-functions, for the

case of the Sinh-Gordon model. This proposal — which still contains an undetermined

proportionality constant — passes an infinite number of nontrivial consistency checks, as

it reproduces a selection rule for the g-functions. Moreover it matches the SoV structure of

the overlaps which was later established rigorously for the Heisenberg spin chain in [6]. The

arguments of [52] are in the spirit of the functional SoV method, and are based on the anal-

ysis of the Q-function representation for the scalar product. We show that a similar analysis

can be extended to our case, and present the analogous conjecture for the fishnet model.

Towards N = 4 SYM. Finally, we point out that there are many aspects of the

functional SoV setup that can be generalised directly to N=4 SYM. In particular, it is

quite clear how a notion of scalar product as a multiple integral of the Q-functions can

be obtained in this theory, as we discuss in section 8. In turn, this gives a good starting

point to construct the g-function, which is expected to correspond to the TBA expressions

written down in [53, 54].

The key peculiarity of the N = 4 SYM case is that, even for short operators, the

underlying integrable system has an infinite number of degrees of freedom at finite coupling

(which is also expected from the dual worldsheet description). So the closest analogy

is [21, 22], where indeed the size of the determinant was infinite in the SoV-type integrals

appearing in the description of correlators. Nevertheless, at weak and at finite coupling, it

should be possible to truncate the determinants to a finite size, as the number of relevant

parameters in the Q-functions can be taken to be finite with very high precision when

studying the spectrum.

The paper is organised as follows: in section 2, we review the general spin chain

formulation, presenting a precise definition of the scalar product, and we summarise the

Baxter equations and properties of the Q-functions, introducing the new ingredients of the

inhomogeneities and weights. In section 3 we link the general spin chain formalism with

the fishnet CFT. In section 4 we describe technical details about an important notion

of Q-bilinear forms, and discuss the new interpretation of the quantisation condition. In

section 5, we derive the form of the variation of the integrals of motion. In section 6,

we discuss the orthogonality relations and the expectations for the scalar product in the

SoV basis. In section 7, we discuss the natural candidate for the universal factor of the

g-function in terms of our construction. In the last section 8, we sketch how the arguments

of this paper can be generalised to N = 4 SYM. We close with a short summary, and some

appendices where technical details are unrolled.
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2 Conformal spin chain

In this section we review in general the spin chains with 4D conformal symmetry at each

site. We start by discussing the conformal spin chain abstractly. We generalise previous

constructions, e.g. [45], by considering arbitrary conformal weights on different sites and

arbitrary inhomogeneities (similarly to [58]). We construct a natural notion of conformally

invariant scalar product on the spin chain, and we review the Baxter TQ equation, which

is the engine behind the integrability construction.

At the end of the section we also review the quantisation condition for the wave-

functions and its counterpart in terms of the Q-functions, which singles out a discrete

spectrum of anomalous dimensions as a function of one parameter, which will be identified

with the ‘t Hooft coupling in the next section.

2.1 Representation of the conformal group

In this section we introduce some notations for the representations of the Euclidean con-

formal group SO(1, 5) which we use below. We found it beneficial to use the 6D formalism

especially when it comes to fusion of transfer matrices [45]. Some expressions in 4D can

be found in e.g. [59].

For simplicity we consider only scalar representations on each site, with a generic

scaling dimension h, realised as functions f(xµ) of points x ∈ R4. The space of such fields

will be denoted as Fh. We will treat Fh as a real vector space, so that we do not have to

make any assumption on the reality of h. We will often focus on the h = 1 or h = 2 cases,

which are connected to the fishnet theory, and correspond (in the Euclidean signature in

which we work) to a representation of the conformal group without a highest nor lowest

weight vector.

In 6D space, the conformal group generators take the standard SO(1, 5) form

q̂MN = −i

(
XN ∂

∂XM
−XM ∂

∂XN

)
, N, M = −1, 0, . . . , 4 , (2.1)

which satisfy the standard commutation relation

[
q̂MN , q̂KL

]
= i

(
−ηMK q̂NL + ηNK q̂ML + ηMLq̂NK − ηNLq̂MK

)
. (2.2)

Here η is the 6D Minkowsky metric with signature −+++++. The action on the functions

of 4 variables is defined by acting on the expression

1

(X−1 + X0)h
f

(
X1

X−1 + X0
, . . . ,

X4

X−1 + X0

)
. (2.3)

As XM XM is invariant under SO(1, 5) we can set it to zero and thus exclude X− ≡
X−1−X0. As furthermore the action by q̂MN commutes with the re-scaling XM → αXM

and its eigenvalue is measured by h, we see that the form (2.3) must be preserved under

the SO(1, 5) action. In this way we induce the action of (2.1) on functions f(xµ) of 4

– 6 –
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variables. The generators q̂MN can be related to the dilatation D, translation Pµ and

special conformal transformations Kµ as follows

q̂−1,0 = D , (2.4)

q̂0,µ + q̂−1,µ = −Pµ , (2.5)

q̂0,µ − q̂−1,µ = −Kµ , (2.6)

q̂µ,ν = Sµν . (2.7)

On can deduce from (2.1) and (2.3) the explicit action on the 4D fields

Pµ ≡ −i∂µ, Kµ ≡ i
(
x2∂µ − 2xµ(x · ∂)− 2hxµ

)
, (2.8)

Sµν ≡ ixµ∂ν − ixν∂µ, D ≡ −ixµ∂µ − ih .

It is also useful to note that for a finite conformal transformation g ∈ SO(1, 5), the repre-

sentation acts as

g ◦ f(x) ≡

∣∣∣∣∣
∂g−1(x)

∂x

∣∣∣∣∣

h
d

f(g−1(x)), f ∈ Fh , (2.9)

where g(x) denotes the action of the conformal transformation on a point x ∈ R4.

The Hilbert space of the spin chain is a space of functions of J variables transforming

in the tensor product representation

Fh ≡ Fh1 ⊗Fh2 ⊗ · · · ⊗ FhJ−1
⊗FhJ

,

where for generality we consider different weights at every site and we denoted {h} ≡

{h1, . . . , hJ}. On this space we can define an action of the conformal group at each site

separately, and denote it by gα

gα ◦ F (x1, . . . , xJ) ≡

∣∣∣∣∣
∂g−1

α (xα)

∂xα

∣∣∣∣∣

hα
4

F (x1, . . . , g−1(xα), . . . , xJ) . (2.10)

The global action we denote as g is given by the product
∏J

α=1 gα as usual. We will also

use the notation for the sum of all weights,

D0 ≡
J∑

α=1

hα . (2.11)

2.2 The conformally invariant scalar product

Now we introduce a scalar product, invariant under the conformal group:

f1, f2 ∈ Fh −→ 〈〈f1 , f2〉〉h . (2.12)

The requirement that

〈〈f1 , f2〉〉h = 〈〈g ◦ f1 , g ◦ f2〉〉h , g ∈ SO(1, 5) , (2.13)

– 7 –
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fixes completely the form of the scalar product up to an arbitrary overall constant factor,

see [60] and appendix B. The result is given by:

〈〈f1, f2〉〉h =

∫
dDx f1(x) �

D/2−hf2(x) , (2.14)

where D = 4 and in general we define the fractional power of the d’Alambert operator by

(see e.g. [61]):

�
βf(x) ≡

(−4)βΓ(2 + β)

π2Γ(−β)

∫
d4y

f(y)

|x− y|4+2β
. (2.15)

For the Hilbert space of the spin chain the scalar product is defined by

〈〈F1 , F2〉〉 =

∫ J∏

α=1

dDxα F1(x1, . . . , xJ)
J∏

α=1

�
D/2−hα
xα

◦ F2(x1, . . . , xJ) . (2.16)

We will see in section 2.4 that the above scalar product needs regularisation in some

important cases.

2.3 Integrable fishchain with inhomogeneities

Here we introduce notations for the spin chain and build the integrals of motion via transfer

matrices.

Following [45, 47], we define an integrable system on the spin chain introduced above.

At this stage, we will keep the weights {h1, . . . , hJ} completely generic, even though, in

applications to the fishnet CFT, the relevant weights are either hα = 1 (non-magnon) or

hα = 2 (magnon).

To define the integrable system, we introduce a family of nontrivially commuting trans-

fer matrices following the construction of [43–45, 47, 59]. Their eigenvalues provide us with

a complete family of integrals of motion. We will also introduce inhomogeneities in the

definition of the transfer matrices, which will be labelled by {ϑα}, 1 ≤ α ≤ J , and twisted

boundary conditions.

2.3.1 Commuting transfer matrices

The transfer matrices will be denoted as T̂r with r ∈
{
1, 4, 6, 4̄, 1̄

}
labelling the represen-

tation in the auxiliary space, corresponding to antisymmetric tensors with 0, 1, 2, 3, 4

indices. To build them, we start from Lax matrices, which are differential operators acting

on a single site of the spin chain, and evaluated as matrices in the auxiliary space. The

– 8 –
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Lax matrices defined in [45, 47] are:4

L1

α(u) = 1, (2.17)

L4

α(u) = u−
i

2
q̂MN

α ΣMN , (2.18)

L6

α(u) = u2 + (u− i)q̂α +
q̂2

α

2
+

(1 + Chα)

4
, (2.19)

L4̄

α(u) = (u2 +
Chα

4
+ 1)

[
−L4

α(−u)
]T

(2.20)

L1̄

α(u) =

(
u2 +

Chα

4
+

5

4

)2

−
Chα

4
− 1 , (2.21)

where Ch ≡ h(h− 4) is the Casimir invariant for the representation at the site. The Sigma

matrices ΣMN are 4 × 4 for any choice of the indices M, N , satisfy ΣMN = −ΣNM , and

obey the same commutation relations (2.2). An explicit realisation of such matrices, which

we will assume in the following, can be found in appendix A.

The transfer matrices are defined as

T̂r(u) = Trr

[
L̂r

J(u− ϑJ)L̂r

J−1(u− ϑJ−1) . . . L̂r

1(u− ϑ1) Gr
]

, (2.22)

where Gr is an element of the conformal group in the representation r, introducing quasi-

periodic boundary conditions, and ϑi’s are the inhomogeneities.5

Since the Lax operators satisfy the Yang-Baxter equation as shown in [45, 47], the

transfer matrices commute for different values of the spectral parameter and for any choice

of the auxiliary space representation:
[
T̂r(u), T̂r′

(u′)
]

= 0 . (2.23)

Therefore, they can be diagonalised simultaneously. In the following, we often restrict the

discussion to the eigenvalues which are denoted as Tr(u).

2.3.2 Parametrisation of the twist

We will consider twist transformations G which admit two (real) fixed points in 4D. Such

transformations are diagonalisable in the 4 representation G4. We will consider the case

where the eigenvalues λ1, λ2, λ3 and λ4 = 1
λ1λ2λ3

are distinct. Accordingly, in the vector

representation G6 will have 6 eigenvectors Y M
a , which correspond to 6 fixed points yµ

a = Y µ
a

Y +
a

after projection to 4D. Due to the basic properties of SO(1, 5) orthogonal matrices, for

generic eigenvalues we find that Ya.Yb ∝ (ya− yb)
2 = 0 for all a, b, except for (a, b) = (1, 2)

or (3, 4) or (5, 6). Since in Euclidean space real vectors cannot be null-separated, this means

that one can only have at most two fixed points which are simultaneously real. There are

indeed precisely two real fixed points for

e−α0 = λ1λ2, , eiα1 = λ1λ3, eiα2 = λ2λ4 , αi ∈ R . (2.24)

4We use a redefinition of the spectral parameter as compared to the original papers, to remove the

explicit dependence on the Planck constant which was natural in the holographic setting of [45, 47].
5Later we also use the notation θα (rather than ϑα) for inhomogeneities with some extra shifts, see (3.16).

This is done so that the limit θα → 0 corresponds to the actual fishnet CFT.
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We will denote them as x0 and x0̄. To get an explicit parametrisation of the map, one can

send x0 → 0 and x0̄ →∞ by a similarity transformation

G = KRK−1, (2.25)

where K is a special conformal transformation acting on coordinates in 4D as

xµ → xµ
0 +

xµ − bµx2

1− 2(b · x) + b2 x2
, bν ≡

xν
0 − xν

0̄

(x0 − x0̄)2
, (2.26)

and correspondingly, on functions f ∈ Fh as

K ◦ f(x) =
(x0 − x0̄)2h

(x− x0 + x0̄)2h
f

(
xµ

0 +
xµ + bµx2

1 + 2(b · x) + b2 x2

)
, (2.27)

and R is of the form

R6 =




cosh α0 − sinh α0

− sinh α0 cosh α0
0

0 R4×4


 , (2.28)

with R4×4 being a 4D rotation matrix. A 4D rotation normally has two invariant orthogonal

planes. In a conventional standard position, we can take those planes to be (1, 2) and (3, 4).

In this case we get

R4×4 =




cos α1 − sin α1

sin α1 cos α1
0

0
cos α2 − sin α2

sin α2 cos α2




. (2.29)

We will frequently assume that in the standard frame the twist matrix G is of this “diag-

onal” form

Λ = (λ1λ2)−iD (λ1λ3)S1,2 (λ2λ4)S3,4 = eiα0D+iα1S1,2+iα2S3,4 , (2.30)

where D, S1,2 and S3,4 are defined in (2.4). In the representation 4 the twist matrix in the

standard frame becomes

Λ4 = diag(λ1,λ2,λ3,λ4) = diag

(
e− α0

2
+

iα1
2

+
iα2

2 ,e− α0
2

− iα1
2

− iα2
2 ,e

α0
2

+
iα1

2
− iα2

2 ,e
α0
2

− iα1
2

+
iα2

2

)
.

The eigenvalues λi’s, satisfying
∏4

a=1 λa = 1, are called twist parameters, and will appear

throughout the paper.

2.3.3 Global conformal charges

Under a conformal transformation of the wave functions connected to the identity,6 the

transfer matrices are invariant, up to a redefinition of the twist map:

g ◦ T̂r ◦ g−1 = T̂r

∣∣∣
G→gGg−1

. (2.31)

6For the spinorial representations 4 and 4̄, the relation (2.31) can be applied only for those confor-

mal transformations g which are in the connected component of the identity in the conformal group. In

particular, it cannot be applied to the transformation F introduced in (2.47).

– 10 –



J
H
E
P
0
6
(
2
0
2
1
)
1
3
1

Therefore, they commute with the Cartan generators of the form

{
Q̂0, Q̂1, Q̂2

}
≡ K ◦ {D, S1,2, S3,4} ◦K−1 . (2.32)

We will consider a basis of common eigenstates of the transfer matrices as well as the

Cartan charges, such that

(
Q̂a −Qa

)
◦Ψ(x1, . . . , xJ) = 0,

(
T̂r(u)− Tr(u)

)
◦Ψ(x1, . . . , xJ) = 0 , (2.33)

and we will denote the conformal charges as

Q0 ≡ i∆, Qn ≡ Sn, n = 1, 2 . (2.34)

Single-valuedness of the wave functions implies that Sn ∈ Z, while ∆ can be in principle a

generic complex number.

In the next section, we will see how these parameters are naturally identified with

the scaling dimensions and spins of twisted operators in the fishnet model. An appropri-

ate quantisation condition and the introduction of the coupling constant will restrict the

conformal dimensions ∆ to the physical values in the spectrum of the CFT.

2.3.4 Integrals of motion

The transfer matrices have a polynomial dependence on the spectral parameter, therefore

they are parametrised in terms of a finite number of commuting operators, the integrals

of motion.

There is also a trivial polynomial dependence in some of the transfer matrices, that

does not depend on the state. To separate this part, it is convenient to introduce the fixed

polynomials depending on the inhomogeneities:

Q+(u) ≡
J∏

α=1

(
u + i

hα − 2

2
− ϑα

)
, Q−(u) ≡

J∏

α=1

(
u− i

hα − 2

2
− ϑα

)
. (2.35)

After that the eigenvalues of the transfer matrices can then be written as

T1(u) = 1 (2.36)

T4(u) = P 4

J (u) (2.37)

T6(u) = P 6

2J(u) (2.38)

T4̄(u) = Q+(u)Q−(u) P 4̄

J (u) (2.39)

T1̄(u) = Q
[+1]
+ (u)Q

[−1]
+ (u)Q

[+1]
− (u)Q

[−1]
− (u) (2.40)

where P r
n(u) is a polynomial of degree n and we use the notation

f± ≡ f(u± i/2) , f [+a] ≡ f(u + ia/2) . (2.41)
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The highest degree coefficients in such polynomials are fixed in terms of the twist

eigenvalues:

P 4

J (u) = uJχ4 +
J∑

α=1

I(2,α)u
α−1,

P 6

2J(u) = u2Jχ6 +
J∑

α=1

(
I(0,α) + I(0̄,α)u

J
)

uα−1, (2.42)

P 4̄

J (u) = uJχ
4̄

+
J∑

α=1

I(−2,α)u
α−1,

with

χ4 =
4∑

a=1

λa , χ6 =
∑

1≤a<b≤4

λaλb , χ
4̄

=
4∑

a=1

1/λa . (2.43)

The remaining 4J coefficients, denoted as I(a,α), depend nontrivially on the state. The

conformal charges appear in the next-to-highest order terms:

I(+2,J) =
1

2i
[−2iϑλ++++ −∆ λ++−− + S1λ+−+− + S2λ+−−+] , (2.44)

I(−2,J) =
1

2i

[
−2iϑλ̄++++ + ∆λ̄++−− − S1λ̄+−+− − S2λ̄+−−+

]
,

I(0̄,J) = −2ϑ
∑

i<j

λiλj + i [∆(λ1λ2 − λ3λ4)− S1(λ1λ3 − λ2λ4) + S2(λ2λ3 − λ1λ4)] ,

where we introduced7

λs1s2s3s4 ≡
4∑

i=1

siλi , λ̄i ≡ 1/λi , ϑ ≡
J∑

α=1

ϑα . (2.45)

The remaining 4J − 3 coefficients are the nontrivial eigenvalues of the commuting family

of integrals of motion.

2.4 The quantisation condition for the wave functions

To define a well posed diagonalisation problem for the transfer matrices, we have to specify

an appropriate function space for the eigenvectors, or, in other words, a quantisation con-

dition. The condition we are interested in, for applications to the fishnet CFT, is that wave

functions are single-valued, and do not have singularities, except when all the coordinates

approach the fixed points x0 and x0̄ simultaneously.8

The approach to these points is obtained by evolving the coordinates with the transfor-

mation e−iρQ̂0 , for ρ → −∞ and +∞, respectively. Using the fact that the wave function

is an eigenvector under such transformation, we find, in the limit,

Ψ(x1, x2, . . . , xJ) ∼ ǫ−∆−D0 ×O(1), |xα − x0| ∼ ǫ→ 0 , (2.46)

Ψ(x1, x2, . . . , xJ) ∼ ǫ+∆−D0 ×O(1), |xα − x0̄| ∼ ǫ→ 0 ,

7To be clear, in this notation we have e.g. λ̄++−− = λ̄1 + λ̄2 − λ̄3 − λ̄4.
8In principle we can allow sub-leading singularities when only a subset of the coordinates approaches

the fixed point. In the examples we analysed explicitly for wave functions in the fishnet theory, we have

not found such sub-leading singularities.
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where ǫ ∝ e−|ρ|, (ρ→ ±∞) is a cutoff measuring the distance from the fixed points. Notice

that (2.46) distinguishes between the points x0 and x0̄ by the sign of ∆. The interpretation

of these equations will become clear when we relate the wave functions to a particular class

of correlators in the fishnet CFT where x0 is the location of a non-protected operator.

We expect that the regularity of the wave function everywhere except for x0 and

x0̄, together with (2.46) at these points, are sufficient conditions to restrict the spectrum

of integrals of motion to a discrete set, for any choice of the Cartan charges {∆, S1, S2}.

Alternatively, we can say that the quantisation condition restricts the 4J integrals of motion

to a set of curves, parametrised by a continuous variable which can be identified with ∆.

In applications to the fishnet CFT, we will alternatively identify the continuous parameter

on which the spectrum depends with the coupling constant.

Note that (2.46) implies that there is certain relation between a state with dimension

∆ and a state dimension −∆, which is obtained by interchanging the fixed points x0 ↔ x0̄

with a conformal map. For definiteness we fix this map to be

F ≡ K ◦ Ĩ ◦K−1 (2.47)

where K is the special conformal transformation appearing in the decomposition of the

twist (2.26), and Ĩ is the “holomorphic inversion” defined as

Ĩ ◦
(
x1, x2, x3, x4

)
≡

1

x · x

(
x1,−x2,−x3, +x4

)
, (2.48)

or, in 6D representation, as Ĩ6 = diag{1,−1, 1,−1,−1, 1}. Note, however, that whereas

this transformation keeps the diagonal form of the twist matrix, it flips the parameters

αa → −αa, a = 0, 1, 2. Therefore this transformation inverts the signs of the spins in

addition to ∆→ −∆ (see (F.6)), while exchanging the fixed points x0 and x0̄. As discussed

in section 2.7 and appendix F, this map appears in the relation between left and right

eigenvectors of the transfer matrices.

2.4.1 Convergence of the scalar product

Due to the singular behaviour of the eigenfunctions of the transfer matrices (2.46) the

convergence of the scalar product is not obvious. The general prescription, which may not

be particularly practical, is to make an analytic continuation in parameter space to reach

the values of ∆ where the convergence is manifest. This is essentially a ζ-function type

of regularisation. This prescription allows to regularise most of the cases, except for the

special case of the scalar product of two wave functions with opposite ∆’s in the same

frame (i.e. with the same singular points), for example the scalar product of a state and

its conjugate. In this case, near the singular point x0 we get an integral of the type

∫
|xα − x0|

+∆−D0
∏

β

�
2−hβ

β |xβ − x0|
−∆−D0

∏

β

d4xβ ∼
∫
|xα − x0|

−4J
∏

β

d4xβ (2.49)

which is log-divergent and thus cannot be regularised in this way. The only option in this

case is to introduce the cut-off. In this case the nontrivial object is the coefficient in front
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of the log, which is likely to be regularisation independent and will play an important role

〈〈Ψ, Φ〉〉 ≡ log
ǫx0ǫx0̄

(x0 − x0̄)2
〈〈Ψ, Φ〉〉fin + sub-leading . (2.50)

Without analytic continuation in parameters, for generic states 〈〈Ψ, Φ〉〉 is divergent

near the singularities, however, we expect the expansion in the small regulator ǫ to be

power-like. In this case we define 〈〈Ψ, Φ〉〉 as the finite part in the small ǫ expansion, which

is a non-ambiguous quantity in the absence of log type of divergences.

2.5 The Baxter TQ relations

The Baxter TQ equation gives a complete reformulation for the problem of diagonalising

the transfer matrices, as an equation in just one variable. The SoV basis should be possible

to obtain by diagonalising B and C along the lines of [7]. Instead of doing this, in this

paper we will bypass the explicit SoV construction by studying the TQ relation, which for

integrable models with SL(n) global symmetry takes a known form [62, 63]. For the rank-3

case relevant for the fishnet theory, it reduces to

T1[+2]Q[+4] − T4+Q[+2] + T6Q− T4̄[−1]Q[−2] + T1̄[−2]Q[−4] = 0 , (2.51)

where Tr are the transfer matrix eigenvalues (2.36). After the “gauge” transformation

Q(u) = q(u)eπuJ/2
J∏

α=1

Γ

(
−i

(
u− ϑα + i

hα − 1

2

))
, (2.52)

using (2.36) we find that it takes the form

0 = q[+4]Q
[+3]
+ Q

[+1]
+ −q[+2]Q

[+1]
+ P 4+

J +q P 6

2J−q[−2]Q
[−1]
− P 4̄−

J +q[−4]Q
[−3]
− Q

[−1]
− . (2.53)

Being a fourth order difference equation, it has four linearly independent solutions that we

denote as qa(u) with a = 1, . . . , 4. For what follows, it is also important to introduce the

dual Q-functions qa(u) which are built as 3× 3 determinants times an overall factor,

qa(u) ≡
Q

[+1]
+

Q
[−1]
−

J∏

α=1

Γ2
(
−i (u− ϑα) + hα

2 −
1
2

)

Γ2
(
−i (u− ϑα)− hα

2 + 1
2

) ǫabcd qb(u + i)qc(u)qd(u− i) . (2.54)

Using the results from appendix C we find that these functions qa satisfy a ‘dual’

Baxter equation, which reads

0 = q[+4]Q
[+3]
− Q

[+1]
− −q[+2]Q

[+1]
− P 4̄+

J +q P 6

2J−q[−2]Q
[−1]
+ P 4−

J +q[−4]Q
[−3]
+ Q

[−1]
+ . (2.55)

We see that it is related to the Baxter equation (2.53) for qa by simply exchanging

Q+ ↔ Q−, P 4
J ↔ P 4̄

J .

The four functions qa are distinguished according to their asymptotic behaviour for

large u:

qa(u) ≃ λ−iu
a uM̂a , (2.56)
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where λa are the twist eigenvalues, and M̂a are charges defined as

M̂a =
{

+∆−D0−S1−S2
2 , +∆−D0+S1+S2

2 , −∆−D0−S1+S2
2 , −∆−D0+S1−S2

2

}
. (2.57)

To fix the basis completely, one should furthermore impose analyticity conditions, as we

discuss in section 2.6.1.

The large u asymptotics of qa reads, similarly to (2.56)

qa(u) ≃ Caλiu
a u−M̂a−D0 , (2.58)

with the normalisation coefficients fixed by (2.56) as follows

Ca = (−1)aλa

∏

b,c 6=a, b<c

(λc − λb) . (2.59)

2.6 Quantisation condition for the Q-functions

To complete the solution for the spectrum, one has to further constrain the analytical

properties of the Q-functions, which will lead to the quantisation condition. This condition

is the Q-function counterpart of the requirement that the wave functions have no singu-

larities except for the ones in (2.46) we discussed above. The quantisation condition for

Q-functions is known at least in the case of weights hα ∈ {1, 2} which are relevant for

applications to the fishnet model [48, 64], and in this subsection we describe how it works.

Here we also verified it for generic hα. Once it is imposed, the values of the integrals of

motion are fixed to a discrete set, for any given assignment of the twists, inhomogeneities

and conformal charges (∆, S1, S2).

2.6.1 Analytic properties of Q-functions

Solutions of maximal analyticity. Let us define bases of solutions to the Baxter equa-

tion (2.53) with the largest possible region of analyticity.

One possibility is choosing the Q-functions to be analytic for very large positive Im u.

Such solutions will be denoted as q↓ (the direction of the arrow indicates that one starts

from large positive Im(u), and iterates the Baxter equation to move down). The form of the

Baxter equation implies that they unavoidably have infinitely many single poles extending

into the lower half plane, located at u ∈ P↓, with

P↓ =

{
ϑα + i

(hα − 3)

2
− im

}

α=1,...,J
, m ∈ Z≥0 , (2.60)

which implies that as we decrease Im u from a large positive value, the first poles will occur

at u = ϑα − ihα−3
2 , 1 ≤ α ≤ J , and the other poles will be reached by shifts of −i.

An alternative basis of solutions, denoted as q↑
a, can be chosen by requiring analyticity

for large negative Im u. The singularities of these functions are single poles for u ∈ P↑,

P↑ =

{
ϑα − i

(hα − 3)

2
+ im

}

α=1,...,J
, m ∈ Z≥0 . (2.61)
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These two bases are uniquely defined once their asymptotics — in the respective domains

of analyticity — are specified as follows

q↓
a(u) ≃ λ−iu

a uM̂a

(
1 +

∑

n=1

Ba,n

un

)
, u→ +i∞ , (2.62)

q↑
a(u) ≃ λ−iu

a uM̂a

(
1 +

∑

n=1

Ba,n

un

)
, u→ −i∞ . (2.63)

The coefficients Ba,n in the above asymptotic expansions are the same for both sets and

can be found systematically from the TQ-relations. The powers M̂a are defined in (2.57).

A useful property is that the Wronskians built with the full set of solutions are explicitly

fixed functions of the spectral parameter, generalising the case of differential equations

where they are constants. In the present case, defining

q1234(u) ≡ det
n=− 3

2
,− 1

2
, 1

2
, 3

2

{q1(u + in), q2(u + in), q3(u + in), q4(u + in)} (2.64)

we have as a consequence of the Baxter equation (2.53):

q1234(u− i/2)

q1234(u + i/2)
=

J∏

α=1

(
u− ϑα + ihα

2 + i
2

) (
u− ϑα + ihα

2 −
i
2

)

(
u− ϑα −

ihα

2 −
i
2

) (
u− ϑα −

ihα

2 + i
2

) . (2.65)

Finding the solution with appropriate analytic properties, we find

q↓
1234 ∝

J∏

α=1

Γ
(
−h

2 − i(u− ϑα) + 1
)

Γ
(
−h

2 − i(u− ϑα)
)

Γ
(
+h

2 − i(u− ϑα) + 1
)

Γ
(
+h

2 − i(u− ϑα)
) , (2.66)

q↑
1234 ∝

J∏

α=1

Γ
(
−h

2 + i(u− ϑα) + 1
)

Γ
(
−h

2 + i(u− ϑα)
)

Γ
(
+h

2 + i(u− ϑα) + 1
)

Γ
(
+h

2 + i(u− ϑα)
) (2.67)

(with the same constant proportionality coefficient), so we see that the Wronskian is a

state-independent function of u.

For the solutions of the dual Baxter equation we similarly define two bases

qa ↓/↑(u) ≃ λiu
a u−M̂a−D0

(
1 +

∑

n=1

Ba
n

un

)
, u→ ±i∞ . (2.68)

These functions have poles in the sets Pdual
↓ , Pdual

↑ , respectively,

Pdual
↓ =

{
ϑα − i

(hα − 1)

2
− im

}

α=1,...,J
, m ∈ Z≥0 , (2.69)

Pdual
↑ =

{
ϑα + i

(hα − 1)

2
+ im

}

α=1,...,J
, m ∈ Z≥0 . (2.70)

For any generic choice of the parameters entering the Baxter equation (including the values

of the integrals of motion), q↓
a and q↑

a can be computed numerically with arbitrary precision

with the method of [65] (see [45] for the fishnet case), which we review in section 4.2. To

fix the values of the integrals of motion to a discrete set (depending on the continuous

parameter ∆) we need to impose the quantisation condition described below.
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Relating the two bases. Since q↓
a and q↑

a are both bases of solutions of the same differ-

ence equation, they must be related by a matrix of i-periodic functions:

q↑
a(u) = Ω b

a (u) q↓
b (u), Ω b

a (u) = Ω b
a (u + i) . (2.71)

This matrix of coefficients can be constructed explicitly in terms of the Q-functions, as a

solution of the linear system (2.71):

Ω b
a (u) =

ǫbb1b2b3detn=−1,...,2

{
q↑

a(u− in)q↓
b1

(u− in)q↓
b2

(u− in)q↓
b3

(u− in)
}

ǫb1b2b3b4detn=−1,...,2

{
q↓

b1
(u− in)q↓

b2
(u− in)q↓

b3
(u− in)q↓

b4
(u− in)

} . (2.72)

Notice that the denominator in (2.72) is related by an argument shift to the quantum

determinant q1234 given by (2.64). From (2.72), it is easy to see that, for generic positions

of the inhomogeneities, Ω has first order poles at all points of the form −i(hα−1)
2 + ϑα + iZ,

and no other singularities. Since we have the periodicity Ω(u) = Ω(u+ i), we have the pole

decomposition

Ω b
a (u) = Ω b

0,a + 2π
J∑

α=1

Ω b
α,a

1− e2π(u−ϑα+i(hα−1)/2)
. (2.73)

It is also useful to analyse det Ω. For that we can repackage the equations (2.71) as




q
↑[+2]
1 q↑

1 q
↑[−2]
1 q

↑[−4]
1

q
↑[+2]
2 q↑

2 q
↑[−2]
2 q

↑[−4]
2

q
↑[+2]
3 q↑

3 q
↑[−2]
3 q

↑[−4]
3

q
↑[+2]
4 q↑

4 q
↑[−2]
4 q

↑[−4]
4




= Ω ·




q
↓[+2]
1 q↓

1 q
↓[−2]
1 q

↓[−4]
1

q
↓[+2]
2 q↓

2 q
↓[−2]
2 q

↓[−4]
2

q
↓[+2]
3 q↓

3 q
↓[−2]
3 q

↓[−4]
3

q
↓[+2]
4 q↓

4 q
↓[−2]
4 q

↓[−4]
4




, (2.74)

and take the determinant of the two sides to get q
↑[−1]
1234 = det Ω q

↓[−1]
1234 , so that det Ω can be

fixed explicitly from (2.66), (2.67) and reads

q
↑[−1]
1234

q
↓[−1]
1234

=
sin2 π

(
+h

2 + 1
2 + i(u− ϑα)

)

sin2 π
(
−h

2 + 1
2 + i(u− ϑα)

) = det Ω . (2.75)

For integer weights hα ∈ Z (which includes the case of the fishnet model when hα are 1 or

2), this implies that Ω has unit determinant.

Since the dual Q-functions are defined as determinants, we also have the following

relations

qa↑(u) = Ω̄ a
b (u) qb↓(u) , q↓

a(u) = Ω̄ b
a (u) q↑

b (u) , (2.76)

where

Ω̄ a
b = det Ω (Ω−1) a

b . (2.77)

2.6.2 Quantisation condition

The quantisation condition found in [48, 64] simply reads:

Ω 2
1 (u) = Ω 1

2 (u) = Ω 4
3 (u) = Ω 3

4 (u) = 0 . (2.78)
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It has been previously verified for the cases when hα take values 1 or 2, and we have also

tested it numerically for non-integer values of hα in the vicinity of 1, so we expect it to be

applicable for rather generic h as well. We believe that (2.78) is completely equivalent to

the quantisation conditions for wave functions described in section 2.4. Indeed, this can

be established for the J = 1 case where we constructed the SoV map explicitly in [48]. It

should be possible to prove it in general using the operatorial SoV formalism.

The conditions (2.78) correspond to setting to zero 4× J coefficients entering the pole

decompositon (2.73).9 It can be satisfied by tuning appropriately the values of the integrals

of motion entering the Baxter TQ relation as parameters. More precisely, we find that, for

fixed twists and inhomogeneities, (2.78) admits several families of solutions, each family

described by a one-parameter flow in the space of the integrals of motion. As already

mentioned, in the case of the fishnet theory the continuous parameter can be identified

with the coupling constant.

The gluing matrix. When (2.78) are satisfied, the matrix Ω has a further enhanced

symmetry: there exists a constant matrix (called the gluing matrix) of the form

Γab =




0 −γ 0 0

γ 0 0 0

0 0 0 −1/γ

0 0 1/γ 0




(2.79)

(where the constant γ is nontrivial and depends on the coupling), such that

ΓΩ = ΩT Γ . (2.80)

The existence of this matrix reflects the structure of the Quantum Spectral Curve of the

parent theory N=4 SYM, as discussed in [48], namely the antisymmetric i-periodic matrix

ω = (ΓΩ)−1 also appears in QSC. We checked numerically that this symmetry holds also

for some generic values of h, beyond the fishnet model. It would be interesting to find

a direct proof for the existence of the gluing matrix, using only the conformal spin chain

setup. Some nontrivial consequences of (2.80), relevant for this purpose, were found in [64]

and are reviewed in appendix D.

Useful identities. We notice that one can use the gluing matrix Γab to raise indices and

Γ−1
ab to lower them. For what follows it will be convenient to introduce the notation10

pa(u) ≡ (Γ−1)abq
b(u) , pa(u) ≡ (Γ)abqb(u) . (2.81)

These newly introduced functions satisfy the same Baxter equations as qa and qa respec-

tively. They only differ by the way they transform between the UHP and LHP bases

9In principle, every matrix element of Ω is parametrised by J + 1 constants as in (2.73). However, it is

possible to show that the vanishing of residues is sufficient for the full matrix element to vanish.
10In this sub-section we restrict to the case when hα are integer (such as in the fishnet CFT) so that

det Ω = 1.
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p↓
a(u) = Ω b

a (u) p↑
b(u) , i.e. they transform in the same way as qa in (2.71) but with arrows

reversed. It is convenient to introduce

ωab ≡ [(ΓΩ)−1]ab = ω0,ab + 2π
J∑

α=1

ωα,ab

e2π(u−ϑα−i(hα−1)/2) − 1
, (2.82)

so that we have

q↓
a(u) = ωab(u) p↑b(u) , p↑

a(u) = ωab(u) q↓b(u) , (2.83)

where as a consequence of (2.80), ω is anti-symmetric when the quantisation condition is

satisfied.

2.7 Orthogonality properties

In this section, we discuss orthogonality properties for the eigenstates of the integrable

system and relations between left and right eigenvectors of monodromy matrices.

Given the scalar product (2.16), we can construct the “transpose” of the transfer

matrices (T̂r)T with respect to this quadratic form, such that

〈〈f , T̂r ◦ g〉〉 = 〈〈(T̂r)T ◦ f , g〉〉, (2.84)

for any f, g ∈ F{h}. As we know, all conformal generators are antisymmetric w.r.t. this

bilinear form, so that (T̂r)T differ from T̂r by the replacement qMN → −qMN or, as we

show in appendix F, this is equivalent to first exchanging x0 and x0̄ with the holomorphic

inversion (2.47), and then also reversing the order of particles in the chain. As the TQ

relations are not sensitive to the order of particles this shows, as expected, that the right

and left eigenvalues of all the integrals of motion are the same (as would be in the finite-

dimensional case), but the explicit relation between the left and right eigenvectors in the

case of general ϑα’s and hα’s could be complicated (see an example of the map interchanging

particles in some particular cases in [45]). In the simplest case when all inhomogeneities and

the weights are equal, the left and right eigenvectors of the integrals of motion are simply

related by the holomorphic inversion (2.47) and relabelling coordinates xα → xJ−α+1.

With this insight in mind, we should have that the left and right eigenstates corre-

sponding to different eigenvalues of the transfer matrices are orthogonal, just like in the

finite-dimensional case. At the same time, if the eigenvalues are equal then we are in the sit-

uation discussed around (2.50) where we concluded that the scalar product is log-divergent

and the meaningful object is the finite coefficient in front of the logarithm. Furthermore,

in the generic situation the spectrum is expected to be non-degenerate.

3 Fishnet model as a spin chain

The goal of this section is to relate the abstract spin chain formulation with the field

theory observables. More precisely, we relate it to the planar fishnet CFT desribed in the

Introduction and defined by

L = NcTr
(
∂µφ†

1∂µφ1 + ∂µφ†
2∂µφ2 + (4π)2ξ2φ†

1φ†
2φ1φ2

)
. (3.1)

– 19 –



J
H
E
P
0
6
(
2
0
2
1
)
1
3
1

3.1 Operators and wave functions

The setup we are using in this paper includes the so-called colour-twist operators, which

generalise the traditional local single-trace operators. For the details of the construction

we refer to [48]. Below we briefly review the construction.

Colour-twist operators. We consider the colour-twisted version of local single-trace

operators, introduced in [48]. This gives a deformation of the concept of a local operator,

depending on a symmetry transformation G, which in our case will be a generic conformal

transformation with two fixed points. The deformation removes degeneracies in the spec-

trum and as a result make the SoV construction more regular and uniform. The presence

of the twists is also technically convenient and will make the form of our results much more

transparent.

Perturbatively, twisted single-trace operators are constructed as

O(x0) = Tr
(
∂̄n

1 ∂S1−n
1 ∂̄n

2 ∂S2−n
2 φJ

1 (x) φM
2 (x) (φ1(x)φ†

1(x))m1 (φ2(x)φ†
2(x))m2TG

)
+ . . . ,

(3.2)

where the dots stand for possible mixing with similar operators and ∂1 = ∂x1 − i∂x2 , ∂2 =

∂x3− i∂x4 . The marker TG indicates the starting point of a “twist-cut” on the worldsheet of

the planar Feynman graph. Each propagator crossing this line gets deformed in accordance

with the conformal group element G. For details and examples of the construction see [48].

Symmetries. The correlators involving twisted operators transform in a more compli-

cated way under the conformal symmetry, since one should also keep track of the of the

transformation of the colour-twist. Under the conformal transformation C ∈ SO(1, 5), the

twist map transforms as G → G̃ ≡ CGC−1, see appendix E. This in particular means

that all the usual degeneracies of the usual local operators are lifted — in particular the

operators transform nontrivially under the translation symmetry removing the necessity

of considering conformal primaries and descendants separately. Since the twist G remains

invariant under 3 generators in the Cartan subalgebra Q̂0, Q̂1, Q̂2 defined in (2.32) the

twisted operators can be classified by the corresponding 3 quantum numbers Qa, which are

two spins and the scaling dimension.

As we will see the scaling dimensions ∆ of such operators can be computed non-

perturbatively using integrability and are nontrivial functions of the coupling constant ξ,

as well as the twist angles λa. We can recover the value of the scaling dimension for a

standard local operator by taking the untwisting limit λi → 1.

In addition, composite operators of the fishnet theory carry quantum numbers J, M ∈Z,

associated to the U(1)×U(1) charges of the two scalar fields of the fishnet model.

The fishnet Lagrangian admits a Z4 discrete symmetry generated by the elemen-

tary move11
{

φ1, φ2, φ†
1, φ†

2

}
→
{

φ2, φ†
1, φ†

2, φ1

}
. This symmetry relates a quadruplet of

states with charges (J, M), (−M, J), (−J,−M), (M,−J), leaving invariant their spectrum

and wave functions. Thanks to this symmetry, we can restrict our analysis to the case

0 ≤M ≤ J without loss of generality.

11We thank D. Anninos for pointing this out to us, and for interesting discussions, see also [66].
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In accordance with the connection with the conformal spin chain (reviewed below), we

will refer to J as the length of the operator (i.e. the number of φ1 fields12), and M the

number of magnons (i.e. the number of φ2 fields minus the number of φ†
2 fields). The case

M = J needs some special treatment (see appendix D), and for simplicity in this paper we

restrict the analysis to the choice of quantum numbers |M | < J .

It is known that there also exist infinitely many non-dynamical operators in the fishnet

theory, which have zero anomalous dimension at the planar level. In this paper, we will

mostly focus on the operators O with non-zero anomalous dimensions.

Finally, notice that, since the fishnet theory is non-unitary, the dilatation operator is

strictly speaking not diagonalisable. Indeed, examples of Jordan blocks of the anomalous

dimension matrix have been studied in [66–68]. In all known examples it was found that

the generalised eigenvalues of the non-diagonalisable Jordan blocks are zero, which can be

verified at all loops in some cases by diagrammatic arguments [66]. It is our working as-

sumption that this is true in general (at least at the planar level), so that the only operators

acquiring anomalous dimensions are proper eigenvectors of the dilatation operator, which

do not mix with the non-diagonalisable Jordan blocks. We believe that all such nontrivial

operators are captured by the integrability methods discussed in this paper.

The CFT wave function. All information on a single-trace operator can be encoded

into a special kind of correlator called the CFT wave function [47], which will play the role

of the spin chain wave function. It is defined as the renormalised correlator

ϕO(x1, x2, . . . , xJ) = 〈O(x0) Tr (χI1(x1)χI2(x2) . . . χIJ
(xJ)TG−1)〉 , (3.3)

where the indices Iα ∈
{
0, 1,−1, 0̄

}
, and the fields in the second trace are

χ0(x) ≡ φ†
1(x) , (3.4)

χ1(x) ≡ φ†
2(x)φ†

1(x) , (3.5)

χ−1(x) ≡ φ†
1(x)φ2(x) , (3.6)

χ0̄(x) ≡ φ†
2(x)φ†

1(x)φ2(x) . (3.7)

In order for the correlator (3.3) to be non-zero, these indices have to satisfy M =
∑J

α=1 Iα,

where M is the number of magnons in the operator O. We see that there is a weight

hα = 1 + |Iα| associated with each xα.

The conformal charges of the operator O can be extracted from the CFT wave-function

by acting only on the x1, . . . , xJ coordinates. Namely, the charges defined as in (2.34):

Q̂a ◦ ϕO(x1, . . . , xJ) = QaϕO(x1, . . . , xJ), a = 0, 1, 2 , (3.8)

are related to the scaling dimension and spins of the operator:

Q0 = i∆O, Qi = SO
i , i = 1, 2. (3.9)

12More precisely, J is the number of φ1 fields minus the number of φ†
1 fields. However, we are interested

in the case of non-protected operators, which requires only φ1 to be present, as otherwise no Feynman

diagrams are possible beyond tree level.
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This follows from the conformal invariance of the correlator, which involves transforma-

tion of all J + 1 local operators in the correlator defining the CFT wavefunction. So by

transforming only the J protected legs, we indirectly measure the quantum numbers of O.

We see that there is a clear analogy between the CFT-wave function and the wave

function of the conformal spin chain (or fishchain) which we introduced in the previous

section. In order to complete the embedding, one needs to show that the CFT wavefunction

diagonalises the transfer matrix for some values of inhomogeneities ϑα. This was done

in [45], and in the next section we will briefly review the main elements of the construction.

3.2 CFT wave functions as integrable fishchain eigenstates

In this section we review the construction of [45] which shows that the CFT wave functions

are also eigenfunctions of the integrable spin chain defined in section 2.3. The basis for

this consideration is the Dyson-Schwinger equation satisfied by the wave functions. For

simplicity we review the case M = 0 and then present the general result.

The Dyson-Schwinger evolution equation. Based on the Feynman rules of the fish-

net theory, the wave functions for physical operators are built out of Feynman diagrams

which form an infinite ladder. Each rung of the ladder is an iteration of a graph-building

operator B̂. This is an integral operator acting on a function of J variables as13 [41, 66]:

B̂ ◦ f(x1, . . . , xJ) = ξ2J
∫ ∣∣∣∣

∂G(yJ)

∂yJ

∣∣∣∣

1
4

J∏

α=1

d4yα

π2

1

(x− yα)2(yα − yα−1)2
f(y1, . . . , yJ) .

(3.10)

Twisted periodic boundary conditions imply that y0 ≡ G ◦ yJ , where G is the twist map,

corresponding to the convention illustrated in figure 2 for the twisted trace.

The ladder structure shown in figure 2 implies that the CFT wave function satisfies a

Dyson-Schwinger evolution equation:

B̂ · ϕO(x1, x2, . . . , xJ) = ϕO(x1, x2, . . . , xJ) . (3.11)

The integral operator B̂ can be shown to commute with the Cartan generators Q̂a. Further-

more, we will see that the integral operator B̂ belongs to a family of mutually commuting

operators.

A useful property found in [45, 47] is that even for the case with magnons, for |M | < |J |,

the inverse of the graph-building operator is a differential operator. To demonstrate this

property for M = 0 case we notice that

ξ2J B̂−1 = Ĥ ≡
1

(−4)J

∣∣∣∣
∂G(xJ)

∂xJ

∣∣∣∣
− 1

4
J∏

α=1

x2
α,α−1

J∏

α=1

�xα , (3.12)

13The first Jacobian under the integral comes from the rules in [48], where the twisted propagator is given

by

∣∣ ∂G
∂y

∣∣ 1

4

(x−G(y))2 . It ensures that the graph-building operator is covariant under conformal transformations,

namely it satisfies the same equation (2.31) as the transfer matrices.
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Figure 2. Feynman graphs contributing to the CFT wave function has an iterate structure.

The blue line crossing propagators indicates that these propagators are twisted with the global

symmetry G.

(with boundary conditions xα−1 = G(xJ) for α = 1) and the Dyson-Schwinger equation

can also be written as

Ĥ~x · ϕO(x1, x2, . . . , xJ) = ξ2J ϕO(x1, x2, . . . , xJ) , (3.13)

which is a partial differential equation. Similar relation holds for the case with magnons

too. Note that (3.13) is satisfied everywhere except for the singular points x0 and x0̄, where

the behaviour of the wave function is dictated by the conformal dimension (2.46).

Integrability. At the heart of the integrability of the fishnet CFT is the fact that the

Hamiltonian Ĥ (and its generalisation for the case with magnons) is embedded in the

family of transfer matrices introduced in section 2.3. It was proved in [45] that

Ĥ = lim
u→0

T̂6(u) = Î(0,1) . (3.14)

For (3.14) to be true one should properly adjust the values of hα and ϑα. The correct

values of hα and ϑα depend on the field content of the given site [45]:

Iα fields hα ϑα

0 φ†
1(xα) 1 0

+1 φ†
2(xα)φ†

1(xα) 2 + i
2

−1 φ†
1(xα)φ2(xα) 2 − i

2

0̄ φ†
2(xα)φ†

1(xα)φ2(xα) 3 0

(3.15)
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As a consequence of (3.14) the Hamiltonian (i.e., the inverse graph building operator) com-

mutes with all the integrals of motion for the fishchain, and we can use all the power of

integrability to diagonalise it. Even though (3.14) requires a special tuning of the inho-

mogeneities (3.15), we will still consider the general case in order to have more integrable

parameters. In the following we introduce a convenient notation for the shifted inhomo-

geneities:

θα ≡ ϑα − i
Iα

2
, (3.16)

so that the undeformed Hamiltonian is recovered when all θα → 0.

In the light of (3.14), we see that the Hamiltonian is identified with the integral of

motion Î(0,1). For physical states solving the Schrödinger equation (3.13), we can relate its

eigenvalue to the coupling constant

I(0,1) ≡ ξ2J . (3.17)

This is the key equation for introducing the ’t Hooft coupling into the integrability formu-

lation [45, 47, 64].

The spectrum of this spin chain is somewhat unusual in comparison to more standard

representations with highest weight. Usually the spectrum is discrete — only some partic-

ular values of the integrals of motion can appear in the spectrum. In the present case for

any fixed ∆ and integer S1, S2 we find an eigenfunction satisfying the correct quantisation

condition (2.46) so that the eigenvalues of the integrals of motion I(n,α)(∆, S1, S2) are in

general multi-valued functions of ∆. The physical discrete spectrum ∆n(ξ) is then found

by imposing the condition (3.17).

The numerical method described in [45], based on the TQ relation and the quantisation

condition from section 2.6.2, allows one to find the values of ∆n(ξ2) with high precision.

3.3 The meaning of the spin chain norm in CFT

In order to complete the embedding of the correlators of local operators into the general

fishchain framework, we have to give an interpretation of the scalar product of two CFT

wave functions, according to (2.16). To understand its meaning let us consider a particular

case of two operators of length J = 6 with one magnon spiralling around M = 1 as in

figure 3. The scalar product (2.16) is given by the product of these two wave functions

with powers of d’Alembertian in between integrated over J variables. In the case of figure 3,

all weights hα are equal to 1 except for h2 = 2, which means that for all points we get

d’Alembertian to the first power except the site with the magnon, where no d’Alembertian

is added. Note that this is perfect from the Feynman diagram perspective, as we get one of

two black propagators annihilated by the d’Alembertian at non-magnon sites, while where

the magnons are sitting we glue them into the fishnet interaction 4-vertex. Thus the scalar

product gives a correlation function of two twisted operators.

The case when the operator B is related to the operator A by the holomorphic inver-

sion (2.47) is particularly important. Naively we get a two-point correlator in this case,

however, as was discussed in section 2.4.1 the scalar product is log-divergent, unlike the

two point correlator which should be finite for two normalised operators. The reason for
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Figure 3. The scalar product between two wave functions. The � factors included in the definition

of the scalar product remove some propagators, so that the two wave functions are joined seamlessly

without altering the structure of the vertices.

this discrepancy is that the combinatorics of the diagrams is a bit different: for example

there are two diagrams with one wheel in the scalar product and only one in the two point

correlator. As was shown in [47] and we review in appendix G, the relation is as follows:

〈〈ϕ̃ , ϕ〉〉 = log
ǫ0ǫ0̄

(x0 − x0̄)2
×

2

J
ξ2 ∂∆

∂ξ2
× 〈O(x0)Õ(x0̄)〉 , (3.18)

where in the r.h.s. we get the two-point function:

〈O(x0)Õ(x0̄)〉 =
N

(x0 − x0̄)2∆
, (3.19)

which has the same kinematical dependence as in any CFT, even in the presence of

twists [48] (see appendix E). The coefficient of the two-point function itself can be un-

derstood — at least formally — as a scalar product between a nontrivial state, and the

same state extrapolated to zero coupling.14

3.4 Baxter TQ relations in the fishnet theory

In this section we speciallise the results of section 2.5 to the fishnet case, where hα is either

1 or 2.

Assuming M ≥ 0, we can always get rid of the anti-magnons by redefining the Q-

functions as was discussed in [45]. For the sake of clarity, we will pick a particular order

for the magnons, and take Ii = 1 for 1 ≤ i ≤ M and Ii = 0 for M + 1 ≤ i ≤ J

(different orderings are related by a similarity transformation [45]). In this case, the Baxter

14This quantity would have a power-type divergence and require multiplicative renormalisation, for ex-

ample by changing slightly the twist of one of the states so that they are not orthogonal.
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equation (2.53) can be written explicitly as

0 = q[+4]
M∏

α=1

(u− θα)
J∏

β=1

(u− θβ + i)− q[+2]
M∏

α=1

(u− θα)P 4

J (u + i
2) + q(u)

P 6
2J(u)

J∏
α=M+1

(u− θα)

− q[−2]
M∏

α=1

(u− θα − i)P 4̄

J (u− i
2) + q[−4]

M∏

α=1

(u− θα − 2i)
J∏

β=1

(u− θβ − i) , (3.20)

containing the shifted inhomogeneities (3.16). We denote the 4 solutions of the above

equation as qa (with lower index). When θα → 0 we get the actual fishnet Baxter equation

of [45]. We will keep θα arbitrary as an important regulator. In the simplest case of no

magnons, and with θα set to zero we get

0 = q[+4](u + i)J − q[+2]P 4

J (u + i
2) + q(u)

P 6
2J(u)

uJ
− q[−2]P 4̄

J (u− i
2) + q[−4](u− i)J .

The dual Q-function, constructed from qa’s as a 3 × 3 Wronskian. In the case of the

fishnet, it is convenient to introduce an extra multiplier w.r.t. (2.54),
∏J

α=M+1(u − θα),

which simplifies the form of the dual Baxter equation for this particular choice of weights:

qa(u) ≡

(
J∏

l=1

(u− θl)

)(
M∏

m=1

(u− θm − i)

)
ǫabcd qb(u + i)qc(u)qd(u− i) . (3.21)

The dual Baxter equation has a form simply related to (3.20) by the interchange of the

polynomials P 4̄
J (u)↔ P 4

J (u).

Like before in section 2.6, there are two distinguished bases for the Q-functions: q↑
a

that are lower-half-plane (LHP) analytic and q↓
a that are upper-half-plane (UHP) analytic,

and similarly for the dual qa’s. The positions of the poles (2.60) and (2.61) simplify to

P↓ = {θα − im | m ∈ Z>0}
J
α=1 ∪ {θα}

M
α=1 , (3.22)

P↑ = {θα + im | m ∈ Z>0}
J
α=1 , (3.23)

and the same sets describe the poles for the dual qa↓ and qa↑. This is indeed consistent

with (2.69), taking into account that qa in this section are defined with an extra factor
∏J

α=M+1(u − θα), which cancels some of the poles in Pdual. Notice that, for real inhomo-

geneities, the poles of q↓ are in the lower half plane or at most on the real axis, and the

poles of q↑ are all in the upper half plane.

4 SoV scalar product cookbook

Even though in this paper we have not attempted building the SoV basis, along the lines

of recent papers [7, 13, 15] a lot of structure of the result can be predicted based on simple

observations such as analyticity of Q-functions and TQ relations. In this section we describe

one of the main results of the paper — the bilinear form built from two Q-functions, which

should be a building block for the scalar product in the SoV basis. We will also see how

the quantisation condition described in section 2.6 naturally appears from the arguments

of this section.
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4.1 Bilinear forms of Q-functions

Here we introduce a set of bilinear forms pairing two Q-functions. The construction is

inspired by the findings in [23]. We introduce the following notation for the bilinear form

of two Q-functions, in general for different two states A and B:

〈pB
a Ô ◦ qA

b 〉µ ≡
1

2πi

∫

|
du µ(u) pB↑

a (u) Ô ◦ qA↓
b (u) , (4.1)

where pa’s are defined in (2.81), µ(u) is a meromorphic i-periodic function (without poles

on the integration contour), Ô is a finite difference operator of the form

Ô =
L∑

i=−K

oi(u)D̂2i, D̂ ◦ f(u) ≡ f(u + i
2) ,

with polynomial coefficients oi(u), and the integration contour is defined as follows

∫

|
=

∫ c+i∞

c−i∞
−
∫ −c+i∞

−c−i∞
, c > maxα {|Re(θα)|}Jα=1 , (4.2)

so that it contains all poles of the Q-functions. Furthermore, in section 4.3 below we show

that, among all µ(u)’s so defined, there are only J distinguishable periodic functions µα,

meaning that 〈pB
a Ô ◦ qA

b 〉µ for any µ(u) can be expressed as a linear combination (with

state-independent coefficients) of 〈pB
a Ô ◦ qA

b 〉µβ
. It is convenient to take the following basis

µβ(u) ≡
∏

α 6=β

1− e2π(u−θα)

1− e2π(θβ−θα)
, β = 1, . . . , J , (4.3)

which has zeroes at all u = θα + iZ except for α = β where it is equal to 1. For simplicity

we denote

KAB
ab,β ≡ 〈p

B
a Ô ◦ qA

b 〉µβ
. (4.4)

In general the integrals (4.2) are not convergent, and have to be regularised by a ζ-

function type of regularisation. We will give an explicit analytic prescription on how to do

that in the next section, and also explain how to compute this type of integrals numerically.

4.1.1 Regularisation

A convenient way of computing, or more precisely defining, the integrals of the type (4.1)

is by re-expressing them as a sum over residues. Assuming for simplicity that the finite

difference operator Ô does not contain the shift D−2n with n > 1, the integrand of 〈pB↑
a Ô ◦

qA↓
b 〉µβ

has simple poles at θβ + iZ due to the poles in the q- and p-functions.15 In the

UHP the poles are coming from pB↑, to make them manifest one can use (2.83)

res
u=θβ+in

p↑
a(u) = ωβ,ac qc↓(θβ + in) , n ∈ Z>0 , (4.5)

15In presence of such negative shifts, a finite number of double poles may be present. This is not a major

complication, as we discuss in section 4.2.
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and similarly q↓A produces poles in the LHP, whose residues are obtained as

res
u=θβ−in

q↓
a(u) = ωβ,ac pc↑(θβ − in) , n > 0 , (4.6)

so that we can write formally for Ô = ukD̂2m,

〈pB↑
a ÔqA↓

b 〉µβ
=

∞∑

n=1+m

ωB
β,ac (qB)c↓(u) uk qA↓

b (u + im)
∣∣∣
u=θβ+in

(4.7)

+
∞∑

n=0

ωA
β,bc pB↑

a (u) uk (pA)c↑(u + im)
∣∣∣
u=θβ−in

.

For the cases with shift m < 0 and for the states with magnons, there could be a finite

number of double poles contributing. In the observables we consider below, the relevant

case is m = −1, which gives a double pole contribution at the origin — in this case one

should add

res
u=ϑβ

(
p↑B

a (u + i) uk qA↓
b (u)

)
(4.8)

to the r.h.s. of (4.7). We will discuss such terms in more detail in the next section. De-

pending on the parameters of the states A and B, the UHP and LHP sums in the first and

second lines of (4.7) may or may not converge in the usual sense. Indeed, at large n we

can use the asymptotic expansion (2.62), so that the combination we need reads

(qB)c ↓(u) uk qA↓
b (u + im) ≃ (λA

b )−iu(λB
c )+iuu+M̂A

a −M̂B
c −D0+k

(
1 +O

(
1

u

))
(4.9)

using that the formal sum
∞∑

n=1

λn

nα
= Liα(λ) (4.10)

is well defined for all α and λ, except for λ = 1, where it reduces to the ζ-function which

has a pole at α = 1.16 This means that for generic λA
b and βB

c the sum is well defined

in ζ-regularisation. In section 4.2 we also describe how this sum can be computed very

efficiently numerically.

We see that for two generic states A and B all the Q-bilinear forms are well defined.

However, in some particular situations, and especially when A coincides with B there is a

danger to hit the singularity of (4.10), when one of the terms behaves as 1/n at large n’s.

In the next section we will be considering the diagonal form factors for which one has to

face this problem.

Note that in fact the scalar product of two CFT wavefunctions is also log-divergent

when ∆A = ∆B as we discussed in section 2.4. So the divergence we found in the Q-

bilinear forms is consistent with the divergence in the coordinate representation of the

scalar product. However, it is still meaningful to define the finite part in front of the

log-divergence described in section 2.4 in terms of the Q-functions as well.

In the next section we will show that there is still a sufficient amount of the bilinear

combinations of Q-functions which are finite even when the states A and B are identical.

16In general it also has a branch-cut λ ∈ (1, +∞).
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We will then show in section 5 that those combinations can be used to express a vast

class of diagonal form factors as a determinant of the finite Q-bilinear forms. Intriguingly,

we will see that those combinations are finite only when the Q-functions obey the correct

quantisation condition from section 2.6.2 (in addition to the Baxter TQ relations).

4.1.2 Conjugation under the Q-bilinear form

An important property of the Q-bilinear form is that it allows to define conjugate finite-

difference operators O†, independently of the measure µ(u). For example, for the elemen-

tary operator Ô we define its conjugate Ô† by

Ô = D̂mukD̂m ⇔ Ô† =
1

D̂m
uk 1

D̂m
. (4.11)

As the operators of this type, which can be also written as Ô = (u + im
2 )kD̂m, constitute a

basis we thus have defined (by linearity) the conjugation for all finite-difference operators

with polynomial coefficients.

The key property of the Q-bilinear forms, which we will utilise in the next section, is

the following:

〈pa Ô ◦ qb〉µ = 〈(Ô† ◦ pa) qb〉µ (4.12)

which can be seen by shifting the integration contour by −im along itself.

4.1.3 Finite diagonal combinations

We will now show that the quantisation condition (2.78) can be reinterpreted as the re-

quirement that some Q-bilinear forms are finite. As we explained in the previous section

the problem arises whenever the twist parameters get cancelled and also the powers com-

bine so that we get a 1/n term at large n’s. For identical states A = B, the dangerous

terms are when in (4.9) we get b = c, then both twists and the non-integer parts of the

powers M̂a get cancelled. Then the convergence will really depend on the value k − D0,

but we will see that we will need the values of k such that k − D0 ≥ −1, meaning that

divergence will occur in the sub-leading 1/u terms. So the best way to ensure convergence

is to avoid b = c.

Let us show that the following combinations are finite:

Ka,β ≡ 〈p
↑
aÔq↓

a〉µβ
, a = 1, 2, 3, 4 (4.13)

(with no summation over a). Indeed, on-shell the combination ω = Ω−1Γ−1 is anti-

symmetric, as was discussed in section 2.6.2, and thus ωβ,ab should be anti-symmetric

in a↔ b as well. From that observation, it immediately follows that in the pole expansions

on the r.h.s. of (4.7) we never get both q’s (or p’s) with the same indices, ensuring that the

sum is well defined with our regularisation.

4.2 Numerical evaluation of the Q-bilinear forms

Here we explain how the Q-bilinear forms can be evaluated numerically in practice. It

would be useful to recall first how we solve the TQ-relations and impose the quantisation
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condition. First, we find q at large u by plugging the asymptotic expansion (2.62) into

the Baxter equation (3.20). We usually keep around 20 coefficients of Ba,n, Ba
n to get

a very good (around 50 digits) precision for q at the values |u| > 100. After that we

use (3.20) to descend from large u’s along the imaginary axis to a finite value of u. This

way we can compute both q↓
a and q↑

a, with the difference that for the former we use (3.20)

to move down from large positive Im(u) values, whereas for q↑
a we use (3.20) to move up

from the asymptotic domain far below the real axis. Then we compute Ω using (2.72) at

J + 1 different points, which then allows us to deduce Ωβ, β = 0, . . . , J from (2.73). Then

we have to adjust the coefficients in the polynomials P , which are the eigenvalues of the

integrals of motion, to impose the quantisation condition ΩT
β = −Ωβ , which then gives all

integrals of motion fixed as a (multi-valued) function of ξ and also allows us to determine

the gluing matrix Γ (which is parametrised by one constant γ from (2.79), fixed by (2.80)).

This procedure was already well established in the previous works [43, 45, 48] and is a

simplified version of the similar method [65] developed for the spectrum of N = 4 SYM.

Next, in order to evaluate the bilinear combinations of the Q-functions we start from

the expression (4.7). Consider the first term for example:

∞∑

n=1+m

ωB
β,ac (qB)c↓(u) uk qA↓

b (u + im)
∣∣∣
u=θβ+in

. (4.14)

In principle we know already all ingredients such as ωβ and q which we can compute at any

point. However, as we discussed previously, the sum (4.14) does not necessarily converge

in the usual sense and a ζ-type of regularisation is needed.

What we do in practice is fix some cut-off N (in practice around 100) and split the

sum into two parts. For n < N we compute the sum without any further approximation,

for n > N we replace q′s by their asymptotics (2.62) and re-expand it for large n, so that

it takes the form
∞∑

n=N

Λnn−α
(

1 +
C1

n
+

C2

n2
+ . . .

)
. (4.15)

For each of the above terms we can use the analytic result for the ζ-regularised sum17

∞∑

n=N

Λnn−α = ΛN Φ(Λ, α, N) . (4.16)

We found that this procedure is very accurate and allows one to compute the Q-bilinear

forms with 20 digit precision quite easily. We will give some examples in section 5.4.3.

In addition to the infinite sums described above, in some cases we might need to

evaluate the contributions of the double poles (4.8). These contributions may potentially

require evaluation of derivatives of Q-functions. In the examples we considered, the second

order pole cancels and becomes a single pole, so the term (4.8) can be evaluated on equal

footing with others.

17Φ is HurwitzLerchPhi in Mathematica.
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4.3 Completeness of the basis of the Q-bilinear forms

Here we discuss why the basis of periodic functions (4.3) is complete in the sense described

below. We will assume that the double poles do not appear.

First, we notice that the following periodic function will result in a zero

µ0(u) ≡
J∏

α=1

(
1− e2π(u−θα)

)
(4.17)

for the integral of the type (4.1) as µ0(u) will cancel all residues inside the integration

contour. Then we notice that any polynomial in e2πu can be represented as P̃ (e2πu)µ0(u)+
∑

Aβ µβ(u), for some polynomial P̃ (u). The first term, divisible by µ0(u), gives zero and

can be removed. Similarly, any i-periodic function F (u) with no poles inside the integration

contour can be written as

F (u) =
J∑

β=1

F (θβ)µβ(u) + µ0(u)R(u) (4.18)

where R(u) is an i-periodic function, also analytic inside the contour. The last term does

not give any contribution and thus this case also reduces to our basis.

More complicated is the case when the periodic function F (u) has poles inside the

integration contour. To discuss this case, let us assume that the twists are phases λa = eiφa

such that φB
a > φA

b meaning that the integrand, which behaves as eu(φA
b

−φB
a ), is decaying

to the right of the contour. In this case the function

µ(u) =
e2πu

e2πu − e2πu0
, (4.19)

which has a pole at u = u0 + iZ, will give zero under the integral (4.1). This is because the

integrand decays exponentially for large positive Re u, due to the asymptotics of q and p,

and also at large negative Re u, due to the exponential decay of the function µ(u) itself —

hence the contour can be pushed to infinity giving a zero result. For the opposite φB
a < φA

b

case, we rewrite

µ(u) =
e2πu0

e2πu − e2πu0
+ 1 , (4.20)

where now the first term will be zero under the integral and the second term is regular. In

conclusion, we see that one can subtract simple poles in the measure factor F (u) in terms

of such functions which do not contribute to the Q-bilinear forms, bringing us back to the

case with no poles.

This shows that the basis KAB
ab,α of Q-bilinear forms is the most general. In the next

section we will show how to use it to compute nontrivial correlation functions in the fishnet

theory.

Note that the above consideration also allows us to relate the basis of forms described

above, to the one defined with opposite arrow combinations K̃ab,α ≡ 〈p
↓
aÔq↑

a〉µα . For that,

one can use the matrix Ω to reverse the direction of the arrows (2.76). Since Ω is i-periodic,

at the level of the integrals it can be replaced by a combination of the elementary measures
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µβ (the coefficients are state-dependent in this case). For some observables, a basis obtained

with a certain pattern of the arrows might be more natural, and lead to simplifications.

One such example will be the g-function, which we consider in section 7.

5 Functional SoV for a class of correlation functions

In this section we show how the Q-bilinear forms, introduced in the previous section, can

be combined into physical observables of the QFT.

In particular, we focus on a certain class of observables which can be obtained as

a result of variation of the numerous parameters (such as inhomogeneities, twist angles

and coupling). Those observables can be studied within the functional SoV approach

introduced in [15] and do not require further input from the more conventional operatorial

SoV method. Following [15], the variations of the integrals of motion are found as solutions

of a linear system of equations.

Like in the case of spin chains [7], these results are expected to provide deep structural

insights on the form of the result for more general observables, including the off-diagonal

cases. In particular, they should fix explicitly the measure factor in the SoV basis, and

lead to the determinant form for an even wider class of correlators.

Among these observables, we will discuss in detail the explicit expression for the di-

agonal 3-point functions involving the Lagrangian. We also describe the form factor of

the variation of the Hamiltonian w.r.t. local weights which amounts to a nontrivial local

insertion at the level of diagrams.

5.1 Conjugation property of Baxter equations

The key starting point for the functional SoV consideration is the Baxter equation satisfied

by the Q-functions qa and also the dual Baxter equation, satisfied by qa or pa as defined

in the previous section in (2.81).

5.2 Baxter TQ-relation as a finite difference operator

Following [15], we introduce a useful notation, and represent the Baxter equation in terms

of a finite difference operator B. To define it we use the shift operators D ≡ e
i
2

∂u acting on

a function of the spectral parameter as D ◦ f(u) = f(u + i
2). The Baxter finite-difference

operator is given by

B ≡ D4 + D−4 −
(
(u + i

2)Jχ4 D2 − uJχ6 D0 + (u− i
2)Jχ

4̄
D−2

)
(5.1)

+
∑

b∈{−2,0,0̄,2}
(−1)

b
2

J∑

α=1

(u + ib
2 )α−1 I(b,α) Db ,

where the state-dependent factors I(b,α) are the 4J nontrivial eigenvalues of integrals of

motion, Db are state-independent finite difference operators defined as

D4 ≡ D̂2R
[−2]
θ Qθ D̂2, D0 ≡

1

Pθ
, D−4 ≡

1

D̂2
R

[−2]
θ Qθ

1

D̂2
,

D2 ≡ D̂R−
θ D̂, D0̄ ≡

uJ

Pθ
, D−2 ≡

1

D̂
R−

θ

1

D̂
,

– 32 –



J
H
E
P
0
6
(
2
0
2
1
)
1
3
1

and Pθ, Qθ, Rθ are fixed polynomials:

Rθ(u) ≡
J∏

α=1

(u− θα)Iα , Pθ(u) ≡
J∏

α=1

(u− θα)1−Iα , Qθ(u) ≡
J∏

α=1

(u− θα) . (5.2)

With these definitions the Baxter equation (3.20) is written as

B ◦ qa = 0 . (5.3)

Similarly, the dual Baxter equation satisfied by the Q-functions with upper indices qa is

given by

Bdual ◦ qa = Bdual ◦ pa = 0 , (5.4)

where

Bdual ≡ D−4 + D+4 −
(
(u− i

2)Jχ4 D−2 − uJχ6 D0 + (u + i
2)Jχ

4̄
D2

)
(5.5)

+
∑

b∈{−2,0,0̄,2}
(−1)

b
2

J∑

α=1

(u + ib
2 )α−1 I(−b,α) Db .

The conjugation property. Let us show that the Baxter finite-difference operators B

and its dual Bdual defined in (5.1) and (5.5) are conjugated to each other in the sense

defined in section 4.1.2,

Bdual = B† . (5.6)

To see this, it is sufficient to notice that D
†
−4 = D+4 and D

†
−2 = D+2. The property (5.6)

is similar to what was observed in [15] and will be used intensively in the next several

sections.

5.3 Variation of the Baxter equation

We now consider the variation of the integrals of motion of a physical state with respect

to a tunable parameter p. A natural application is when this parameter is the coupling

constant, but we can consider also varying the twists or inhomogeneities which enter the

definition of the Hamiltonian. The most general variation is a combination of all these.

Any type of variation induces a change in the Q-functions qa → qa + δqa, and simulta-

neously in the constants appearing in the Baxter equation. In general we have

δB ≡ δD4 + δD−4 − δ
(
(u + i

2)Jχ4 D2 − uJχ6 D0 + (u− i
2)Jχ

4̄
D−2

)
(5.7)

+
∑

b∈{−2,0,0̄,2}
(−1)

b

2

J∑

α=1

(u + ib
2 )α−1 (δI(b,α) Db + I(b,α) δDb) ,

so that the Baxter equation to linear order in the variation reads

(B + δB) ◦ (qa + δqa) = 0 . (5.8)
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Inserting this condition inside the brackets with the dual Q-function pa (to ensure the

bracket is finite we should make sure the indices coincide) we find 0 = 〈p↑
a(B + δB) ◦ (q↓

a +

δq↓
a)〉µα , and expanding we find

✭
✭
✭
✭
✭
✭
✭
✭
✭
✭

〈p↑
aB ◦ (q↓

a + δq↓
a)〉µα + 〈p↑

aδB ◦ q↓
a〉µα ≃ 〈p

↑
aδB ◦ q↓

a〉µα = 0 , (5.9)

where the first term on the l.h.s. vanishes due to (5.4) and (5.6), and we keep only the first

order in the variation. Using the basis of measures µα discussed in the previous section,

these are precisely 4J linear equations as a = 1, . . . , 4 and α = 1, . . . , J , for 4J variables

∂pI(b,β). It is convenient to rewrite the linear system as

M· δ~I = δ~V , (5.10)

where ~I ≡ I(a,α) is a 4J dimensional vector built out of the integrals of motion. We use

the conventions where they are ordered as

~I =
(
I(−2,1), I(−2,2), . . . |I(2,1), I(2,2), . . . |I(0,1), I(0,2), . . . |I(0̄,1), I(0̄,2), . . .

)
, (5.11)

the matrix of coefficients is defined by blocks as

(M)
(b,β)

(a,α) ≡ (−1)
b
2 〈 p↑

a × (u + ib
2 )β−1Db ◦ q↓

a〉µα , (5.12)

for 1 ≤ a ≤ 4, b ∈
{
2, 0, 0̄,−2

}
and 1 ≤ α, β ≤ J . The r.h.s. δ~V contains the part of the

variation for fixed value of ~I:

(δ~V )(a,α) ≡ −〈p
↑
a (δB|δI→0) ◦ q↓

a〉µα . (5.13)

In the next sections we consider some particular cases revealing additional features in

comparison with the HW spin chain cases.

5.4 Zero mode of the variation matrix

An important observation, which we will further explore here, is that the matrix M is in

fact degenerate, and in the generic situation should have one null vector.

As we will see, the zero mode is related to a physically very important case of the

variation in parameters — where we vary the coupling constant for fixed values of the

twists and inhomogeneities. This is particularly interesting because even in the non-twisted

theory the quantity ∂ξ2∆ gives a nontrivial structure constant [50].

To understand how that is related to the existence of the null vector, we recall that

both ∆ and ξ are two conserved charges. Thus, in order to compute ∂ξ2Ia,α we are not

actually changing any parameters of the system, we just follow the one dimensional space

of solutions of the same spin chain. Due to this, we have the inhomogeneous part set to

zero δξ2Db = δξ2 ~V = 0, therefore (5.10) reduces to a homogeneous equation:

M· ∂ξ2 ~I = 0 . (5.14)

Equation (5.14) implies that there is a one-dimensional null space. The null vector ∂ξ2 ~I

has to be normalised so that its (0, 1) component is fixed according to (3.17) to be
(
∂ξ2 ~I

)

(0,1)
= J ξ2J−2 . (5.15)
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After that, the other components are fixed (according to our numerical experiments) and

give indeed the variation of all other integrals of motion (which also include ∆) with respect

to the coupling constant ξ.

The observation that the matrix M has rank 4J − 1 is based on a large variety of

numerical tests, but the analytic proof seems to be complicated. We leave this problem to

future studies. We also note that ∆(ξ) is a multi-valued function and has branch cuts at

various nontrivial values of ξ. Of course, at the branch points the derivative ∆′(ξ) diverges,

which should manifest in the vanishing of the (0, 1) component of the null eigenvector ofM.

5.4.1 Explicit result for ∂ξ2∆

For SoV applications it could be useful to express the result for ∂ξ2∆ explicitly as a ratio

of determinants — something which the operatorial SoV is expected to give like in [7].

To make the solution explicit, we turn the homogeneous linear system into an inhomo-

geneous one by moving the column “(0, 1)” to the right hand side of the equation. Using

the normalisation (5.15), we find:

∑

(b,β) 6=(0,1)

M
(b,β)
(a,α) ∂ξ2 ~I(b,β) = −Jξ2J−2 〈

p↑
aq↓

a∏J
α=M+1(u− θα)

〉α ≡ V(a,α) , (5.16)

which is a system of 4J equations in 4J − 1 unknowns. One equation out of 4J is linearly

dependent so there is a unique solution. Furthermore, some of the variables (∂ξ2 ~I)(b,β) are

related to each other in a simple way, since due to (2.44) we have

∂ξ2I(2,J) =
λ++−−∂ξ2∆

−2i
, ∂ξ2I(0̄,J) =

λ3λ4 − λ1λ2

i
∂ξ2∆ , ∂ξ2I(−2,J) =

λ̄++−−∂ξ2∆

2i
.

(5.17)

Using these relations and selecting 4J −3 equations out of 4J we can get a non-degenerate

non-homogeneous linear system. The solution can be written as a ratio of determinants

∂ξ2∆ = −
N

D
, (5.18)

where N, D are determinants of (4J−3)×(4J−3) dimensional matrices, where each element

is a Q-bilinear form.

In the particular case J = 1, M = 0 the determinants become one-dimensional and we

reproduce the result we obtained with Amit Sever in [49]:

∂ξ2∆ =
2i
∫

| du p↑
aq↓

a

(u−θ)

∫
| du p↑

a

(
L1q↓++

a + L2q↓−−
a + L4

u q↓
a

(u−θ)

) , for any a ∈ {1, . . . , 4} . (5.19)

where La are L1 ≡
i
2 (λ1 +λ2−λ3−λ4), L2 ≡

i
2

(
λ̄3 + λ̄4− λ̄1− λ̄2

)
, L4 ≡ i (λ1λ2−λ3λ4).
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5.4.2 Variations in other parameters

As discussed above in section 5.3, we can also consider more general variations, with respect

to an external parameter such as the twist angles or inhomogeneities. In this case, we obtain

an inhomogeneous linear system (5.10) with a nonvanishing r.h.s. and the same matrix of

coefficients M as for the ξ variations. Since M has rank 4J − 1, such a linear system

has a one-parameter family of solutions, which differ by the null eigenvector of M. As

we saw in the previous section, the null vector represents the variation with respect to

the coupling constant. Depending on which observable we are computing, this ambiguity

should be fixed accordingly. For instance, in order to compute variation of the scaling

dimension w.r.t. the twist, we would keep the value of the coupling fixed (as the graph

building operator is well defined regardless of the twist value). This means that we should

set the solution’s component “(0, 1)” to zero, which fixes the solution uniquely. Below we

will also consider variation of the Hamiltonian w.r.t. the weights hα, in which case as we

will discuss the ambiguity is fixed by choosing appropriate values for the leading nontrivial

integrals of motion (2.44).

By choosing a subset of 4J − 1 among the original 4J equations, we can write the

solution as a ratio of two determinants of size (4J−1), built from Q-bilinear forms, similarly

to (5.18).

5.4.3 Numerical test

We verified the above general formalism numerically. For instance, we studied the case

J = 2, M = 0. For inhomogeneities θ1 = −θ2 = − 1
100 , twists λ1 = e

i
3 , λ2 = e− i

4 , λ3 = e
i
2 ,

λ4 = ei 7
12 , and coupling ξ2 ≃ 0.100992, we considered a solution corresponding to a state

with zero spins, and ∆ ≃ 1.93034. We computed numerically the coefficients of the linear

system,18

M≡

(
〈p↓

auβ−1D2 ◦ q↑
a〉1 〈p

↓
auβ−1D0 ◦ q↑

a〉1
〈p↓

auβ−1D2 ◦ q↑
a〉2 〈p

↓
auβ−1D0 ◦ q↑

a〉2

)

︸ ︷︷ ︸
M1

⊕

(
〈p↓

auβ−1D0̄ ◦ q↑
a〉1 〈p

↓
auβ−1D−2 ◦ q↑

a〉1
〈p↓

auβ−1D0̄ ◦ q↑
a〉2 〈p

↓
auβ−1D−2 ◦ q↑

a〉2

)

︸ ︷︷ ︸
M2

(5.20)

where the indices range over 1 ≤ a ≤ 4, 1 ≤ β ≤ 2. We find

M1 ≃




4.31901 − 11.4414i 22.6063 − 49.4069i 0.0046265 − 5.98084i −4.80953 + 2.51189i

0.809298 + 7.85372i −3.27609 − 11.5111i 0.401649 + 5.97i 4.44227 + 1.97328i

1.00063 + 0.946839i −3.3413 − 4.13463i −0.18902 − 0.620784i −0.0600478 + 0.740181i

9.14976 − 16.4014i 54.6825 − 118.479i 0.126059 + 3.50622i 1.4338 + 6.18232i

−4.3639 + 11.574i −22.9599 + 50.229i −0.0046265 + 5.97614i 4.80953 − 2.53922i

−0.807428 − 7.76595i 3.22652 + 11.225i −0.400613 − 5.97466i −4.44744 − 1.95001i

−1.02467 − 0.96949i 3.39688 + 4.20952i 0.19209 + 0.603913i 0.0863731 − 0.757081i

−8.94188 + 16.0332i −53.6573 + 116.191i −0.111173 − 3.60207i −1.26448 − 6.03864i




, (5.21)

M2 ≃




−0.414138 + 11.9493i 0.435697 + 54.2825i −3.43629 − 11.3103i −23.5189 − 49.5152i

1.145 − 7.55161i −3.24604 + 11.4394i −2.93838 + 6.92369i 9.2625 − 8.897i

−0.29778 − 1.3448i 1.14678 + 5.15391i −0.502725 + 1.26785i 1.2753 − 5.16149i

0.00878648 + 18.7776i −0.00274115 + 130.198i −9.11569 − 16.3378i −54.6917 − 118.479i

0.414138 − 12.0894i −0.435697 − 55.175i 3.48119 + 11.4428i 23.8725 + 50.3373i

−1.12592 + 7.46583i 3.1836 − 11.1587i 2.89948 − 6.84499i −9.09632 + 8.65886i

0.304503 + 1.37583i −1.16684 − 5.24384i 0.514594 − 1.2967i −1.2941 + 5.25293i

−0.0077489 − 18.3607i 0.00241745 − 127.698i 8.91184 + 15.9772i 53.6653 + 116.191i




, (5.22)

18For this numerical test we took a different basis of Q-bilinear forms, using combinations of the type

〈p↓q↑〉.
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and indeed M has a null eigenvector

V0 ≃




1.5601 + 0.0101706i

0.544237 − 0.725972i

1

−0.152213

5.35905

1.19863

1.5601 − 0.0101706i

0.544237 + 0.725972i




∝ ∂ξ4




I(2,1)

I(2,2)

I(0,1)

I(0,2)

I(0̄,1)

I(0̄,2)

I(−2,1)

I(−2,1)




. (5.23)

At the same time we computed the derivative of the dimension ∆ as a finite difference to

obtain
∂∆

∂ξ2
≃ −1.45431 , (5.24)

which, using (5.17), implies ∂ξ4I(2,2) = ∂ξ4I(−2,2)≃ 0.544237−0.725972i, ∂ξ4I(0,2)≃ 1.19863,

consistently with the form of the null eigenvector.

5.5 Variations as spin chain form factors

At the operator level variations of the integrals of motion w.r.t. a parameter correspond to

nontrivial spin chain expectation values, as was understood in [7, 13, 15] for rational gl(N)

spin chains. Let us briefly recall this argument here. Consider a left and a right eigenstate

of the transfer matrix ΨL and ΨR corresponding to the same eigenvalue. When we change

the values of the parameter p → p + δp, these wavefunctions will also change, as will the

transfer matrix eigenvalues, so we have

〈〈ΨL , (T̂r + δT̂r) ◦ (ΨR + δΨR)〉〉 = (Tr + δTr) 〈〈ΨL , (ΨR + δΨR〉〉 . (5.25)

Expanding it to the first order in the variation and using that ΨL is a left eigenvector of

T̂r, we see that several terms cancel and we are left with

〈〈ΨL , δT̂r ◦ΨR〉〉 = δTr〈〈ΨL , ΨR〉〉 . (5.26)

Thus we find
〈〈ΨL , δT̂r

δp ◦ΨR〉〉

〈〈ΨL , ΨR〉〉
=

δTr

δp
. (5.27)

So we see that the diagonal form factor of the nontrivial operator δT̂r

δp is written in terms

of the variation of the eigenvalue, or, equivalently, of the integrals of motion. As a result,

like discussed in section 5.4.2, this form factor can be written in terms of determinants of

the type (5.18) built from Q-functions.

The operator whose form factor we are computing can be quite nontrivial. In the next

section we study as an example the variation of the Hamiltonian eigenvalue with respect

to the local weight.

To link the spin chain picture with the fishnet CFT, we can notice that the right spin

chain eigenstates become the CFT wavefunctions (i.e. correlators of the type (3.3)) once
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we set the inhomogeneities to the corresponding values (3.16). Moreover, as shown in

appendix F.3, the left state ΨL also can be identified with an appropriately chosen CFT

wavefunctions that involve a conjugated set of fields, with the conjugated operator sitting

at the other fixed point x0̄ and twisted by the inverse map G−1. The form factors act as

operators on the chain in between the two wave functions. In general, the result can be

interpreted as a certain off-shell observable given by diagrams with nontrivial modification

or insertion of some propagators and vertices, whose precise form is dictated by the operator

we consider. In other words, this way we can compute a class of rather nontrivial Feynman

diagrams similar to those appearing in multipoint correlators.

5.6 Variation with respect to local weights hα

The variations in the twist angles λa and the inhomogeneities θα were studied already

in the spin chain context in [7]. In this section we consider another type of variation

corresponding to changing the weights hα that define the representation of the conformal

group at each site α of our spin chain. It would be interesting also to further explore this

type of variation for the usual gl(n) spin chains.

In the case of fishnet CFT, we fix hα to the values 1 or 2, however by taking a variation

around these points we will be able to compute rather nontrivial quantities. Below we

discuss several subtleties related to these variations and then present a particular nontrivial

example — the variation of the Hamiltonian.

5.6.1 Variation with respect to weights and scalar product

As the weights hα explicitly enter the scalar product (2.16), it is not immediately clear

that the argument leading to the form factor result (5.27) still goes through. Let us show

that the result is still valid. A small variation of one of the weights hα → hα + δhα induces

a change in the transfer matrix eigenstate Ψ → Ψ + δΨ, and in the integrals of motion

Î → Î + δÎ. At the same time, the conformally invariant scalar product (2.16) itself will

change infinitesimally, which can be represented by the insertion of an operator

∂

∂δhα
〈〈f, g〉〉hα+δhα

∣∣∣∣
δhα=0

= 〈〈f , Âα ◦ g〉〉h, Âα ≡ − log�α , (5.28)

where we assumed that the wave functions f , g have no dependence on the weights.

Let us then consider a left and right eigenstates of the transfer matrices, ΨL and ΨR,

respectively, corresponding to the same transfer matrix eigenvalue. Under a small variation

of the weights, the eigenvalue equation becomes

〈〈ΨL , (T̂r + δT̂r) ◦ (ΨR + δΨR)〉〉hα+δhα = (Tr + δTr) 〈〈ΨL , (ΨR + δΨR)〉〉hα+δhα . (5.29)

Expanding it at the first order in the variation and using the same logic as before, we see

that there will be extra terms in the r.h.s. and l.h.s. involving the insertion of Âα,

〈〈ΨL , δT̂r ◦ΨR〉〉h + 〈〈ΨL , (Âα) ◦ T̂r ◦ΨR〉〉h δhα (5.30)

= δTr〈〈ΨL , ΨR〉〉h + Tr 〈〈ΨL , (Âα) ◦ΨR〉〉h δhα

(with no summation over α). We notice that the extra terms involving Âα cancel against

each other. Thus the expression (5.27) is still valid.
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5.6.2 Fixing the zero mode

Let us also clarify how to fix the ambiguity in solving the linear system (5.14) (coming from

the Baxter equation) for the variations of integrals of motion when we vary hα. Keeping

the value of I(0,1) fixed in this case is not what we would like to do, since the relation

between Î(0,1) and coupling only exists at the specific values of hα corresponding to the

fishnet CFT. Instead what we are trying to achieve is to find the diagonal matrix element

of the derivative w.r.t. hα of the integrals of motion, which are differential operators with

coefficients dependent on the weights hα.

We notice that the h-dependence of the first subleading integrals of motion (2.44) arises

only due to the linear in h term in the dilatation operator (2.8) (these integrals of motion

are simply linear combinations of the Cartan charges) which appears in (2.44) via ∆. Thus

we have

∂hαI(2,J) =
1

2i
λ++−− , ∂hαI(−2,J) = −

1

2i
λ̄++−− , ∂hαI(0,J) = −i(λ1λ2 − λ3λ4) . (5.31)

These are the conditions we impose in order to fix the zero mode ambiguity in solving the

linear system, which as a result allows us to compute the variations of all other integrals

of motion in terms of the Q-functions.

5.6.3 Example: variation of the inverse graph-building operator

A particular nontrivial operator whose variation we can consider is the Hamiltonian Ĥ, i.e.

inverse of the graph-building operator, described in section 3.2 in (3.12), since it is one of

the coefficients of the transfer matrix T6, namely the integral of motion Î(0,1) = T6
∣∣
u=0.

Let us compute its variation w.r.t. the weight on one site hα. We will restrict to the case

of the state without magnons, i.e. after taking the variation we set all hα = 1 and θα = 0.

We find

δĤ = δhα Tr
(
L̂6

J(0) . . . L̂6

α+1(0)V̂αL̂
6

α−1(0) . . . L̂6

1(0)G6
)

(5.32)

where the operator V̂ is read off from the Lax operator (2.19),

V̂ ≡ ∂hL̂
6

∣∣∣
u=0

= −i∂hq̂ +
1

2
q̂ · ∂hq̂ +

1

2
∂hq̂ · q̂ −

1

2
(5.33)

in terms of the conformal generators q̂MN defined in section 2.1. The variation ∂hq̂ comes

about due to the explicit h-dependence in the realisation of the generators in (2.4) which

leads to the nonzero components of ∂hq̂ being

∂hq̂−1,0 =−∂hq̂0,−1 =−i , ∂hq̂0,µ =−∂hq̂µ,0 = ixµ , ∂hq̂−1,µ =−∂hq̂µ,−1 =−ixµ . (5.34)

In order to write the operator (5.33) more explicitly, it is very useful to employ the 6D

realisation of the conformal group we outlined in section 2.1. In this formalism, the q̂MN

operators do not depend on h explicitly, rather the h-dependence is contained in the 6D

function (2.3) on which they act. After a somewhat lengthy calculation (similar to that

done in [47] to compute explicitly the Hamiltonian), we find many cancellations and the

result for the variation of the Lax operator in h is surprisingly simple, namely

V̂ MN =
1

2

(
XM ∂N + XN ∂M

)
(5.35)
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in 6D notation. Translating it into 4D and combining it with the remaining operators

inside the trace (5.32), we find19

∂Ĥ

∂hα
=

1

(−4)J−2

∣∣∣∣
∂G(xJ)

∂xJ

∣∣∣∣
− 1

4 ∏

β<α , β>α+1

x2
β,β−1 (5.36)

×
1

2

[
−

x2
α,α−1 + x2

α,α+1

2

(
1 + xµ

α

∂

∂xµ
α

)
+ (x2

α,α−1xµ
α+1 + x2

α,α+1xµ
α−1)

∂

∂xµ
α

]
J∏

β 6=α

�β .

We see that the change from the original Hamiltonian (3.12) amounts to removing the

Laplacian operator at the site α and replacing the two inverse propagators involving that

site with a combination of x’s and derivatives. Thus we can compute the form factor of

this operator according to (5.27). We can further simplify the result by considering the

operator ∂Ĥ
∂hα

Ĥ−1 whose form factor is trivially related to that of ∂Ĥ
∂hα

(via multiplication

by ξ2J) since the states we consider diagonalise Ĥ. Nicely, the result is a ‘local’ operator

that acts only on the three neighbouring sites α− 1, α and α + 1,

∂Ĥ

∂hα
Ĥ−1 = −8

[
−

x2
α,α−1 + x2

α,α+1

2

(
1 + xµ

α

∂

∂xµ
α

)
+ (x2

α,α−1xµ
α+1 + x2

α,α+1xµ
α−1)

∂

∂xµ
α

]

×�
−1
α

1

x2
α,α−1

1

x2
α,α+1

. (5.37)

The expectation value of this operator corresponds to a class of nontrivially modified

Feynman diagrams that are therefore computable within our functional SoV approach.

It would be also interesting to try and link it with concrete OPE coefficients and other

observables. In general, using variations in the local spin chain parameters such as the

weights and the inhomogeneities opens the way to computing many nontrivial observables,

and it would be important to explore them further.

6 Scalar products in separated variables

In the spin chains with more regular HW representations, it was shown in [7, 13] that

one can obtain a lot of structural information from the functional SoV approach [15]. In

particular one can deduce the scalar product in SoV basis in determinant form. In the

current case, when none of the Q-functions are polynomial, there are additional subtleties

which can be properly addressed with extra additional input from the operatorial SoV

approach, like in [7]. The manifestations of these additional complications can be seen for

example in the properties of the scalar product in the coordinate space (see section 2.4.1). A

rather new feature, in comparison to the quasi-periodic systems studied with SoV methods

so far, is that the scalar product has a log-divergence when both states have the same

dimension ∆ (and the twists are opposite); in this case, the meaningful quantity is the

coefficient in front of the logarithm. At the same time, for two generic states we expect

19For simplicity we restrict to the case where none of the sites α − 1, α, α + 1 are at position J , otherwise

one finds a slightly different result.
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the properly regularised scalar product to be finite and thus we may be able to follow the

usual path of [7, 13] and establish the link between the SoV and coordinate representations

of the scalar product.

In this section we will introduce the SoV-like scalar product, following the functional

SoV approach. Then we discuss its key properties such as orthogonality and also show

that the log-divergence presented in the coordinate representation emerges naturally in the

functional SoV formalism.

6.1 General philosophy

First let us schematically repeat the general logic. As in the case of the simple spin chains

we expect that there is an SoV basis 〈x| such that the eigenvectors of the transfer matrix

(as well as many other states) |Ψ〉 factorise. For convenience in this section we will use

the bra and ket notations, but the scalar product in the case of the conformal spin chain

should coincide with the one introduced in section 2.2. In general we can write

〈x|ΨA〉 =
J∏

α=1

QA(xα) (6.1)

where Q(u) are some simple combinations of the Q-functions qa(u), corresponding to the

state A, with some shifts. Similarly, the conjugate states (as defined in section 2.4) are

factorised in general in the dual SoV basis |y〉

〈ΨB|y〉 =
J∏

α=1

QB(yα) . (6.2)

Then, using the expected completeness of the SoV basis, we get

〈ΨB|ΨA〉 =
∑

x,y

〈ΨB|y〉Mx,y〈x|Ψ
A〉 =

∑

x,y

J∏

α=1

QB(yα)Mx,y

J∏

α=1

QA(xα) (6.3)

where the SoV measure Mx,y ≡ 〈x|y〉
−1, can be deduced most efficiently from the functional

SoV approach, like in [7]. The main point of the expression (6.3) is that it allows one to

concentrate all state-dependent information in the Q-functions, and combines it together

with some universal measure factor Mx,y into the scalar product. Furthermore the r.h.s.

of (6.3) can be usually written as a determinant, which makes it very useful in practice.

The idea of [15] was that the r.h.s. of (6.3) can be deduced directly from the Baxter TQ-

relations and is greatly constrained by the requirement that for two different eigenfunctions

of the transfer matrices the combination of Q-functions should obey orthogonality, i.e.

vanish for any pair of states with distinct eigenvalues.

In this section we will follow [15] to establish the possible form of the r.h.s. of (6.3)

and discuss the main properties of the resulting expression. In order to conclude with

certainty about the relation to the l.h.s. of (6.3), i.e. to the conformally invariant scalar

product (2.16), further studies, in particular at the operatorial SoV side, are required and

will be reported elsewhere.
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6.2 Orthogonality relation for generic states

Here we repeat the argument of [15] for the orthogonality relation. The starting point is

the Baxter operator (5.1). We will need two copies of that for two different states A and

B such that

BAqA
a = 0 , BdualBpB

a = 0 . (6.4)

Using the conjugation property of the Q-bilinear form we have again

〈pB
a (BA − BB) ◦ qA

c 〉α = 0 , a, b = 1, . . . , 4 , α = 1, . . . , J . (6.5)

Writing the difference of the Baxter operators more explicitly we get

BA − BB =
∑

b∈{−2,0,0̄,2}
(−1)

b

2

J∑

α=1

(u + ib
2 )β−1 (IA

(b,β) − IB
(b,β))Db . (6.6)

Combining the two we get

J∑

β=1

∑

b∈{−2,0,0̄,2}

(
MAB

) (b,β)

(a,c,α)
· (IA

(b,β) − IB
(b,β)) = 0 , (6.7)

where like in (5.12) we have

(
MAB

) (b,β)

(a,c,α)
≡ (−1)

b

2 〈 pA
a (u + ib

2 )β−1Db ◦ qB
c 〉µα . (6.8)

The main difference with the section 5.3, where we were interested in the continuous vari-

ation of the conserved charges w.r.t. the internal (e.g. ξ) or external (e.g. θα) parameters,

is that for the convergence of the Q-bilinear form constituting MAB we are no longer

required to assume a and c to be related to each other. So in total we have 16 possible

combinations of the indices a and c. In the case of spin chains with HW representation the

natural choice for a and c is given by the polynomiality constraint of pa and qc. In that

case the set of possible values of a and c is such that the analogue of the matrix MAB is a

square matrix. In our case this would correspond to a selection of 4 combinations of (a, c)

out of 16. Imagine this was done, then the system (6.7) becomes a homogeneous 4J × 4J

linear system on 4J unknowns IA − IB. Following the logic of [15], this is only possible if

detMAB = 0 , A 6= B . (6.9)

The expression (6.9) represents the so-called orthogonality relation. Even though the above

expression is derived for two different eigenstates of the same transfer matrix, the inter-

pretation (6.9) goes beyond that case. In the cases of the HW spin chains, where the

operatorial formalism was worked out explicitly, it was shown [7] that it gives the realisa-

tion of the expression (6.3) for the scalar product of two states

〈〈ΨB, ΨA〉〉 = N̄BNA detMAB , (6.10)

where N̄A, NB are the normalisation coefficients, dependent on one state only. Of course,

when |ΨA〉 and 〈ΨB| are two different eigenstates of the same transfer matrix then (6.9)
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should hold indeed. Furthermore, in [7] it was shown that the relation stays correct in a

number of less trivial situations, for example when the states correspond to the transfer

matrices with different twist eigenvalues λa, or even when the states are not eigenstates of

any transfer matrix, but are factorisable in the same SoV bases 〈x| and |y〉. In all these

cases (6.10) gives a nontrivial r.h.s. and allows to bring together the SoV representation

and the coordinate representations of the various overlaps.

Whereas the proper proof of the proposal (6.10) requires further insights from the

operatorial SoV approach, like in [7], we can analyse some common features of the l.h.s.

of (6.10), which is represented by a 4J-dimensional integral of two CFT wave-functions,

and the r.h.s. which is given by the determinant of one dimensional integrals of bilinears of

Q-functions. One key property, discussed in section 2.4.1, is the logarithmic divergence in

the case ∆A = ∆B. This can be reproduced in the r.h.s. of (6.10) as some of the Q-bilinear

forms are also divergent when ∆A = ∆B, due to a non-regularisable 1/n-divergence in (4.9).

In order to mimic the cutoff in the coordinate space, we can introduce a slight difference

in the twist eigenvalues λa, then the 1/n-divergence will get replaced in (4.9) by

∞∑

n=1

(λB/λA)n

n
= log

(
λA

λA − λB

)
. (6.11)

Analysing the finite part of the determinant MAB under such regularisation, one can also

deduce the SoV representation for the particularly important case ∆A = ∆B.

We will leave all these very intriguing questions for future investigation. In particular,

this includes the question of how to pick correctly the 4 combinations of a, c out of 16

possibilities. Let us point out, however, that a similar ambiguity/freedom can be observed

in the spin chains in finite dimensional representations. In this case, all Q-functions are

(twisted) polynomials and multiple combinations of indices a and c would produce the

correct expression for the norm in SoV. Different possibilities correspond to using different

reference states in the algebraic Bethe ansatz.

7 On the structure of the g-function in separated variables

The g-function is an important object appearing in studies of integrable systems with

boundaries [69], and recently connected to interesting observables in N=4 SYM [53, 54,

56, 70]. In our context it can be interpreted as an overlap between a CFT wave-function

and a fixed boundary state. Whereas the exact form of the overlap would depend on the

details of the boundary state, it also contains a universal part, which is, however, very

hard to calculate. This universal part satisfies special selection rules, and in this section

we propose a construction based on the Q-bilinear forms which nontrivially obeys these

properties and is a suitable candidate for the universal part of the g-function.

The construction here is inspired by [6, 52, 71], where it was observed that the universal

part has a very suggestive structure, which is related in a simple way to the expression for

the norm — both in the case of spin chains and for some field theories.
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7.1 Review: the g-functions and their parity selection rules

We start with some introductory remarks where we will review the definition of these

observables, and describe the parity selection rules that they have to satisfy.

The g-functions measure the overlap between a generic state |Ψ〉 and an integrable

boundary state 〈B|. Usually the boundary state 〈B| can be obtained as a “Wick rotation”

of an integrable boundary condition, which satisfies a suitable boundary-Yang-Baxter equa-

tion [72]. For example, a version of the Wilson line in the fishnet theory was shown to

be an example of an integrable boundary condition [73] and the corresponding boundary

state can be written explicitly as (see figure 4)

〈BW L| =
J∑

n=1

∫ 2π

0

dφ1

2π

∫ 2π

φ1

dφ2

2π
· · ·
∫ 2π

φJ−1

dφJ

2π

J∏

i=1

1

(xi+n,1 −R sin φi)2 + (xi+n,2 −R cos φi)2
,

(7.1)

where for simplicity we assume that the contour is in the (1, 2) plane.20 Other examples

from N=4 SYM could arise in various situations: for instance, when we consider the

expectation value of a single-trace operator in presence of a domain-wall defect [54, 55], or a

Wilson loop [56], or its contraction with two determinant operators [53, 74]. In N=4 SYM,

all these quantities have been related to a g-function with an appropriate boundary state.

A simple characterisation of integrable boundary states was proposed in [75] for inte-

grable 1+1 dimensional QFT and generalised in [76] for lattice systems. This condition

states that quasi-cyclic invariant integrable boundary states are annihilated by all the con-

served charges of the spin chain that are odd under a certain “chain-reflection” operation

Π. Assuming that Π also maps the integrals of motion into linear combinations of the

integrals of motion, they can be organised in two families, denoted as H+ and H−, which

are respectively even or odd with respect to Π:

Π · Ĥ± ·Π = ±Ĥ± . (7.2)

Then the nontrivial integrability condition of boundary states proposed in [76] reads:

Ĥ−|B〉 = 0 , (7.3)

namely the boundary states has to be annihilated by all odd charges. Usually (7.3) is a

nontrivial condition, which we verified for |BW L〉 explicitly at J = 2 to be true for trivial

twists λa = 1.

In our case, a possible choice of the space-reflection is the transformation of a CFT

wave function

Π ◦Ψ(x1, . . . , xJ)→ Ψ(x̃J , . . . , x̃1) , (7.4)

where in addition we perform a reflection in the space-time x̃α = (−xα,1, xα,2,−xα,3, xα,4).

Note that the boundary state 〈BW L| is invariant under this transformation, as reordering

changes the orientation of the WL, which is then restored with the spatial reflection.

20More explicitly for J = 1 and J = 2: 〈BW L| =
∏J

i=1
1

x2

i,1
+x2

i,2
−R2

and becomes more complicated

for J > 2.
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Figure 4. An example of the overlap of CFT wave function with a boundary state in the fishnet

model is a correlation function between a local operator and a circular Wilson-Maldacena loop.

The g-function is defined as the normalised overlap between an integrable boundary

state and an eigenstate of the integrals of motion |Ψ〉:

g ≡

√
〈B|Ψ〉 〈Ψ|B〉

〈Ψ|Ψ〉
. (7.5)

Note that (7.3) implies that there is a selection rule for g-function

〈B|Ψ〉 = 0, if
~̂
H− · |Ψ〉 6= 0 , (7.6)

namely, the overlap is non-vanishing only for symmetric states.

The g-function was studied quite intensively recently. One can encode the information

on the boundary state |B〉 through the boundary reflection operator [72], which in many

interesting cases reduces to a reflection phase Θ(u). The first proposal for a method to

compute the g-function in integrable systems was made in [77], as a convolution involving

the reflection phase and the Y-functions. However, it was first pointed out in [78] that the

g-function must also contain an additional universal factor, that does not depend on the

boundary state, but only on the state |Ψ〉. A correct proposal for this universal factor in

rank-1 system was made for the first time in [57]. Later, path integral arguments to prove

this result were presented in [79] (reproducing part of the result), and [80] (reproducing

the whole result). Recently a rigorous derivation of the general form of the g-function,

extended to generic rank, was given in [81], see also [53] for a different argument.
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Schematically, the structure of the g-function is the following:

g = exp

(∫ ∞

0
Θ(u) log(1 + Y (u))du

)

︸ ︷︷ ︸
boundary-dependent, simple

×

√√√√√
det

[
1− Ĝ−

]

det
[
1− Ĝ+

]

︸ ︷︷ ︸
universal factor, hard

, (7.7)

where we are omitting sums over different types of Y-functions for simplicity. The universal

factor is a ratio of Fredholm determinants of integral operators Ĝ±, which are defined in

terms of the Y-functions (see for example [53] for details).

Here, we want to discuss the structure of the universal factor in terms of the Q-

functions, following similar arguments to [52] in the case of the Sinh-Gordon model. In

that work, it was suggested that the Fredholm determinants can be related to factors of

definite parity of the determinant defining the norm of the state in separated variables.21

An important guiding principle in formulating such a proposal is that any g-function has

to satisfy the selection rule (7.6), which should be a property of the universal factor. Below

we demonstrate that there is such combination of Q-functions in the fishnet theory, which

we propose as a natural candidate for the universal factor.

7.2 Chain-reflection symmetry in the fishchain

We start by discussing the chain-reflection symmetry Π in the fishnet spin chain. For

simplicity we consider the case with no magnons M = 0. In fact the presence of magnons

explicitly violates parity, as in the fishnet theory the magnons spiral in one direction around

the “worldsheet” of the Feynman diagram. The chain-reflection, acting on the CFT wave-

function, is defined in (7.4).

Now we need to see how this symmetry acts on the integrals of motion. In order to map

the integrals of motion to each other we will additionally require that the twist eigenvalues

satisfy λ1 = 1/λ2, λ3 = 1/λ4 and that the inhomogeneities are such that θα = −θJ+1−α.

A reversal of the order of spin chain sites is equivalent to transposition in the auxiliary

space in the definition of the transfer matrices. From the definition of the Lax matrices in

appendix F, we see that

(L̂6(u))MN = (L̂6(−u))NM , (L̂4(u))a
b = −(L̂4̄(−u)) a

b , (7.8)

namely, transposition in auxiliary space sends u ↔ −u and 4 ↔ 4̄. The reflection

xα → x̃α is a conformal transformation which in the 4 representation interchanges 1 ↔ 2

and 3 ↔ 4, and thus transforms the diagonal twist matrix Λ4 = diag (λ1, λ2, λ3, λ4) →

diag (λ2, λ1, λ4, λ3) = Λ4̄. At the same time the Λ6 is not diagonal but the transposition

is exactly compensated by the twist interchange. Thus we conclude that

T6(u)→ T6(−u) , T4(u)→ (−1)JT4̄(−u) , (7.9)

21This association with the norm emerges quite clearly in the asymptotic large-volume limit, where the

Fredholm determinants give rise to Gaudin-type determinants, see [53].
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which then results in the following transformation of the polynomials P r(u):

Π :
{

P 4

J (u), P 4̄

J (u), P 6

2J(u)
}
→
{

(−1)J P 4̄

J (−u), (−1)J P 4

J (−u), P 6

2J(−u)
}

. (7.10)

As the parity changes the eigenvalues of the integrals of motions, it also acts nontrivially on

the eigenstates and consequently on the Q-functions. If the initial q(u) was solving the TQ-

relation B ◦ q(u) = 0, then the Baxter equation with transformed coefficients B̃ ◦ q̃(u) = 0

is solved simply by q̃(u) = q(−u).

More precisely, taking into account the conventions for the asymptotics (2.56) and

analyticity we get

q̃↓
a(u) ∝ q↑

σ(a)(−u), q̃↑
a(u) ∝ q↓

σ(a)(−u) , (7.11)

where σ is a permutation acting as {1, 2, 3, 4} → {2, 1, 4, 3}.

Parity-even and parity-odd integrals of motion. Finally, from (7.10) we introduce

even and odd combinations of the integrals of motion:

H(+,α) ≡ I(2,α) + (−1)J+α−1I(−2,α) , (7.12)

H(−,α) ≡ I(2,α) − (−1)J+α−1I(−2,α) , (7.13)

H ′
(+,α) ≡

(
I(0,1), . . . I(0,J), I(0̄,1), . . . , I(0̄,J)

)

2α−1
,

H ′
(−,α) ≡

(
I(0,1), . . . I(0,J), I(0̄,1), . . . , I(0̄,J)

)

2α
, (7.14)

where 1 ≤ α ≤ J . Under a parity transformation, (7.10) implies that

Π :
{

H(±,α), H ′
(±,α)

}
→ ±

{
H(±,α), H ′

(±,α)

}
. (7.15)

Parity-symmetric states are the ones for which H(−,α) = H ′
(−,α) = 0, which implies in

particular that they must have zero spins Si = 0, i = 1, 2, whereas ∆ is parity even and

does not transform.

7.3 Expression in terms of the Q-bilinear forms

In section 6 we introduced a linear system of equations associated to any pair of states A,

B (see (6.7)), the solution of which is the difference of their integrals of motion. Now let

us apply the same argument for a pair of states chosen as follows: a generic state A, and

the state Ã which is the image of A under the parity transformation Π. Note that in this

case the values of ∆ for both states coincide and we have to take a = c in (6.7) in order to

keep the matrix elements MAÃ finite.

These two states must have the same value for all the even charges H+, H ′
+, while the

odd charges differ by a sign HA
− = −HÃ

− , H
′ A
− = −H

′ Ã
− . In this case the null eigenvector

IA − IB in (6.7) has only 2J nontrivial components, since when written in the basis of

H± the components corresponding to HA
+ −HÃ

+ should be zero by construction. After this

change of basis of the integrals of motion, we get

M̃AÃ =




m
(1)
− m

′(1)
− m

(1)
+ m

′(1)
+

m
(2)
− m

′(2)
− m

(2)
+ m

′(2)
+

m
(3)
− m

′(3)
− m

(3)
+ m

′(3)
+

m
(4)
− m

′(4)
− m

(4)
+ m

′(4)
+




, M̃AÃ ·




2 ~H(−)

2 ~H ′
(−)

0 ~H(+)

0 ~H ′
(+)




= 0 , (7.16)
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where the blocks m± are constructed explicitly in terms of Q-bilinear forms in appendix H

(in particular, see (H.6)).

Now let us consider a non-symmetric state, where Ã 6= A. In this case the system of

equations (7.16) has a nonzero solution, which implies that any 2J × 2J minor extracted

from the left half of the linear system has to vanish. In particular, for a non-symmetric

state we have:

|M−| = 0, iff A 6= Ã (7.17)

where

M− =

(
m

(1)
− m

′(1)
−

m
(2)
− m

′(2)
−

)
. (7.18)

The reason we pick this particular minor is because, as we show in appendix H, for the

partity symmetric states A = Ã the matrix M̃AÃ becomes block diagonal:

M̃AÃ =

(
M− 0

0 M+

)
, (7.19)

and the only minor which is non-zero in this case is |M−|. For example, we computed

these determinants in the case J = 2, M = 0, for twists λ1 = 1/λ2 = e
i
3 , λ3 = 1/λ4 = e

i
2 ,

impurities θ1 = −θ2 = − 1
100 , coupling ξ2 = 0.100992, and for the state with ∆ ≃ 1.92864

(and with zero spins). This state is symmetric under chain reflection. We found

M− ≃

(
2.01167 − 0.0171415i −0.295886 − 24.8005i −2.48553 + 1.16921i 0.283543 + 27.2419i

−2.03801 + 0.0171415i 0.295886 + 25.2569i 2.48553 − 1.18821i −0.283543 − 27.7381i

1.90268 − 0.425068i −5.51714 − 24.1991i 0.00626019 + 1.40562i 6.061 + 26.5768i

−1.94376 + 0.433256i 5.61628 + 24.6345i 0.0280348 − 1.43976i −6.16937 − 27.0517i

)
, (7.20)

(which has a non-vanishing determinant |M−| ≃ −0.00338656), and

M+ ≃

(
0.261583 − 5.84906i 11.627 + 0.0235689i 0.444272 − 2.76135i −0.242355 + 6.14948i

−0.261583 + 5.92727i −11.8254 − 0.0235689i −0.444272 + 2.75742i 0.242355 − 6.23208i

0.78032 + 3.40643i −11.132 + 2.53844i −0.243301 − 0.976073i −0.890288 − 3.91207i

−0.797245 − 3.47857i 11.3255 − 2.58256i 0.241469 + 0.95587i 0.908886 + 3.99468i

)
, (7.21)

which has |M+| ≃ 0, while its null vector is proportional to ∂ξ2( ~H+ , ~H ′
+).

The structure of the g-function. We see that the determinant |M−| vanishes if and

only if the state A is parity-symmetric. This is the same selection rule (7.17) exhibited by

the overlaps with integrable boundary states. That makes it a natural candidate for the

universal part of the overlap appearing in the g-function,

√
〈B|ΨA〉 〈ΨA|B〉 ∝ |M

(A)
− | . (7.22)

The meaning of this proposal is that we expect the r.h.s. to appear naturally in the SoV

construction of the overlap, in the same spirit as the discussion of the scalar product in

section 6. Crucially, the relations (7.17) imply that the r.h.s. of (7.22) satisfies the selection

rules, which provide an infinite number of consistency conditions. However, one would still

have to figure out explicitly how to build the non-universal part of this overlap, in terms

of the boundary reflection operator corresponding to a given boundary state.
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Finally, let us point out that for the parity symmetric states, due to the block diagonal

structure of (7.19), we also find that the determinant corresponding to the finite part of

the norm has a factorised form:

det(M̃AA) ∝ |M
(A)
− | |M

(A)
+ | , (7.23)

the same way as was found in [6, 52, 71]. As we discussed in sections 5 and 6, for the

standard choice of Q-bilinear forms the determinant (7.23) vanishes, which in this case is

due to |M+| = 0. To find a connection with the (finite part of) the norm of the state,

a regularisation prescription is required, which would be clarified in the operatorial SoV

construction. Here, we point out that a natural possibility is to consider |M+|∗, defined as

the product of the 2J − 1 non-vanishing eigenvalues of |M+|. This leads to a proposal for

the structure of the universal factor of the g-functions, similar to [52]:

(guniversal)
2 ∝

|M−|
|M+|∗

, (7.24)

which is also very similar to the structure found rigorously in [6] in the case of the Heisen-

berg spin chain.

8 N = 4 super Yang-Mills: generalisations and speculations

In the previous sections we demonstrated that the functional SoV approach to spin chains

can be also applied in such integrable field theories as the fishnet CFT. Here we speculate

on how this method can be further extended to more complicated cases such as N=4

SYM. In this section we assume the most general deformed version of the theory, which

also includes the twist parameters λa in AdS5.

In this case, the theory is described by a more complicated PSU(2, 2|4) Q-system. Four

of the Q-functions, usually denoted as Qi, are directly connected with the Q-functions of

the fishnet model in the double scaling limit of [41]. They represent AdS5 degrees of

freedom in the dual string picture. In addition, in this case we also have the Pa functions,

which represent the S5 degrees of freedom. In the fishnet limit they simplify drastically and

become rational functions with a pole at the origin, and the coefficients in the numerator

of these rational functions encode the integrals of motions I(b,α).

The P and Q functions have a characteristic analytic structure illustrated in figure 5.

The size of the cuts is given by the ‘t Hooft coupling g =
√

λ
4π and tends to zero in the fishnet

limit, with cuts of Qa becoming the already familiar poles of qa, whereas Pa become rational

functions with a pole at the origin.

The Baxter equation satisfied by qa generalises to a fourth order finite-difference equa-

tion [88]:

Q
[+4]
i A+2 + Q

[+2]
i A+1 + QiA0 + Q

[−2]
i A−1 + Q

[−4]
i A−2 = 0 , (8.1)
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Figure 5. Analytic structure of P and Q functions. In the fishnet limit g → 0 and the cuts collapse

into poles.

where the coefficients are Pa dependent combinations defined as

A2 ≡
1

D̄0
, A−2 ≡ −

1

D0
, A0 ≡

D2 −PaPa[+2]D1 + PaPa[+4]D0

D0D̄0
, (8.2)

A1 ≡ −
D1 −P

[+2]
a Pa[+4]D0

D0D̄0
, A−1 ≡

D̄1 + P
[−2]
a Pa[−4]D̄0

D0D̄0
, (8.3)

and Dk are some combinations of Pa’s defined in appendix I.

In the fishnet model, the transfer matrix eigenvalues appearing in the TQ equations

were polynomials, leading to a natural basis for the integrals of motion. The coefficients

Ak(u) have a more complicated analytic structure, see appendix I. Crucially, they are

asymptotically constant at infinity, and are analytic outside a certain radius R∗ in the

complex plane. This means that they admit a convergent Taylor expansion around infinity:

Ak(u) =
∞∑

n=0

I(k,n)

un
, |u| > R∗. (8.4)

The coefficients I(k,n) should contain a basis of integrals of motion, generalising I(b,α) of

the fishnet theory. At any fixed order in the weak coupling expansion, only a finite number

of integrals of motion are linearly independent: as it is known from the scaling of the

coefficients of Pa, at order O(g2l) such functions truncate to finite Laurent polynomials

in u with ∼ l coefficients, see e.g. [82]. However, at finite coupling, we have an infinite

number of integrals of motion, as expected since the theory corresponds to a sigma model

with infinite number of degrees of freedom (unlike the fishnet theory, which is dual to a

system of J particles with 4J degrees of freedom [46]22). Finding the most convenient basis

22See also [83, 84] for a different approach to formulating the dual model.
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of the coefficients I(k,n), which behaves nicely at weak coupling and takes into account the

cut structure of the coefficients Ak(u), is an important problem for future studies. One

possibility is to use a spectral representation of Ak(u), which has a finite number of cuts,

with the discontinuities expanded into Zhukovsky variables xn — this basis will behave

well at weak coupling, but could still contain some linear dependencies.

In order to advance further in the analogy with the fishnet theory, we have to introduce

Q-bilinear forms and make sure that the Baxter equation (8.1), written as a finite difference

operator

B =
2∑

n=−2

AnD2n , B ◦Qi = 0 (8.5)

has a simple conjugation property under this bilinear form. Fortunately, this step can be

realised in N = 4 SYM too. We introduce the dual Q-function Qi by

∣∣∣∣∣∣∣

Qi(u + i) Qi(u) Qi(u− i)

Qj(u + i) Qj(u) Qj(u− i)

Qk(u + i) Qk(u) Qk(u− i)

∣∣∣∣∣∣∣
≡

1

6
ǫhijkQ

h(u) , (8.6)

which in the QSC Q-system notation correspond to the Q-functions Q∅|ijk. This dual

Q-function does indeed satisfy the dual TQ-relation as we demonstrate in appendix C,

Bdual ◦Qi = 0 , (8.7)

where Bdual is the conjugate operator to B in the same sense as in the fishnet CFT case,

i.e. as defined in section 4.1.2. This means, for example, that we can repeat the derivation

of the orthogonality relations from section 6, giving the SoV form of the scalar product

starting from the equation

〈QB i (BB − BA) ◦QA
j 〉µ(u) = 0 , (8.8)

where as before we define the bracket 〈f〉µ as a formal integral over the contour
∫

| ≡∫ c+i∞
c−i∞ −

∫−c+i∞
−c−i∞ , where we assume that c > 2g. Such an integral will encircle the infinite

ladder of cuts of the Q-functions. In practice, say for numerical calculations, one would

write this integration as a sum over the infinite set of contours encircling the branch-cuts

of Qi and Qj . Then for each cut one can use a strategy very similar to section 4.2 — one

can flip the location of poles by using the i-periodic, anti-symmetric matrix ωij(u), which

then should allow us to have full analytic control over the tail of the sum over cuts and

enable efficient ζ-regularisation just like in the fishnet case. A convenient set of periodic

functions µ(u) is

µn(u) ≡ δn,0 +

∮
dv

2πi
coth π(u− v)

(
xn(v)− x−n(v)

)
,

which generalises naturally the corresponding basis in the fishnet CFT (4.3).

Furthermore, like in the fishnet case, there are exactly 4 combinations of the indices

(i, j) in the Q-bilinear forms (8.8) which give a finite result in the important case when

∆A = ∆B and also the twists λA
a = λB

a . Exactly the same combinations of the Q-function
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indices (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)} lead to a finite result for the integral (8.8) when

the Q-functions are on-shell i.e. all QSC analyticity constraints are satisfied including the

gluing condition [85, 86]. For the more general deformed setup of two states with different

twists, we expect again that the integrals are convergent for generic pairings the same way

as was discussed in section 6.

Of course the plan outlined in this section deserves very intensive further studies, but

we believe the main ingredients presented here will become instrumental in the future. The

main difference with the fishnet case is that the number of integrals of motion is now infinite,

leading to infinite size determinant for the SoV scalar product. In order to overcome

this additional complication, one should develop a good truncation at perturbative level,

where the number of independent integrals of motions becomes effectively finite. Then this

perturbative method can be extended to finite coupling by an appropriate extrapolation

procedure, similarly to how that is done for the spectrum [65].

One of the applications of this approach would be the calculation of the overlaps

between local operators and integrable boundary states, given by the g-function [52, 53].

For that one should follow the steps done in section 7 for the fishnet model. The main

message of this section is that for the applications of the SoV methods to models like N = 4

SYM one can essentially follow the same steps as for the fishnet model. This makes the

development of the SoV for spin chains in general paramount for the progress with the

non-perturbative description of correlators in AdS/CFT.

9 Summary

In this paper we initiated the program of studying the multiple wrapped diagrams in fishnet

theory by means of Separation of Variables methods. This approach promises to extend

the power of the Quantum Spectral Curve and alike methods, initially developed for the

spectrum, to more general class of observables. In contrast with other integrability based

methods for correlation functions the presented approach resums all wrapping diagrams

and the calculations are valid non-perturbatively for finite length operators.23

In this paper we develop the so-called functional SoV approach introduced in [15]. The

next obvious step would be to join our results with the insights coming from the operatorial

SoV approach [4, 13, 20], which would allow us to construct more general overlaps and form

factors in fishnet theory like in [13]. Moreover, an explicit construction of the CFT wave

functions (which should be obtainable with the operatorial approach) would be a very

significant step towards the full solution of the planar theory. This is because the wave

functions contain all the nontrivial coupling dependence of generic correlators.

Within the functional SoV approach, we made a proposal for the expression for the

scalar product in the SoV basis. Furthermore, we derived a closed expression for the

23The SoV has been previously successfully constructed for certain types of fishnet graphs with open

boundary conditions, which enter the computation of Basso-Dixon diagrams [9, 12, 37, 87]. This construc-

tion by its ideology is closer to the Hexagon formalism, and may lead to its rigorous derivation. At the same

time it inherits the same weaknesses from Hexagon approach when it comes to the wrapping corrections

and further resummations at finite coupling.
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derivative of the dimension w.r.t. to the coupling constant ξ, which is written in terms of

the Q-functions evaluated at one fixed value of ξ. This result, which is related to a 4J×4J

determinant of one dimensional integrals of Q-functions, gives a prototype for the type of

structures which should appear in more general correlators. We also developed general

numerical methods for efficient evaluation of such integrals of Q-functions. This method is

based on the core properties of the Q-functions and the QQ-relations.

Another application of our method is the computation of the g-function, which is

closely related to the scalar product from the SoV point of view [6, 52]. We discuss this in

detail in section 7.

One unexpected observation we made is that the quantisation condition, which comes

as an extra condition on the Q-functions, is tightly related with the finiteness of the norm

in SoV representation.

In section 8 we speculated on how our methods can be extended and applied for the

more complicated theories like N = 4 SYM. There, we argued that all main ingredients

of our construction find their counterparts in this more general case, even though more

detailed future studies are required.

Let us also mention that in a particular (Gaudin) limit the spin chain we considered

here should be linked closely to the computation of multi-point conformal blocks in any

dimension, in the light of the results from [89]. It would be important to explore the

implications of SoV techniques developed here in this context, where further simplification

is expected.

Another important direction is to apply the methods of this paper to the boundary

problems like [73]. This could lead to generalisation of the initial observation of [34] for

the case of the simple cusp 3-point correlator.
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A Sigma matrices

The Sigma matrices ΣMN in our conventions read

Σ1,2 =




i
2 0 0 0

0 i
2 0 0

0 0 − i
2 0

0 0 0 − i
2




Σ1,3 =




0 0 0 −1
2

0 0 1
2 0

0 −1
2 0 0

1
2 0 0 0




Σ1,4 =




0 0 0 − i
2

0 0 − i
2 0

0 − i
2 0 0

− i
2 0 0 0




Σ1,5 =




0 0 i
2 0

0 0 0 − i
2

i
2 0 0 0

0 − i
2 0 0




Σ1,6 =




0 0 −1
2 0

0 0 0 −1
2

1
2 0 0 0

0 1
2 0 0




Σ2,3 =




0 0 0 −1
2

0 0 1
2 0

0 1
2 0 0

−1
2 0 0 0




Σ2,4 =




0 0 0 − i
2

0 0 − i
2 0

0 i
2 0 0

i
2 0 0 0




Σ2,5 =




0 0 i
2 0

0 0 0 − i
2

− i
2 0 0 0

0 i
2 0 0




Σ2,6 =




0 0 −1
2 0

0 0 0 −1
2

−1
2 0 0 0

0 −1
2 0 0




Σ3,4 =




1
2 0 0 0

0 −1
2 0 0

0 0 1
2 0

0 0 0 −1
2




Σ3,5 =




0 1
2 0 0

1
2 0 0 0

0 0 0 1
2

0 0 1
2 0




Σ3,6 =




0 i
2 0 0

− i
2 0 0 0

0 0 0 − i
2

0 0 i
2 0




Σ4,5 =




0 i
2 0 0

− i
2 0 0 0

0 0 0 i
2

0 0 − i
2 0




Σ4,6 =




0 −1
2 0 0

−1
2 0 0 0

0 0 0 1
2

0 0 1
2 0




Σ5,6 =




1
2 0 0 0

0 −1
2 0 0

0 0 −1
2 0

0 0 0 1
2




(A.1)

B Derivation of the form of the scalar product

The scalar product is a bilinear functional. Without loss of generality, we can represent it

in the form

〈〈f, g〉〉 ≡
∫ J∏

i=1

ddxi f(x1, . . . , xJ)K̂ ◦ g(x1, . . . , xJ), (B.1)

where K̂ is a linear operator, which can be written in terms of an integration kernel (which

might be a distribution):

(K̂ ◦ f)(x1, . . . , xJ) ≡
∫ J∏

i=1

ddyiK(x1, . . . , xJ |y1 . . . , yJ) f(y1, . . . , yJ). (B.2)

Let us now impose the covariance of the scalar product under a generic conformal trans-

formation C−1, acting on the site n as

C−1
(n) ◦ f(x1, . . . , xJ) ≡ f(x1, . . . , xn−1, C(xn), xn+1, . . . , xJ) . (B.3)

The covariance condition reads:

(K̂◦C−1
(n)◦f)(x1, . . . ,xJ) =

∣∣∣∣
∂C(x)

∂x

∣∣∣∣

D−hn
d

x=xn

(K̂◦f)(x1, . . . ,xn−1,C(xn),xn+1, . . . ,xJ), (B.4)
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where D is the spacetime dimension, i.e. D = 4 in our case. Since this must be satisfied

for all sites n, we can look for a solution in terms of a factorised kernel:

K(x1, . . . , xJ |y1, . . . , yJ) ≡
J∏

i=1

Khi
(xi|yi). (B.5)

Imposing the conditions (B.4) for all sites n is equivalent to:

Kh(x|y) =

∣∣∣∣
∂C(x)

∂x

∣∣∣∣

D−h
D

Kh(C(x)|C(y))

∣∣∣∣
∂C(y)

∂y

∣∣∣∣

D−h
d

. (B.6)

This is the same transformation rule as for a two-point function with scaling weight (D−h).

The solution is therefore fixed to:

Kh(x|y) ∝
1

|x− y|2D−2h
. (B.7)

Multiplying by an appropriate normalisation factor, this integral kernel can be related to

the fractional operator �
D
2

−h defined in (2.15).

C Dual Baxter equation

Here we describe in general the form of the dual Baxter equation satisfied by 3× 3 deter-

minants of Q-functions.

Consider a finite difference equation of the form

A−2(u)Qa(u−2i)+A−1(u)Qa(u−i)+A0(u)Qa(u)+A+1(u)Qa(u+i)+A+2(u)Qa(u+2i) = 0

(C.1)

where a = 1, . . . , 4 labels 4 independent solutions of this equation. Define dual Q-functions

by

P a(u) = F (u)ǫaa1a2a3Qa1(u + i)Qa2(u)Qa3(u− i) . (C.2)

Then the 4 functions P a(u) satisfy the dual finite difference equation

B−2(u)P a(u−2i)+B−1(u)P a(u−i)+B0(u)P a(u)+B+1(u)P a(u+i)+B+2(u)P a(u+2i) = 0

(C.3)

where

B−1(u) =
A1(u− i)F (u− 2i)

A−2(u− i)F (u− i)
B−2(u), (C.4)

B0(u) =
A0(u)A2(u− i)F (u− 2i)

A−2(u)A−2(u− i)F (u)
B−2(u), (C.5)

B+1(u) =
A−1(u + i)A2(u)A2(u− i)F (u− 2i)

A−2(u)A−2(u− i)A−2(u + i)F (u + i)
B−2(u), (C.6)

B+1(u) =
A−1(u + i)A2(u)A2(u− i)F (u− 2i)

A−2(u)A−2(u− i)A−2(u + i)F (u + i)
B−2(u), (C.7)

B+2(u) =
A2(u)A2(u− i)A2(u + i)F (u− 2i)

A−2(u)A−2(u− i)A−2(u + i)F (u + 2i)
B−2(u) . (C.8)
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To show this we plug the definition (C.2) into (C.3) and then use (C.1) to exclude Qa(u +

3i), Qa(u + 2i) and Qa(u + i) from the resulting equation.

To make the result simpler, we can make use of the arbitrary overall multiplier B−2(u)

which we set to be B−2(u) = A+2(u− 2i), and also adjust the factor F (u) in the definition

of P a(u) so that it satisfies

F (u + i
2)

F (u− i
2)

=
A+2(u− i

2)

A−2(u + i
2)

. (C.9)

Then we see that the dual Baxter equation (C.3) takes a very simple form,

A
[−4]
+2 P a[−4] + A

[−2]
+1 P a[−2] + A0P a + A

[+2]
−1 P a[+2] + A

[+4]
−2 P a[+4] = 0 . (C.10)

D Additional properties of the Q-functions on-shell

In this appendix we review a reformulation of the quantisation introduced in [64], and

already used in [48]. We will consider vanishing rapidities θi → 0 in this section. The

most important aspect of this alternative method, is that it provides a way to compute the

eigenvalue of the graph-building operator, which also applies in the more complicated case

of quantum numbers |M | = J .

Consider

T [+n]
n ≡ 2q↓

a(u)q↑
b (u + in)Γab, (D.1)

where we assume that the Q-functions are on-shell, namely satisfy the quantisation con-

dition, and Γab is the gluing matrix. We want to show that, as a consequence of the

quantisation conditions, this function has an analyticity strip [−in/2, in/2]. To see this,

we rewrite

T [+n]
n = 2 q↓

a(u) ΓabΩc
b q↓

c (u + in) = 2 q↓
a(u) ωac q↓

c (u + in), (D.2)

and using the antisymmetry of ωab = (Γ · Ω)ab, we find

− 2 q↓
a(u) Ωa

b Γbc q↓
c (u + in) = −2 q↑

a(u) Γab q↓
b (u + in), (D.3)

where the r.h.s. is explicitly analytic at u = 0, . . . ,−in. Furthermore one has

Tn = Γab
(

q↓
a

[−n]
(u)q↑

b

[+n]
(u)− q↑

a
[−n]

(u)q↓
b

[+n]
(u)

)
= −T−n. (D.4)

Among these quantities, a particularly important one is Q+(u) ≡ T
[−1]
1 (u), which has a

pole of order J at u ∼ 3i
2 . From the coefficient of this pole, one can extract the eigenvalue

of the Hamiltonian (identified with the coupling constant) [64]:

ξ2J = lim
ǫ→0

ǫJ Q+(3i
2 − iǫ)

Q+( i
2)

. (D.5)

This equation applies to all states of the theory, including those with |M | = J for which

the simple relation I(0,1) = ξ2J is not valid.
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E Covariance of twisted correlators

In this appendix we review the covariance transformation rules for colour-twisted corre-

lation functions in a large-N CFT, and the insertion points xi are fixed points of these

maps, see [48]. Consider a correlator of colour-twisted operators, 〈
∏n

i=1OGi
(xi)〉, where

G1, . . . , Gn are conformal transformations used in the definition of the twisted operators.

Under any conformal transformation C, the correlator is covariant in the sense that

〈
n∏

i=1

OGi
(xi)〉 = 〈

n∏

i=1

O
G̃i

(x̃i)〉
n∏

i=1

∣∣∣∣
∂x̃i

∂xi

∣∣∣∣

∆i
4

, (E.1)

where x̃i ≡ C(xi), and the twist maps are also conjugated as G̃i ≡ CGiC
−1. We considered

scalar operators for simplicity.

Two-point function at opposite twists. A particularly important case, already stud-

ied in [48], is the 2-point function of two operators with opposite twists, G2 = G−1
1 . In

this case, the 2-point function has the same kinematical dependence on the points as in

the standard CFT without twists. Let us recall how this works. We consider twist maps

with fixed points x0, x0̄. Such maps always admit the following decomposition (we use the

notations explained in the main text):

G1 ≡ G = K r Λ r−1 K−1 G2 ≡ G−1 = K r Λ−1 r−1 K−1, (E.2)

where Λ is the diagonal part, r is a 4D rotation, and K is the special conformal transfor-

mation defined in (2.26), satisfying K(0) = x0, K(∞) = x0̄.

It is simple to show that the 2-point function 〈OG(x0)O′
G−1(x0̄)〉 does not depend on

the form of the rotation r. In fact, consider the covariance rule (E.1), for the map C =

K ◦ r′ ◦K−1, where r′ is any different SO(4) rotation. Since such map C has unit Jacobian

at the fixed points, we conclude that the 2-point function is the same with r → r′ ◦ r.

Therefore, the only relevant parameters are the fixed points and the diagonal part of

G: we can write 〈OG(x0)O′
G−1(x0̄)〉 ≡ F(x0, x0̄;~λ).

Now, (E.1) just becomes the familiar

F(x0, x0̄;~λ) = F(ỹ1, ỹ2;~λ)

∣∣∣∣
∂x̃0

∂x0

∣∣∣∣

∆O
4
∣∣∣∣
∂x̃0̄

∂x0̄

∣∣∣∣

∆
O′

4

, (E.3)

so we can proceed as in the standard CFT case. Considering the effect of dilatations,

rotations around an arbitrary point, and translations, we conclude that

F(x0, x0̄;~λ) =
NO,O′

|x0 − x0̄|
∆O+∆O′

. (E.4)

Finally, consider the covariant transformation property for the map C ≡ K ◦ eρD ◦ K−1,

which leaves G invariant. Then, (E.1) implies that the 2-point function has to vanish unless

∆O = ∆O′ .
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Transformation of the CFT wave function. For the CFT wave function, which is

defined in terms of the twisted operator OG and a twisted trace (see (3.3)), the covariance

property (B.4) gives

ϕOG
(x1, . . . , xJ) = ϕOG̃

(x̃1, . . . , x̃J)×

∣∣∣∣
∂x̃0

∂x0

∣∣∣∣

∆
4

×
J∏

i=1

∣∣∣∣
∂x̃i

∂xi

∣∣∣∣

Ii+1

4

, (E.5)

where ∆ is the scaling dimension of the operator O. Notice that we took into account that,

as a correlator, the wave function depends on J + 1 insertion points, one of them being the

fixed point of the twist x0 where the operator O sits.

F Properties of the transfer matrices under transposition

In this appendix we derive some properties of the adjoints (or transposes) of the transfer ma-

trices with respect to the conformally invariant scalar product, which are denoted as (Tr)T :

〈〈f, Tr ◦ g〉〉 = 〈〈(Tr)T ◦ f, g〉〉. (F.1)

We will derive a convenient explicit equation for the transpose, as a combination of reversal

of the order of sites in the chain, and conjugation with a special conformal map. This repre-

sentation gives a simple map between right and left eigenvectors in the case of homogeneous

chain, and allows us to prove directly that the transfer matrices and their transposes have

the same spectrum. At the end of this appendix, we also use this relation to show that, in

the fishnet theory, the left eigenvectors can be interpreted as conjugate CFT wave functions.

F.1 An explicit formula for the transpose

Statement of the result. Recall the definition of the transfer matrices24

T̂r ≡ Trr

[
L̂r

xJ ,hJ
(u− ϑJ) . . . L̂r

x1,h1
(u− ϑ1) ·G

]
. (F.2)

In this section we will obtain the formula:

(Tr)T = F ◦ T̂r

rev
◦ F, (F.3)

where T̂r
rev

denotes the transfer matrix with reversed order of sites inside the trace:

T̂r

rev
≡ Trr

[
L̂r

x1,h1
(u− ϑ1) . . . L̂r

xJ ,hJ
(u− ϑJ) ·G

]
, (F.4)

and F = K ◦ Ĩ ◦ K−1 is the conformal map defined in (2.47), with Ĩ the holomorphic

inversion (2.48).

24For clarity, in this appendix we occasionally denote the Lax matrices and conformal generators as

L̂r

xk,hk
, q̂MN

x,h , to mark the space-time variable on which they act, and the weight of the representation.
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Properties of F . Before presenting the proof, let us list some important properties of

the conformal map F , which can be easily verified.

– It is equal to its inverse, F = F −1;

– In the frame reached by this transformation, the twist is inverted:

F ◦G ◦ F −1 = G−1, (F.5)

where we used Ĩ ◦ Λ ◦ Ĩ = Λ−1 for the diagonal part of the twist;

– The map changes the sign of the Cartan generators:

F ◦Qa ◦ F −1 = −Qa, a = 0, 1, 2, (F.6)

which follows from Ĩ ◦ {D,S1,2,S3,4} ◦ Ĩ = −{D, S1,2,S3,4}.

– The map swaps the two fixed points of the twist map x0 = F (x0̄), x0̄ = F (x0).

F.1.1 Derivation

Transposition of Lax matrices. From the very definition of the conformally invariant

scalar product, the adjoints of the conformal generators satisfy:

(q̂MN )T = −q̂MN = q̂NM , (F.7)

which is valid locally at every site. In virtue of this relation, the Lax operators satisfy

([
L6(u)

]MN
)T

=
[
L6(u)

]NM
(F.8)

([
L4(u)

] b

a

)T

= −
[
L4(−u)

] b

a
, (F.9)

where we kept explicit the indices in auxiliary space, and we remind that OT denotes the

transpose of an operator w.r.t. the scalar product, i.e. the adjoint.

Intertwining with F . There are two key identities that we will use in the following:

Ĩ ◦ q̂MN ◦ Ĩ = (Ĩ6) M
M ′ q̂M ′N ′

(Ĩ6) N
N ′ , (F.10)

(Ĩ6)M ′

M · (ΣM ′N ′) b
a · (Ĩ

6) N ′

N = −(ΣMN ) a
b , (F.11)

where we kept explicit the representation indices 1 ≤ a, b ≤ 4, and the holomorphic in-

version acts in 6D as Ĩ6 = diag{1,−1, 1,−1,−1, 1}. Combined with (F.8), (F.9), these

identities give

([
L6(u)

]MN
)T

= Ĩ ◦

(
(Ĩ6) N

N ′

[
L6(u)

]N ′M ′

(Ĩ6) M
M ′

)
◦ Ĩ, (F.12)

([
L4(u)

] b

a

)T

= Ĩ ◦
([
L4(u)

] a

b

)
◦ Ĩ. (F.13)

Notice that the terms in round brackets on the right hand side of (F.12), (F.13) involve a

transposition of the auxiliary space indices.
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Transfer matrices. We will work in the frame where the twist map is the diagonal

transformation G ≡ Λ.

Consider the case of the vector representation, defined as

T̂6 = Tr6

[(
L̂6

XJ
(u− ϑJ)

)
. . .
(
L̂6

X1
(u− ϑ1)

)
Λ6
]

, (F.14)

where the Lax matrices without explicit mention of the indices are assumed to have the

index structure (L̂6)M
N ≡ (L̂6)MM ′

ηM ′N . Using (F.8), for its transpose we find

(T̂6)T = Tr6

[
L̂6

X1,h1
(u− ϑ1) . . . L̂6

XJ ,hJ
(u− ϑJ)

(
η · Λ6 · η−1

)Taux

]
, (F.15)

which is a similar to the definition of the transfer matrix, but with the order of sites

reversed, and a different twist. Above, by ATaux we denote transposition in the auxiliary

space indices. The twist matrix appearing in (F.15) can be rewritten as

(
η · Λ6 · η−1

)Taux

= (Ĩ6)Taux · Λ6 · Ĩ6. (F.16)

Using the fact that (Ĩ6 · Ĩ6) N
M = δ N

M and Ĩ6 = (Ĩ6)Taux , we can use (F.16) to write

(T̂6)T = Tr6

[(
Ĩ6 · L̂6

X1,h1
(u− ϑ1) · Ĩ6

)
. . .
(
Ĩ6 · L̂6

XJ ,hJ
(u− ϑJ) · Ĩ6

)
· Λ6

]
, (F.17)

= Ĩ ◦ Tr6

[
L̂6

X1,h1
(u− ϑ1) . . . L̂6

XJ ,hJ
(u− ϑJ) · Λ6

]
◦ Ĩ,

where we used (F.10) in the last line. This matches the announced result (F.3).

Now we consider T̂4. Identity (F.13) tells us that, upon integration by parts, L4(u) gets

transposed in auxiliary space, and conjugated with the holomorphic inversion in quantum

space. The twist matrix Λ4 is not affected by such transposition, since it is diagonal in

this representation. Therefore, repeating the steps described for the previous case, we find

immediately

(T̂4)T = Ĩ ◦ Tr4

[
L̂4

X1,h1
(u− ϑ1) . . . L̂4

XJ ,hJ
(u− ϑJ) · Λ4

]
◦ Ĩ. (F.18)

The derivation for the case of 4̄ is a simple generalisation.

We have presented the above results (F.17), (F.18) for the cases where the twist matrix

is G ≡ Λ. The general case is related to this by a conformal transformation denoted as

K in the main text. Using the covariance of twisted transfer matrices (2.31) under this

transformation, we see that this has simply the effect of replacing the twist Λ → G, as

well as changing the holomorphic inversion to the map F . This leads to the announced

result (F.3).

F.2 Spectral properties

Now we establish that the spectrum of T̂r on the subspace of wave functions with fixed

conformal charges QR
a = {i∆, S1, S2}, is the same as the spectrum of (Tr)T , on the subspace

of wave functions with opposite conformal charges QL
a = −{i∆, S1, S2}.
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We have seen that the adjoint of the transfer matrix is given by the chain of Lax ma-

trices applied on the sites in reverse order, and conjugated by the map F defined in (2.47):

(T̂r)T = F ◦ T̂r

rev
◦ F, (F.19)

with

Tr

rev
≡ Trr

[
L̂r

x1,h1
(u− ϑ1) · · · · · L̂r

xJ ,hJ
(u− ϑJ) ·G

]
. (F.20)

First, we notice that the Baxter equation is invariant under synchronised permutation of

the inhomogeneities and the order of magnons. Therefore, the spectrum is invariant under

this operation. This means that, for every right eigenstate satisfying T̂r ◦ ΨR
A = TrR

A ΨR
A,

there is an associated wave function ΨA,rev satisfying T̂r
rev
◦ΨA,rev = TrR

A ΨA,rev, with the

same eigenvalue. For fixed conformal charges, the map between states ΨR
A and ΨA,rev is

one-to-one since one expects the spectrum is non-degenerate. This wave function has the

same Cartan charges QR
a as ΨR

A, since they can be read from the integrals of motion and

are unaffected by permutations of the sites.

Now, we can construct ΨL
A ≡ F ◦ ΨA,rev, which, by the identity (F.19), will be an

eigenstate of (T̂r)T with the same eigenvalue. Moreover, if ΨR
A (and therefore ΨA,rev) has

Cartan charges QR
a , due to property (F.6) we find that the left eigenvector ΨL

A has exactly

opposite Cartan charges.

F.3 Left eigenvectors in the fishnet case

In this section we consider the fishnet theory, specifying to zero inhomogeneities.

As we discussed in section 3.1, the CFT wave functions, which are right eigenvectors

of the integrals of motion, are defined as certain correlators:

ϕO(x1, x2, . . . , xJ) = 〈OG(x0) Tr (χI1(x1)χI2(x2) . . . χIJ
(xJ)TG−1)〉 , T̂r ◦ ϕO = Tr ϕO.

(F.21)

The associated left eigenvectors, ϕLeft

O satisfying (T̂r)T ◦ϕLeft

O = Tr ϕLeft

O , also have a very

simple interpretation. We will use the representation found in the previous subsection,

ϕLeft

O ≡ F ◦ (ϕO)rev, (F.22)

where (ϕO)rev is the eigenstate of the transfer matrices with reversed order of sites (F.19),

with the same eigenvalue. In the fishnet theory, such wave function can also be obtained

as a correlator:

ϕrev

O (x1, x2, . . . , xJ) = 〈OG(x0) Tr
(
χIJ

(xJ)χIJ−1(xJ−1) . . . χI1(x1)TG−1

)
〉. (F.23)

Using (F.22), we then find

ϕLeft

O (x1, x2, . . . , xJ) = F ◦ ϕrev

O (x1, x2, . . . , xJ) = ϕrev

O (x̃1, x̃2, . . . , x̃J)×
J∏

i=1

∣∣∣∣
∂x̃i

∂xi

∣∣∣∣

Ii+1

4

,

(F.24)

with x̃i ≡ F ◦ xi, and thanks to (B.4), (E.5), this can be interpreted as the correlator

ϕLeft

O (x1, x2, . . . , xJ) = 〈OG−1(x0̄) Tr
(
χIJ

(xJ)χIJ−1(xJ−1) . . . χI1(x1)TG

)
〉. (F.25)
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Notice that going from right to left eigenvectors has the effect of inverting the twist of the

operator, and changes the insertion point from x0 to the second fixed point x0̄ = F (x0).

Using the discrete symmetry of the fishnet model under conjugation of the elementary

fields, φi ↔ φ†
i , the left eigenfunction can also be written as

ϕLeft

O (x1, x2, . . . , xJ) = 〈O†
G−1(x0̄) Tr

(
χ†

IJ
(xJ)χ†

IJ−1
(xJ−1) . . . χ†

I1
(x1)TG

)
〉. (F.26)

This relation is useful to derive the interpretation of the norm in CFT, presented in sec-

tion 3.3. In particular, in figure 3, the sum of Feynman diagrams on the left of the green

cut can be identified with the correlator on the r.h.s. of (F.26); while the diagrams on the

right side of the cut give the CFT wave function (F.21).

G Details on the ∂ξ∆ calculation and relation between scalar product

and 2-pt function

In this appendix we consider the eigenfunctions for zero inhomogeneities, corresponding to

CFT wave functions of the fishnet theory. We show how they are normalised according to

the scalar product. This argument was already implicit in [45] and we thank A. Sever for

discussing it with us. We report it here for completeness.

For simplicity, we will consider the state for lowest scaling dimension at any J , with

M = 0.

We will start from the perturbative theory, and then resum the diagrams. We take the

propagator to be

〈φ(x)φ(y)〉 =
1

4π2

1

(x− y)2
, (G.1)

which in 4D inverts the kinematical term as −� 1
4π2x2 = δ4(x).

We want to study operators of the schematic form O(x0) ∝ Tr(φJ
1 (x0)TG), Õ(x0̄) ∝

Tr(φ†J
1 (x0̄)TG−1) at weak coupling. We define them using an explicit point-splitting regu-

larisation scheme. To regularise the two-point function 〈O(x0)Õ(x0̄)〉, we consider

W (x1, . . . , xJ |y1, . . . , yJ) =
∞∑

n=0

ξ2JnW (n)(x, y), (G.2)

where W (n) represents the fishnet diagram with n wheels:25,26

W (n) =
1

ξ2Jn
B̂ ◦ · · · ◦ B̂︸ ︷︷ ︸

n times

◦
1∏

i 4π2(xi − yi)2
. (G.3)

In the coincident points limit, (xi − x0)2 ∼ (yi − y0̄)2 ∼ ǫ2, this quantity will be denoted

as Wǫ,ǫ(x0|x0̄). It exhibits a power-like divergence, which we can remove by multiplicative

25We extract a prefactor with the coupling as B already contains it.
26The J vertices in each wheel contribute a (16π2)J factor and the propagators linking them give 1/(4π2)J ,

leaving 4J . It is partially cancelled by the corresponding ladder (spokes) propagators that give 1/(4π2)J

which leaves only the 1/(π2)J factor that we have included in B.
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renormalisation of the operators. Choosing a certain normalisation, this gives27

Wǫ,ǫ(x0|x0̄) ≃ ǫ2∆−2J 〈O(x0)Õ(x0̄)〉 = ǫ2∆−2J N

x2∆
00̄

, (G.4)

where the constant N is defined implicitly by the l.h.s. Similarly, we denote as Wǫ(x0|y)

the quantity W (x, y) with (xi − x0)2 ∼ ǫ2. It is a regularisation of the wave function

Wǫ(x0, y) ≃ ǫ∆−J ϕO(x0|y) , (G.5)

Wǫ(x, x0̄) ≃ ǫ∆−J ϕ̃O(x0̄|x) . (G.6)

Now let us consider the integral defining the norm, applied to the regularised wave

functions:

a = 〈〈Wǫ(. . . |x0̄), Wǫ(x0| . . . ) 〉〉. (G.7)

From (G.5), (G.6) we see this differs from the scalar product of two wave functions by an

infinite normalisation:

a = 〈〈ϕ̃, ϕ〉〉 ǫ2∆−2J . (G.8)

Looking at the explicit expression for the scalar product, we notice that the � factors

first remove one layer of propagators, and after that the ladders are glued together. This

produces some combinatorial factors, so that the result is given by the sum of diagrams:

a =
∞∑

n=0

(n + 1) ξ2JnW (n)
ǫ,ǫ (x0|x0̄). (G.9)

Notice that this has the form of a derivative, in fact we can obtain the same sum as

a =

[
1

J
ξ2∂ξ2 + 1

]
(Wǫ,ǫ(x0|x0̄)) ∼

2

J
(ξ2∂ξ2∆) log

(
ǫ

x00̄

)
ǫ2∆−2J N

x2∆
00̄

+ . . . , (G.10)

where the second term contains subleading singularities (without the log for example).

Comparing with (G.8), we conclude that

〈〈ϕ̃, ϕ〉〉 ≃
2

J
(ξ2∂ξ2∆) log(ǫUV)

N

x2∆
00̄

=
2

J
(ξ2∂ξ2∆) log(ǫUV)〈O(x0)Õ(x0̄)〉, (G.11)

which is the result stated in (3.18).

H Parity structure of integral orthogonality relations

In this appendix we follow the approach of section 6 to derive a linear system of equations

associated to a generic state A, and its Π-transformed state denoted by Ã, where Π is the

chain-reflection symmetry discussed in section 7.

27In the untwisted theory, it would be more natural to add an additional factor J on the l.h.s. of (G.4),

due to the ambiguity in contracting xi with yi. With a nontrivial twist, there is a distinct class of diagrams

for each choice of twist-cut. Here, by convention, we consider the diagrams with cut between the coordinates

labelled J and 1, as in the main text. Different classes are related as explained in [48].
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The general functional method described in section 6 gives us the relations

〈p−•aA
a

(
BA − BÃ

)
◦ q•bÃ

a 〉µ = 0, (H.1)

which we can expand to obtain a linear system for the difference of the integrals of motion.

To highlight the symmetries of the problem, it will be convenient to take a special basis

of Q-bilinear forms: we will pick a particular combination of functions analytic in the

lower/upper half planes,

〈p−•aAÔ ◦ q•aÃ〉µ, •a ≡ (↑, ↓, ↑, ↓)a , −•a ≡ (↓, ↑, ↓, ↑)a , a = 1, . . . , 4. (H.2)

Using the basis of integrals of motion organised according to parity (see (7.12), (7.14))

~H ≡
(

~H(−,α)| ~H
′
(−,α), |

~H(+,α)| ~H
′
(+,α)

)

1≤α≤J
, (H.3)

the linear system takes the form

MAÃ ·
(

~HA − ~HÃ

)
= 0, (H.4)

with

MAÃ =




l
(1)
− l

′(1)
− l

(1)
+ l

′(1)
+

l
(2)
− l

′(2)
− l

(2)
+ l

′(2)
+

l
(3)
− l

′(3)
− l

(3)
+ l

′(3)
+

l
(4)
− l

′(4)
− l

(4)
+ l

′(4)
+




, (H.5)

where the blocks are defined as

l
(a)
± ≡ −

1

2

[
〈 p−•a

a

(
(u + i)β−1 D2 ± (−1)J (−u + i)β−1 D−2

)
◦ q•a

a 〉α
]

1≤α,β≤J
, (H.6)

l
′(a)
± =

[
〈 u2β−1− 1±1

2 p−•a
a D0 ◦ q•a

a 〉α
]

1≤α,β≤J
. (H.7)

Factorisation for parity-symmetric states. Now let us show that, for a parity-

symmetric state A = Ã, the above matrix can be brought to a block structure.

We will use the symmetry of the basis of Q-functions in the case A = Ã: indeed, (7.11)

implies that in this case,

q↓
a(u) = κa q↑

σ(a)(−u), p↓
a(u) = ρa p↑

σ(a)(−u), (H.8)

where σ is the permutation acting as σ : (1, 2, 3, 4) → (2, 1, 4, 3), and κa, ρa are simple

constants, fixed by the large-u asymptotics of Q-functions. Their value is not important in

the following.

The symmetry implies immediately, for instance,

res
u=θα−in

(
p↑

1(u) uk q↓
1(u)

)
= (−1)k+1 κ1

ρ1
× res

u=−θα+in

(
p↓

2(u) uk q↑
2(u)

)
, (H.9)

and from the sum over poles,

〈p↑
1 uk q↓

1〉α = (−1)k+1 κ1

ρ1
× 〈p↓

2 uk q↑
2〉J−α+1. (H.10)
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With similar arguments we find in general,

(
l
(a)
±
) β

α
= ∓Aa

(
l
( σ(a) )
±

) β

J−α+1
,

(
l

′(a)
±
) β

α
= ∓Aa

(
l

′( σ(a) )
±

) β

J−α+1
, (H.11)

where Aa are simple (non-vanishing) constants. Therefore, multiplying MAÃ on the left

by the constant matrix

(L)
(b,β)

(a,α) ≡
1

2




1 A1 0 0

0 0 1 +A3

1 −A1 0 0

0 0 1 −A3




b

a

× δ J−β+1
α , M̃AÃ ≡

(
L ·MAÃ

)
(H.12)

we reach the block structure

M̃AÃ
∣∣∣
A=Ã

=

(
M− 0

0 M+

)
, (H.13)

in analogy with the case studied in [52].

Comment on the selection rule. As proved in the main text, |M−| = 0 whenever the

state is non-symmetric, A 6= Ã. Let us show that, instead, when A = Ã, we have |M−| 6= 0

while |M+| = 0.

This is a consequence of the variation equation (5.14). Since for a symmetric state

the odd integrals of motion have the vanish, the latter reduces to a square system of 2J

equations

M+ · ∂ξ2

(
~H+

~H ′
+

)
= 0, (H.14)

which implies (since the system has a nontrivial solution) that

|M+| = 0. (H.15)

As discussed in section 5, the kernel of M̃ is expected to be one-dimensional in generic

points of parameter space. This, together with (H.15), implies that, for symmetric states,

|M−| 6= 0. This determinant therefore gives a precise characterisation of the symmetry of

the states: it vanishes precisely for states which are not symmetric.
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I Determinants in the N=4 SYM Baxter equation

Here we present the determinants appearing in the coefficients of the N = 4 SYM Baxter

equation we presented in (8.2):

D0 = det




P1[+2] P2[+2] P3[+2] P4[+2]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]




, (I.1)

D1 = det




P1[+4] P2[+4] P3[+4] P4[+4]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]




, (I.2)

D2 = det




P1[+4] P2[+4] P3[+4] P4[+4]

P1[+2] P2[+2] P3[+2] P4[+2]

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]




, (I.3)

D̄1 = det




P1[−4] P2[−4] P3[−4] P4[−4]

P1 P2 P3 P4

P1[+2] P2[+2] P3[+2] P4[+2]

P1[+4] P2[+4] P3[+4] P4[+4]




, (I.4)

D̄0 = det




P1[−2] P2[−2] P3[−2] P4[−2]

P1 P2 P3 P4

P1[+2] P2[+2] P3[+2] P4[+2]

P1[+4] P2[+4] P3[+4] P4[+4]




. (I.5)

Since the P functions have a single short cut on the first Riemann sheet (see figure 5), these

determinants all have a finite number of cuts, and are analytic outside a certain radius in

the complex plane. We also notice that, using the QQ relations, these coefficients can be

written as the same expressions, but where all the P functions are replaced by Q functions

with the same index. The expression in terms of Q functions makes it easy to evaluate

the determinants for large u when the Q functions have generic twists λi. In this case, the

determinants are non-vanishing constants at infinity. These analytic properties justify the

expansion (8.4).

The fact that we can alternatively write the D coefficients in terms of the Q or P

functions, implies that they are functions with a finite number of either short or long

cuts, on two connected Riemann sections. This suggests that they might have a simple

analytic structure. Understanding it more fully might be relevant to find a good basis of

independent integrals of motion in N=4 SYM.
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